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Abstract—In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes.

Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in

a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase

flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a

set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the

additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach

naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of

fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full

coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner

based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well

as a performance analysis of our method, together with suggestions for performance optimization.

Index Terms—Fluid animation, physics-based modeling, optimization methods

Ç

1 INTRODUCTION

IN this paper, we present a finite element method for

animating multiphase1 flow of immiscible liquids (i.e.,

nonmixing liquids, such as water and oil, see Fig. 1). Such

flows can be witnessed in everyday life, for example, in

one’s own culinary experience or lava lamps, and they are

of utmost significance in biology (all living organisms are
highly complex multiphase systems), geophysics (several

volcanic and tectonic phenomena), and oil industry (crude

oil extraction, oil spill modeling).

Our approach is based on the Lagrangian deformable

simplicial complex (DSC) method, previously used for

topology-adaptive deformable interface tracking [1], [2],
which trades the apparent simplicity of the level set method

for robustness and support of multiple phases, as well as

offering an unstructured, moving computational grid. Each
element in the mesh is assigned a single material and

interfaces are composed of faces in the DSC. The DSC

moves with the fluid in a Lagrangian fashion and a variety
of mesh optimization operations improve element quality

and avoid element inversion. We formulate the solution of

the Navier-Stokes equations in terms of a quadratic

optimization problem, which accounts for and couples all
terms: incompressibility, viscosity, surface energy, and

arbitrary solid constraints.
Our approach builds on the work of Misztal et al. [3] and

Erleben et al. [4], who developed a finite element approach
to fluid simulation and characterized the solution to the

Navier-Stokes equations as a quadratic optimization pro-

blem. Our main contribution is the extension of these
techniques to multiphase flow. Furthermore, we have

addressed numerous implementation issues, essential for

significant improvement of the accuracy of the method and

reduction of its time complexity. Our contributions include:

. deriving the formulation of and implementing the
second-order surface energy approximation (see
Section 3.3);

. deriving and implementing pressure stabilization
through finite volume discretization of the pseudo-
compressibility equation (in contrast to the pre-
viously used pressure stabilization scheme from
Misztal et al. [3], used by Erleben et al. [4], which is
not physically correct; see Section 3.4);
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1. We follow the most common definition of a phase used in the natural
sciences. In a layperson’s terms, a phase is a volume of matter characterized
by essentially uniform physical properties (e.g., density, viscosity, chemical
composition, electromagnetic properties). Hence, two immiscible fluids are
de facto separate phases. However, since the most widely known phase
transitions also change the state of matter (i.e., solid, liquid, gas), this often
leads to confusing the two terms.
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. simplifying the formulation of the solid boundary
conditions in the model (see Section 3.5);

. adapting the method so that it supports multiple,
immiscible fluids (see Section 3.6);

. designing a preconditioner, which allows us to
employ a GPU-based, iterative solver (see Section 4);
and

. suggesting ways to optimize the performance of the
DSC method (see Section 3.1.1) and the matrix
assembly step (see Section 5.5).

In contrast to regular grid and level set-based ap-
proaches, our method offers several significant advantages:
the Lagrangian nature of our mesh avoids numerical
diffusion that leads to volume loss and excessive perceived
viscosity; the unstructured tetrahedral mesh allows us to
trivially handle arbitrary, nongrid-aligned solid boundaries,
and the explicit representation of interfaces as faces in the
mesh allows for accurate treatment of surface tension. In the
context of multiphase flow, we wish to highlight one
additional advantage: the Lagrangian nature of our dis-
cretization allows us to optimally track the interfaces
between multiple fluids. There is no guesswork in
determining what fluids are where and the simulation is
greatly simplified because each element is occupied by a
single material. This also allows us to assign different
values of surface energy density to all pairs of materials. We
present several examples of fluid simulations generated
using our method, as well as the results of various
performance tests and parameter studies.

2 RELATED WORKS

The literature concerning fluid simulation in computer
graphics is rich, and a proper review of all the state-of-the-
art methods would require a study of its own. Most
methods are based on regular grids and we refer to [5], [6],
[7], [8], [9], [10], [11], [12], [13] for details. The literature on
multiphase flow is sparser. Losasso et al. [14] first
demonstrated multiple interacting fluids. They used multi-
ple particle level sets to track the various interfaces and
introduced averaging rules for handling cells occupied by
more than one material. Kim [15] expanded on this
approach by introducing regional level sets [16].

Another big group of methods is based on smoothed-
particle hydrodynamics [17] and the work by Solenthaler
et al. [18] is of particular interest here since it is able to
handle multiple materials robustly. In contrast, our method
uses an unstructured grid. The work in computer graphics
on fluid solvers based on unstructured meshes is sparse.
Early work used static unstructured meshes [19], [20].

Dynamic meshes with limited deformation (to preserve
mesh quality) were demonstrated by Feldman et al. [21].
When mesh quality can no longer be preserved, an entirely
new mesh can be generated [22], [23], [24], [25] though this
involves a great deal of computation and can lead to
undesirable artifacts, such as the smoothing of simulation
variables. Alternatively, local mesh improvement opera-
tions [3], [26] are computationally more efficient and
minimize artifacts. Solid boundaries and two-way coupling
have been touched upon [19], [22]. The preferred method
for dealing with advection has been the semi-Lagrangian
advection method [19] and its generalization to deforming
meshes [21] which has been applied in many works [22],
[24], [27], [28].

