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School of Computing,

University of Utah, USA
zvonimir@cs.utah.edu

Martin Schulz
Lawrence Livermore National

Laboratory, Livermore, CA
schulzm@llnl.gov

Ignacio Laguna
Lawrence Livermore National

Laboratory, Livermore, CA
ilaguna@llnl.gov

ABSTRACT
Reproducibility, the ability to repeat program executions
with the same numerical result or code behavior, is cru-
cial for computational science and engineering applications.
However, non-determinism in concurrency scheduling often
hampers achieving this ability on high performance comput-
ing (HPC) systems. To aid in managing the adverse effects
of non-determinism, prior work has provided techniques to
achieve bit-precise reproducibility, but most of them focus
only on small-scale parallelism. While scalable techniques
recently emerged, they are disparate and target special pur-
poses, e.g., single-schedule domains. On current systems
with O(106) compute cores and future ones with O(109), any
technique that does not embrace a unified, targeted, and mul-
tilevel approach will fall short of providing reproducibility.
In this paper, we argue for a common toolset that embodies
this approach, where programmers select and compose com-
plementary tools and can effectively, yet scalably, analyze,
control, and eliminate sources of non-determinism at scale.
This allows users to gain reproducibility only to the levels
demanded by specific code development needs. We present
our research agenda and ongoing work toward this goal.

1. INTRODUCTION
Reproducibility, meaning the ability to repeat executions

with the same numerical result or code behavior, is a highly
desired feature of HPC codes, especially from the perspec-
tive of end users. It is also a key desideratum for efficient
code development in virtually all HPC code development
life-cycles. Unfortunately, non-determinism, e.g., as intro-
duced by concurrency scheduling, has a far-reaching detri-
mental impact on reproducibility. In the message-passing
paradigm, for instance, a wild-card receive can match mes-
sages that are sent in different orders [18]; in the shared-
memory paradigm, threads can access the same data in dif-
ferent interleavings; and in the multi-task paradigm, tasks
are executed in the arrival order, creating a timing depen-
dency. Such non-determinism not only affects the perceived
order of computational steps, thus hampering code under-

∗This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under contract DE-AC52-07NA27344 (LLNL-CONF-
642354). The Utah group was supported by NSF Awards
OCI 1148127 and CCF 1241849.

standing for developers, but also the numerical results that
determine the quality or reliability of the scientific findings.

Computational science and engineering applications re-
quire reproducibility for code verification, debugging, and
code validation, as well as for comparative performance mea-
surements. For example, if a coding error emerges only in a
rare execution path, it is not only hard to reproduce and fix
in subsequent runs, but also nearly impossible to distinguish
it from a transient fault. Similarly, different execution paths
can change the order of floating-point operations, which may
not be associative. This impedes numerical reproducibility
across runs, making code verification difficult.

As multicore systems are going mainstream, research to
provide safety properties, such as determinism, has attained
renewed urgency. However, much prior work has focused on
bit-precise reproducibility at a scale much smaller than what
large scale applications require. Very recently, more scalable
techniques have emerged [20, 8], but they often only target
a specific domain (e.g., single-schedule domains).

In today’s massive amount of non-determinism—introdu-
ced from multiple levels of parallelism—disparate, special-
purpose tools will not reach the reproducibility level de-
manded by extreme-scale computing. In contrast, we argue
for a common toolset that embodies a unified, targeted, and
multilevel approach as an effective—yet scalable—means to
analyze, control, and eliminate non-deterministic sources.

2. POSITION AND RESEARCH AGENDA
For extreme-scale concurrency, we are skeptical that a

one-size-fits-all tool can provide production applications with
the required degree of reproducibility. Prevalent HPC trends
are already rushing into a multi-dimensional scale explosion
of reproducibility concerns. For example, the U.S. Depart-
ment of Energy is actively determining the key elements of
its exascale roadmap [10, 7, 23