The finite volume method is a popular choice for fluid
simulation on unstructured meshes [19], [20], [21], [22],
[28]. In particular, Elcott et al. [20] demonstrate a number
of desirable, even surprising, properties for incompressible
flow simulation with their use of discrete exterior calculus.
In contrast, the finite element method [23], [25], [26] is
often preferred for plastic and elastic objects. However, its
application for fluids is sparse [3], [4]. Mimicking regular
grids, many tetrahedral schemes are based on staggered
locations of simulation variables [19], [20], [21], [28]. Here,
the face centers often store the normal velocities and
volume centers store pressure values. While this approach
has a number of nice properties [20], they have the
significant drawback that reconstruction of the full-
dimensional velocity field is quite expensive. In contrast,
while we do store pressures at the centers of our elements,
the velocity field is stored as full-dimensional velocity
vectors at the nodes of our mesh.

3 FLUID SIMULATION METHOD

In this section, we present the complete, finite element
discretization of the incompressible fluid motion equations
and its formulation in terms of a quadratic optimization
problem, which allows us to accurately incorporate non-
linear terms (such as surface tension forces) into the model.
We also discuss the significant implementation details
required for a robust performance: pressure stabilization
(in the form of pseudocompressibility) and preconditioning,
which allows us to improve the performance by employing
a fast, GPU-based, iterative solver. Finally, we describe how
to handle the fluid’s interactions with arbitrary solid walls,
and how to adapt the method to handle several interacting,
immiscible fluids.
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Fig. 1. Multiple, immiscible liquids with different viscosity coefficients and surface tension densities splashing on the bottom of a container. Observe
that the simulation has no problem dealing with thin sheets.



3.1 The Deformable Simplicial Complex Method

Our FEM computations are performed on an unstructured,
tetrahedral grid, which is also used by the DSC method [1],
[2] for tracking the fluid’s free surface. The DSC method is a
recent, Lagrangian method for topology-adaptive deform-
able interface tracking. It represents the interface explicitly
as a piecewise surface (triangle mesh), while the whole
embedding space is discretized as well as a tetrahedral
mesh. All tetrahedra are labeled inside or outside according
to their location relative to the interface (the 2D case is
shown in Fig. 2). Furthermore, they conform to the
interface, in the sense that each interface triangle is a
common face shared by one inside tetrahedron and one
outside tetrahedron. The interface deformations are pro-
duced by iterating interface vertex displacement according
to a given velocity field, followed by a mesh improvement
step. The main purpose of the mesh improvement step is
the removal of low-quality tetrahedra produced during
vertex advection and reducing the risk of creating inverted
tetrahedra in subsequent deformation steps.

The main advantages of the DSC method in the context
of fluid simulation include: robust topological adaptivity,
low numerical diffusion, available surface mesh representa-
tion, which does not change gratuitously between time
steps, and the possibility of representing more than two
phases (one can use an arbitrary number of tetrahedron
labels rather than just two).

3.1.1 The DSC Method in 3D

The outline of the 3D DSC method remains very similar to
that presented in [2] (see Algorithms 1, 2, and 3). However,
we have modified some parts of the algorithm to improve
the overall performance of the fluid simulation method.

Algorithm 1. 3DDSCðM;uÞ.
{M is a tetrahedral mesh conforming to the interface}

{u is a velocity function for the fluid vertices}

1: t( 0

2: while t < tfinal do

3: insert new Steiner vertices

4: split long interface edges

5: collapse short interface edges
6: flip interface edges

7: for each fluid vertex xi do

8: compute final vertex position
~xi ( xi þ ui�t

9: end for

10: complete( false

11: counter( 0

12: while not complete or counter < max iter do

13: counter( counterþ 1

14: complete( MoveVerticesStepðM; f~xigÞ
15: relabel valid degenerate tetrahedra

16: T ( set of tetrahedra adjacent to vertices

displaced in the previous step

17: smooth all noninterface vertices in T

18: if complete and counter � 0 (mod 4) then

19: ImproveMeshStepðM;T Þ
20: else

21: smooth all outside vertices

22: reconnection (lines 2-9 in Algorithm 3)

23: remove degenerate tetrahedra

24: remove degenerate faces

25: remove degenerate edges
26: end if

27: end while

28: t( tþ�tf�t is a time-step}

29: end while

Algorithm 2. MoveVerticesStepðM; f~xigÞ.
{f~xig is a set of the new positions of the fluid vertices}

1: complete( true

2: for each fluid vertex xi do

3: if kxi � ~xik > 0 then

4: compute the intersection t0 of the ray

xi þ t � ð~xi � xiÞ with the link of the vertex xi
5: if t0 > 1 then

6: xi ( ~xi
7: else

8: move the vertex xi to the intersection point

xi þ 0:99 t0 � ð~xi � xiÞ
9: complete( false

10: end if

11: end if

12: end for

13: return complete

Algorithm 3. ImproveMeshStepðM;T Þ.
1: smooth all outside vertices in T

2: for each tetrahedron t 2 T , such that QðtÞ < 0:2 do

3: for each noninterface face f of t do

4: attempt to remove f using MFRT and MFR

5: end for

6: for each noninterface edge e of t do

7: attempt to remove e using edge removal

8: end for

9: end for

10: collapse valid noninterface edges

The initial tetrahedral mesh for the simulation is a

constrained 3D Delaunay triangulation generated using

Tetgen [29]. However, tetrahedral meshes created this way

tend to contain nearly degenerate tetrahedra, so in our mesh

improvement algorithms we aim at maximizing the volume-

edge ratio quality measure [30], [31] QðtÞ ¼ V ðtÞ
VrmsðtÞ ¼ 6

ffiffiffi
2
p

V ðtÞ
e3

rms
,

where V ðtÞ is the oriented volume of a tetrahedron t and
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Fig. 2. A 2D example of an interface representation in the DSC method.
The embedding mesh can be retessellated to accommodate vertex
displacement and produce changes in the topology of the interface.



VrmsðtÞ is the volume of a regular tetrahedron with the same
root-mean-squared edge length erms as t. This quality
measure is smooth and penalizes all kinds of nearly
degenerate tetrahedra, including slivers.

In the 3D DSC method, we perform both volumetric and
surface mesh improvement using local operations. The
volumetric operations include:

. Mesh quality improvement. Smart Laplacian smooth-
ing of the nonfluid vertices and optimization-based
smoothing, which moves the vertex x in a way that
maximizes the minimum quality of its adjacent
tetrahedra (this a nonsmooth optimization problem,
for the details see [32]). Optimization-based smooth-
ing is computationally expensive and we only use it
if smart Laplacian smoothing fails to improve the
minimum quality Q in the 1-ring of x above 0.05. We
only smooth nonfluid vertices, since arbitrary
displacements of the vertices belonging to the
computational grid leads to numerical diffusion
and inaccuracies.

Reconnection operations (generalizations of the
edge flip in the 2D case): edge remove, multiface remove,
multiface retriangulation (shown in Fig. 3, for more
details see [33], [34], [35]) if they locally improve the
minimum quality. Since the topological operations
are computationally expensive, we only perform
them for tetrahedra of quality less than 0.2.

. Interface topology changes. Topology changes occur
when vertices from one component of the interface
touch another part of the interface. In this case, the
two interface parts will be separated only by one or
more degenerate tetrahedra. Those tetrahedra can
either be re-labeled (switched from inside to outside,
or the other way round) or removed as a part of the
degeneracy removal (discussed below).

We relabel nearly flat tetrahedron t (quality lower
than qrelabel ¼ 0:02) if it is located between two parts
of an interface. This is a case when the largest face f
of t lies on the interface and the vertex v opposite to
f also lies on the interface and its orthogonal
projection onto f lies within f’s hull. To improve
the interface mesh, we also relabel t if QðtÞ <
10qrelabel and the change of label would decrease
the total surface energy of the interface (acting like
“combinatorial surface tension”).

. Detail control. Noninterface edges are collapsed if
their endpoints do not lie on the interface or the DSC
mesh boundary and if the collapse does not locally
decrease the minimum quality or if the quality of
any tetrahedra affected by this operation does not
become lower than qcollapse ¼ 0:30. Rather than
introducing Steiner vertices through noninterface
edge splits (as it is done in [2]), we use an
optimization-based vertex insertion algorithm simi-
lar to the one introduced by Klingner and Shewchuk
[34]. We use a simplified version of their algorithm
which, for any tetrahedron t with quality QðtÞ < 0:2
attempts to replace a star-shaped set of tetrahedra T
containing t, with a new set of tetrahedra connecting
the new vertex xSteiner with each of the faces on the
boundary of T . We use the center of the smallest
sphere containing t as the initial position of xSteiner,
and the star-shaped set T is determined using a
graph-cut optimization algorithm, described in de-
tail in [34].

. Degeneracy removal. Tetrahedra—if a tetrahedron’s
vertices are nearly coplanar (e.g., if the tetrahe-
dron’s quality is smaller than a value qmin ¼ 0:01)
its largest face is found and a tetrahedron removal
strategy is chosen accordingly to the position of its
opposite vertex by “flattening” the tetrahedron and
replacing it with a set of two, three, or four
triangles. Faces: if a face contains an angle smaller
than �min, cos �min ¼ 0:998, it can be either a cap or a
needle. If the ratio of the longest edge to the second
longest edge in the face is greater than 1.03,
the longest edge is split at the projection of the
vertex opposite to it and the edge connecting
the new vertex and the cap tip is collapsed;
otherwise, the face is a needle and the edge
opposite to the smallest angle is collapsed (both
collapses are performed if they produce a valid
mesh). Edges: degenerate noninterface edges are
removed during the edge collapse step. Degenerate
interface edges are removed during the process of
surface energy improvement described below.

The free surface of a fluid changes dramatically during
the simulation and our fluid simulation method would
quickly break down had we not kept the surface mesh
quality sufficiently high. Moreover, the quality of the
embedding tetrahedral mesh depends on the shape and
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Fig. 3. Topological operations (also called flips or swaps) used for mesh reconnection in 3D DSC. Each operation is performed only if it improves the
minimum quality locally.



size of the interface mesh triangles. We improve the quality
of the surface mesh using the following local operations:

. Surface mesh quality improvement. Null-space smooth-
ing [36]: moving each interface, manifold vertex x in
the null space of its local quadric metric tensor. This
way the smoothing does not change the geometry of
the interface mesh. We update the velocity at the
each vertex by applying linear interpolation of the
old velocity field (before smoothing) at the new
position of x.

Edge flip of an interface, nonmanifold edge e:
performed if e’s adjacent interface triangles do not
fulfill 2D Delaunay criterion, if e is not a feature edge
(measured by the angle �flip between the normals to
its adjacent faces, �flip < 5�). Requires performing
edge removal (reconnection) operation in the em-
bedding tetrahedral mesh.

. Detail control. Edge split for an interface edge
e longer than 2:5eavg, where eavg is the average edge
length in the original surface mesh. The velocity at
the new vertex is calculated as the average of the
velocities at the endpoints of e.

Edge collapse for an interface edge e shorter than
ecollapse ¼ 0:75eavg. It is important to keep this thresh-
old value high, to prevent the mesh size from
growing uncontrollably. However, to prevent this
operation from changing the geometry of the inter-
face significantly, we have introduced a new
criterion (absent in [2]). For each of two possibilities
of collapsing e, we compute the volume difference
they yield. We select the one that yields smaller
absolute volume difference, and if it is less than
0:02e3

collapse, we perform the collapse.

An apparent downside of the 3D DSC method is the
number of parameters required to condition the local mesh
improvement operations. In principle, the method requires
fine tuning of those parameters to achieve optimal
performance, depending on the application. While chan-
ging their values might not have a direct influence on
the robustness of the method, it can significantly affect
the ccuracy and computation time. On the other hand, this
also means that the user has much control over the
method’s performance and capacity to adjust it to achieve
the desirable results.

In summary, we have described the 3D deformable
simplical complex method, adapt for the requirements of
fluid simulation. Our main new contributions to the method
include: the Steiner vertex insertion routine and the
condition for the interface edge collapse.

3.2 Fluid Simulation as an Optimization Problem

We treat the tetrahedra contained in each fluid volume as
conforming, linear elements. We sample the velocity field
uðx; y; zÞ at each vertex of the mesh xi, i ¼ 1; . . . ; NV , where
NV is the total number of vertices in the mesh. We denote
the vector of all velocity samples as u ¼ ½uT1 uT2 . . . uTNV

�T ,
where ui ¼ uðxiÞ. We are using a staggered grid, meaning
that the pressure field is discretized at tetrahedra:
p ¼ ½ p1 p2 . . . pNT

�T , where NT is the number of elements
(tetrahedra) occupied by the fluid. The optimization-based
fluid simulation method is a fractional step method (see

Fig. 4). In the first step, we perform (forward Euler) vertex

advection according to the current sampled velocity field ut:

xtþ�t
i ¼ xti þ uti�t; ð1Þ

and we advect the velocity values along with vertices
obtaining an intermediate velocity field u� which might
violate the new, discretized continuity constraint. We fix
that in the second step by solving the finite-element
discretization of the fluid motion equations in the form of
an optimization problem, which determines the final
velocity field utþ�t of the fluid (the details of the
discretization are presented in Section 3.3):

utþ�t ¼ arg min
u

1

2
uTAuþ uTb ð2Þ

subject to

PTu ¼ 0; ð3Þ

where A accounts for inertia, viscosity, and surface
tension, b contains the effect of the advection and external
force densities like gravity, and P is the gradient
operator. The Karush-Kuhn-Tucker (KKT) conditions for
this problem read

A P
PT 0

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

K

u
�

� �
¼ �b

0

� �
; ð4Þ

where � are the Lagrange multipliers and correspond to
��tp—the pressure field multiplied by the time step size.
Observe that solving this problem fully couples the velocity
and pressure fields, unlike the projection method. The K
matrix is named the KKT matrix and is known to be
symmetric indefinite [37].

3.3 Navier-Stokes Equation Discretization

The motion of a Newtonian fluid is governed by the Navier-
Stokes equation:

� _u ¼ �ðu � rÞuþr �Tþ f ; x 2 Vfluid; ð5Þ

where Vfluid � R3 is the volume of the fluid, � is the mass
density, u is the unknown velocity field, and T is the

Newtonian stress tensor:

T ¼ �pI3	3 þ �ðruþruT Þ; ð6Þ
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Fig. 4. Schematic view of a single iteration of our fluid simulation
method. We begin with an initial velocity field ut respecting the continuity
constraint (left). Then we move the grid according to this velocity field,
advect the velocity values and possibly retessellate the mesh (dotted
line) to accommodate the displacements or improve its quality (center).
The new velocity field u� might violate the continuity constraint. To fix
that, we solve the discretized version of the Poisson equation and obtain
the final velocity field utþ�t (right).



where p is the pressure field, � is the dynamic viscosity

coefficient, and f is an external force term (for example

gravity). We assume constant mass density which yields a

continuity constraint in the form of incompressibility,

r � u ¼ 0; x 2 Vfluid: ð7Þ

Erleben et al. [4] show that the weak formulation of this

system for a tetrahedral mesh with a staggered grid layout

is as follows:

M
@u

@t
�Bf �PpþDu ¼ 0; ð8Þ

PTu ¼ 0; ð9Þ

where f ¼ ½ fT1 fT2 . . . fTNV
� and

Mij ¼ I3	3

Z
Vfluid

��i�jdV ;

Bij ¼ I3	3

Z
Vfluid

�i�jdV ;

Dij ¼
Z
Vfluid

�
�
r�Ti r�jI3	3 þr�ir�Tj

�
dV ;

Pjk ¼
Z
Vk
r�jdV ;

where i; j ¼ 1; 2; . . . ; NV , k ¼ 1; 2; . . . ; NT and Vk is the

volume of the kth tetrahedron. The shape functions �i :

R3 7! R fulfill the condition:

�iðxjÞ ¼
1; if i ¼ j;
0; if i 6¼ j;

�
ð10Þ

and are piecewise linear over each element, which allows us

to evaluate the matrices above analytically. We apply the

finite difference method to discretize (8), by substituting
@u
@t 
 1

�t ðutþ�t � u�Þ and, by choosing an implicit scheme for

stability we obtain the following system of linear equations:

Autþ�t þ bþP� ¼ 0; ð11Þ

PTutþ�t ¼ 0; ð12Þ

where � ¼ ��tp, A ¼Mþ�tD, and b ¼ �Mu� þ�tBf .
Solving this equation is equivalent to solving the quadratic
optimization problem (2), since its first-order optimality
conditions are equivalent to (11) and (12). We are interested
in this perspective because it allows us to incorporate
nonlinear terms into the model, in particular surface tension
forces. Adding this term in the form of body forces yields
lower accuracy and leads to a stringent stability time step
restriction for surface-tension dominated flows. Instead, we
add the surface energy term UðxÞ to our objective function:

1

2
uTAuþ uTbþ Uðxþ�tuÞ: ð13Þ

We use a second-order Taylor series approximation for

Uðxþ�tuÞ:

Uðxþ�tuÞ 
 UðxÞ þ�trUuþ 1

2
�t2uTrrUu;

which leads us to another quadratic optimization problem
in the standard form with

A0 ¼ Aþ�t2rrU; ð14Þ

b0 ¼ bþ�trU: ð15Þ

Surface energy is proportional to the free surface areaA of the
fluid UðxÞ ¼ �AðxÞ. The constant of proportionality � is
called the surface energy density and it is a material constant
with different values on contact surfaces between each pair of
phases (liquid, gaseous, and solid) in the system. To evaluate
the gradient and the Hessian of the energy density (rU and
rrU), we need to find the gradient and the Hessian of the
area for each interface triangle. We can find symmetric
formulas for those by applying a Taylor approximation to
Heron’s formula for the area At of a triangle t with vertices
xi;xj;xk. Let us denote e� ¼ x	 � x
, where ð�; 
; 	Þ is an
even permutation of ði; j; kÞ and e� ¼ ke�k. Lengthy calcula-
tions lead to the following results:

r�At ¼
�
e2
� � e2


 þ e2
	

�
e
 �

�
e2
� þ e2


 � e2
	

�
e	

8At
; ð16Þ

and

r�r�At ¼
2e2

�I� 2e�e
T
�

8At
� ðr�AtÞðr�AtÞT

At
;

r�r
At ¼
�
e2
	 � e2

� � e2



�
I� e	e

T
	 þ e�e

T
� þ e
e

T



8At

� ðr�AtÞðr
AtÞT

At
;

wherer� is the gradient operator with respect to the position
of the vertex x�. For the details on the formulas derivation see
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2013.97. Note that (16) is equivalent to the
cotangent formula [38], commonly used in discrete exterior
calculus. A comparison of the fluid simulation results using
first-order and second-order surface energy approximations
is presented in Section 5.2.

We have presented a finite element discretization of the
Navier-Stokes equation, formulated in the form of a
quadratic optimization problem, which fully couples the
pressure and velocity fields and allows us to accurately
include surface tension forces in our model.

3.4 Pressure Stabilization

In some cases, the matrix P might not have full column
rank, making the KKT matrix singular. In the finite element
literature, this is referred to as locking. To circumvent this
problem, we add a stabilization term to the KKT system.

We apply the idea of pseudocompressibility [39] to
stabilize the Navier-Stokes equations. There are different
versions of this class of pseudocompressibility methods.
However, the version we use replaces the continuity
constraint r � u ¼ 0 with

r � u� "
�
r2p ¼ 0; ð17Þ

where " is termed the stabilization parameter and is related to
the time step one is using. Shen [39] suggests using " 
 �t.
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We can discretize this modified continuity equation
using a finite volume method

0 ¼
Z
Vfluid

r � u��t

�
r2p

	 

dV 
 PTu��tSp: ð18Þ

The formulation of the matrix P has already been shown in

Section 3.3. To evaluate the second term, we split the
volume integral into the sum of integrals over each
tetrahedron and apply Gauss’ theorem, which yields

�t

�

Z
Vfluid

�
r2p

�
dV ¼ �t

�

X
k

X
l

Z
Akl

rp � nklð ÞdA;

where Akl is a face of the kth tetrahedron, shared with the
lth tetrahedron, and nkl is the normal vector to Akl. Now,
assuming that the pressure field is discretized at the

barycenters of the elements in our mesh we can approx-
imate the term rp � nkl on Akl. We do it by evaluating the
term pðxþ d nÞ using Taylor approximation

pðxþ d nÞ 
 pðxÞ þ rpðxÞ � nð Þd: ð19Þ

From this

rp � nkl 

pl � pk
dkl

; ð20Þ

where dkl is the distance between the barycenters of the kth
and the lth tetrahedra projected onto nkl. This is a good

approximation as long as the barycenters of tetrahedra k

and l project onto the same point on Akj. Fortunately, the
DSC method optimizes the mesh to favor this property. This
approximation has been used previously by Chentanez

et al. [24], and similar approximations are also used in
computational fluid dynamics [40].

We can express the formula shown in (20) using the area
of Akl and the volumes of its adjacent tetrahedra

dkl ¼
3

4

Vk þ Vl
Akl

; ð21Þ

(see Fig. 5 for the explanation). Hence,

�t

�

Z
Vfluid

�
r2p

�
dV 
 �t

�

X
k

X
l

Akl

dkl
ðpl � pkÞ: ð22Þ

For the sake of brevity, let us denote

�kl ¼
Akl

dkl
¼ 4

3

A2
kl

Vk þ Vl
: ð23Þ

This way we can write the matrix S as

Skl ¼
1

�

�kl; if k 6¼ l;
�
P

m6¼k �km; if k ¼ l;

�
ð24Þ

where �kl is given by (23) if tetrahedra k and l share a face,
or otherwise equals 0. Such a pressure stabilization term
relaxes the incompressibility constraint by allowing limited
volume exchange between adjacent tetrahedra, while
keeping the total volume of the fluid constant.

We can easily include this term in our KKT system (4) by
replacing the continuity constraint PTu ¼ 0 with (18),
obtaining

A P
PT S

� �
u
�

� �
¼ �b

0

� �
: ð25Þ

The comparison of the fluid simulation results using this
pressure stabilization scheme and the one by Misztal et al.
[3] is presented in Section 5.2.

3.5 Solid Boundaries

In the computer graphics community, there are two popular
choices of boundary condition equations at the contact
surface between the fluid and the solid boundaries. The free-
slip condition states that at the solid boundaries the normal
velocity of the fluid must be 0 (in case the solid wall is
static) or must match the normal velocity of the solid. This
boundary condition is a popular choice for fluids with low
viscosity values. The no-slip condition states that at the
solid boundaries, the fluid does not move relative to the
boundary (its velocity matches that of the solid). This
boundary condition is favored when modeling fluids with
high-viscosity values. In our experiments, we have been
using the former approach, although implementation of a
no-slip condition is also possible in our framework.

Let us focus on a static solid wall W � R3 (including
moving solids is straight-forward and only changes the left-
hand side part of our KKT system). Let us denote the set of
all fluid vertices in contact with the solid boundary as

C ¼ k : pk 2 @Wf g; ð26Þ

where pk is the position of the kth vertex. We may now
write the free-slip solid boundary condition for a vertex
k 2 C as

nTk uk ¼ 0 8k 2 C; ð27Þ

where uk is the fluid’s velocity at the kth vertex and nk is the
normal to the boundary at pk. Given the velocity field u 2
R3NV we may now define the boundary condition at solid
walls as

Cu ¼ 0; ð28Þ

where C 2 RkCk	3NV . Now, we may add the solid boundary
conditions to our optimization problem as a hard constraint

utþ�t ¼ arg min
u

1

2
uTAuþ uTb ð29Þ

subject to
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Fig. 5. The distance dk from the barycenter of a tetrahedron k to its face

Akl is four times smaller than its height hk relative to that face. The

volume of this tetrahedron Vk ¼ 1
3hkAkl, hence dk ¼ 3Vk

4Akl
. Analogously,

dl ¼ 3Vl
4Akl

. From this, we have that the distance between the barycenter,

in the direction orthogonal to Akl equals dkl ¼ dk þ dl ¼ 3
4
VkþVl
Akl

.



PTu ¼ 0; ð30Þ

Cu ¼ 0; ð31Þ

This results in a KKT-matrix

K0 ¼
A P CT

PT "S 0
C 0 0

2
4

3
5: ð32Þ

This is clearly a symmetric indefinite matrix. The C-matrix

has full row rank and therefore the KKT-matrix K0 is

nonsingular.

3.6 Multiple Phases

One can easily adapt the DSC method so that it handles
multiple phases. Instead of having just two labels for
tetrahedra (inside and outside), one can use an arbitrary
number of labels, each representing a different phase. This
allows us to simulate several, immiscible fluids with
different density, surface tension and viscosity values.

Since each tetrahedron in the mesh is occupied by just
one fluid, the solver remains essentially unchanged. The
vertices on the interface between two fluids are given
freedom to move in every direction. The discretization of
the Navier-Stokes equation presented in Section 3.3 remains
valid when we associate different density, viscosity, and
surface energy density values with different elements. The
only part that needs changing is the pressure stabilization
term. To avoid exchanging volume between two different
fluids, we modify the matrix S (given by (24)) as follows:

Skl ¼
1

�i

�kl; if k 6¼ l;
�
X
m 6¼k

�km; if k ¼ l;

8<
: ð33Þ

where �kl is given by (23) if tetrahedra k and l share a face

and belong to the same fluid (have the same label i), or

otherwise equals 0.

4 USING AN ITERATIVE SOLVER

The KKT system solving step was the main bottleneck in the

previous work [4]. The fluid simulation method would

spend up to 70 percent of the computation time solving the

linear system using the Cholesky decomposition method.

This is why we decided to use an iterative solver in our

work. The indefiniteness of the modified KKT-matrix may

cause numerical problems when we want to solve our

system of linear equations. Ideally, we would like to apply a

scheme like the conjugate gradient (CG) method. However,

CG typically does not converge well for indefinite systems.
Typically MINRES, SYMMLQ [41], or GMRES [42] are

used instead of CG when dealing with an indefinite matrix.

In earlier simulations, we used the generalized minimum

residual (GMRES) method. It is similar to CG except it

keeps a memory limited local storage of vectors spanning

the Krylov space that is being explored [43]. One can find

off-the-shelf GPU implementations of GMRES which can

boost the performance with almost no programming effort.

In later simulation, we replaced the GMRES method with

the conjugate residual (CR) method [44], which takes the

symmetry of our KKT matrix into account, improving the

overall performance of our fluid simulation method (see

Tables 1 and 2). In both cases, we use CUSP [45].
The matrix K is not diagonally dominant, so we cannot

use the well-known Jacobi preconditioner. Instead, to

improve the GMRES or CR method’s convergence rate,

we apply a diagonal approximation of Murphy’s block
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TABLE 1
Simulation Statistics before Performance Optimization: The Initial Number of Tetrahedra of the Embedding Mesh (Excluding

Tetrahedra Labeled Outside Which Are Not Used for Computation); the Initial/Max/Median Number of Tetrahedra
of the Computational Mesh; the Initial/Max/Median Number of the Surface Elements; the Average Timings of Each

Step of the Simulation: Matrix Assembly, Solving the Linear System Using the GMRES Method, Advection
Step Using the DSC Method (Including Mesh Improvement); the Total Average Timing of an Iteration

TABLE 2
Selected Simulation Statistics after Performance Optimization, Including Improved Edge Collapse,

Parallelization of the Matrix Assembly and Use of the CR Solver



preconditioner [46]. It is based on the idea of using a diagonal
version of the Schur complement as a preconditioner

Pschur ¼
A 0
0 S�PA�1PT

� �� �
: ð34Þ

The diagonal approximation of this preconditioner would be

Pdiag ¼
diagðAÞ 0

0 diag S�PðdiagðAÞÞ�1PT
� �" #

: ð35Þ

This preconditioner is inexpensive to compute. Further-
more, Pdiag is trivial to invert. Hence, we solve the
preconditioned system

P�1
diagK

u
�

� �
¼ P�1

diag
�b
0

� �
: ð36Þ

For a modified KKT-matrix, which includes the solid
constraints

K0 ¼
A P CT

PT "S 0
C 0 0

2
4

3
5; ð37Þ

(compare Section 3.5) we modify our preconditioner as
follows:

P0diag ¼
Pdiag 0

0 diag �CT ðdiagðAÞÞ�1C
� �" #

: ð38Þ

In our experiments this seems to works well in
combination with both GMRES (see Fig. 6 for convergence
plots) and CR.

5 TESTS AND RESULTS

5.1 Viscosity

To validate our viscosity model, we have run a simple
experiment, in which a Stanford bunny model, given
different viscosity coefficient values, deforms freely due to
the surface tension force (see Fig. 7). The results of the
experiment follow the intuition: when the viscosity coeffi-
cient is low, the fluid volume deforms rapidly; however, it
takes a long time to lose its kinetic energy and keeps
oscillating; as we increase the viscosity coefficient, we

introduce more damping—the deformation progresses

more slowly and the initial shape smoothly transitions into

an oval, and further on—into a sphere.

5.2 Capillary Waves

One of the applications requiring both low numerical
diffusion and accurate treatment of the surface tension
forces is the simulation of capillary waves. The discussion
of the problem and benchmark results has been provided
by Brochu et al. [12]. We have repeated one of their
experiments to see how our method deals with this
problem. Our results are in agreement with previous work
(they are presented in Fig. 8). Note that the simulation
results do not depend significantly on the initial tessellation
of the fluid volume. This is the case, however, in the earlier
approaches by Misztal et al. [3] and Erleben et al. [4] (as
shown in Fig. 9). While using the first-order surface energy
approximation leads to generally sane results, the free
surface of the fluid quickly becomes visibly asymmetric,
and the fluid volume begins to drift. Using the pressure
stabilization scheme from [3] dramatically deteriorates the
simulation quality, introduces ghost forces (causing the
drift of the fluid) and practically prevents us from capturing
the capillary effects at all.
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Fig. 6. Typical convergence behavior for a GMRES solver using our
preconditioner (red line) and without a preconditioner (blue line) in a
flow dominated by surface tension. In this example, preconditioning
helps GMRES converge to a desired final residual of 10�4 in as few as
20 iterations.

Fig. 7. Stanford bunny model deforming in zero gravity due to the
surface tension forces after (from the left to the right) 1, 2, and
3 seconds. The fluid’s viscosity, from the top to the bottom: � ¼ 0 P (the
unit of viscosity), � ¼ 0:1 P and � ¼ 1 P.

Fig. 8. A uniformly (top row) and nonuniformly (bottom row) tessellated
cube in zero gravity deforming due to surface tension forces. Rather
than deforming directly into a sphere, the blob of fluid oscillates rapidly
between an octahedron-like and a cube-like shape until its kinetic energy
dissipates and it becomes spherical. Notice that that nonuniform
tessellation of the initial volume of fluid does not affect the behavior of
the fluid significantly, nor does it introduce ghost forces.



5.3 Droplet Pinch-Off

In nearly all fluid animation methods droplet pinch-off is a
consequence of disintegrating thin liquid threads or sheets.
In the level set-based approaches to fluid animation, this
usually happens when the scale of those features becomes
lower than the resolution of the computational grid. While
this usually leads to plausibly looking results, it is hardly
physically correct. Particle-based approaches produce dro-
plets when some particles travel beyond the interaction
distance from the main (continuous) volume of the liquid.
This, again, is not physically accurate, since in the macro-
scopic scale liquids do not exhibit such discrete behavior.

Unlike those two approaches, the DSC-based approach is
much more conservative. It is capable of representing
arbitrarily thin features, since all criteria for interface merging
or splitting are quality-dependent, rather than scale-depen-
dent. In principle, the interface (free surface of the liquid)
splits only when self-collisions occur. That means, to under-
stand droplet pinch-off in the DSC-based fluid animation
framework, we have to look at the actual physical phenomena
leading to droplet pinch-off in real free surface flows.

The break-up of thin liquid threads into droplets and the
conditions ruling when this happens are explained by the
Plateau-Rayleigh instability [47], [48]. The principal factor
leading to disintegration is the surface tension, hence, droplet
pinch-off cannot be simulated accurately without accurate
treatment of the surface tension forces. Naturally occurring
perturbations to the free surface of the fluid thread are
propagated along the thread as capillary waves. While some
of those waves decay in time, some grow at a fast rate. The
capillary wave formation also occurs when the cross section
of the liquid thread is not circular (due to the surface tension
forces trying to minimize the free surface). It has been proven
theoretically, that for a vertically falling column of liquid
with circular cross-section, droplet pinch-off occurs if its

wavelength is greater than its circumference. In the general
setting, the conditions for droplet pinch-off are more complex
and are outside of the scope of this paper; however, they have
been a subject of extensive research due to their relevance in
various branches of technology, for example, ink-jet printing
[48]. In Fig. 10, we present the results of our simulations
displaying the break-up of thin liquid threads.

The case of disintegration of thin liquid sheets is even
more complex; however, it has been a subject of research
within the field of rheology [49]. In principle, it is similar to
the disintegration of liquid threads, in the sense that the
droplets pinch-off from the sheet’s boundary, which, in the
presence of surface tension forces, behaves similarly to a
liquid thread. The discussion of this phenomenon is outside
the scope of this paper; however, we present the results of a
simulation displaying disintegration a liquid sheet in our
framework (see Fig. 11).

5.4 Other Experiments

To verify our model, we have performed a “crown”
experiment in which a spherical droplet falls into a shallow
layer of liquid. The results of the simulation are realistic, as
shown in Fig. 12. Observe that proper handling of thin
sheets of fluid comes naturally in our method.

Figs. 1 and 13 present the results of our experiments with
multiple immiscible fluids: in particular, water and oil. Each
type of contact between fluid, solid, and gaseous phases is
assigned different surface energy densities. We observe
qualitatively different behavior in the different phases.

5.5 Performance

We have run all our experiments on a machine with an Intel
Core i7 CPU X 980 3.33 GHz with an NVIDIA Geforce
GTX580 GPU.
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Fig. 10. The Plateau-Rayleigh instability leading to disintegration of liquid threads produced by an oblique collision of two spherical droplets due, for
two different surface tension values: �1 ¼ 2 dyn=cm (top row) and �2 ¼ 10 dyn=cm (bottom row).

Fig. 9. Capillary waves experiment results with first-order surface energy
term (top row) and with the previous pressure stabilization scheme from
[3] (bottom row). In the former case, the behavior of the fluid is similar to
that presented in Fig. 8, however, noticeable asymmetry and slight drift
emerge. In the latter case, simulation quality is significantly lower and
the capillary waves are not captured correctly.

Fig. 11. Disintegration of a liquid sheet produced by a head-on collision
of two spherical droplets. Droplets pinch-off from the boundary of the
sheet due to the surface tension forces.



The statistics of our simulations before performance
optimization are presented in Table 1. The timings are
comparable to other finite element-based simulation meth-
ods [26]. By applying an iterative solver, we have
significantly decreased the time spent on solving the
KKT system. The DSC method’s mesh improvement
functionality seems to work robustly, particularly for single
phase simulations, where it allows us to keep most of the
dihedral angles in the range 10-160 degrees except for the
times when collisions occur. Those times, unfortunately,
tend to introduce low-quality tetrahedra which might not
be removed immediately. While the fluid simulation
method seems to deal with such elements rather well, they
negatively affect the performance during the advection
step. We are planning to address this issue by investigating
more sophisticated mesh refinement schemes.

In Table 2, we present the statistics of some of our
simulations after performance optimization, including the
improved interface edge collapse routine (see Section 3.1.1),
using the CR solver rather than GMRES (see Section 4) and
parallelizing the matrix assembly step. The latter has been
done by rewriting the matrix assembly code and using the
OpenMP [50] API, utilizing all six cores of the CPU
(12 threads). This has lead to significant performance
improvement, decreasing the computation time per iteration
by about 50 percent. The improvement in the advection step
timings in the new results is a consequence of several minor
changes and improvements in the implementation of the DSC
method.

6 SUMMARY AND DISCUSSION

The distinguishing characteristic of our scheme is that it is
Lagrangian with an explicit interface representation, yet
also volumetric, using a single irregular grid for both
simulation as well as tracking and handling collisions of
parts of the interface. In this work, we have demonstrated

that the method can deal with multiphase flows and that the
qualitative behavior of the simulated fluid is as expected.

Our new pressure stabilization strategy resulted in lower
numerical diffusion than in [3] and [4], allowing us to
capture the capillary waves correctly and making our
simulations of surface tension dominated flows on par with
the state-of-the-art methods [12], [51]. Thin sheets are
handled accurately without the need for any special
treatment. Furthermore, our new pressure stabilization
scheme made the method insensitive to the mesh element
size, removing the problem of ghost forces present in earlier
works when the initial tessellation of the fluid volume is
nonuniform. This way, we have opened the doors for an
adaptive-resolution, multiscale fluid simulation using our
framework.

Compared to [3], we have also improved the treatment of
solid boundaries. The presented formulation works well
with the iterative linear system solver and simplifies adding
moving solids to the model in the future, in contrast to the
approach presented in [3]. The use of a preconditioned
iterative solver allows us to decrease the amount of time
spent on solving the linear system, which was the bottle-
neck in [4].

In the future, we would like to investigate different mesh
refinement schemes, which would allow us to improve the
computational mesh quality when changes in the surface
mesh topology take place. We would also like to explore the
applicability of our method in simulating interactions
between fluids and deformable solid bodies.
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Fig. 12. A spherical droplet splashing in a cylindrical container with a shallow layer of water, producing a “crown.” Observe that our method does not
have any problems with handling thin layers of fluid.

Fig. 13. The results of our two-phase experiments with water and oil: the “double dam breaking” experiment in which the collision of the volumes of oil
and water produces a rapidly moving jet (top); the movement of a small volume of oil in water due to the difference in densities (bottom).
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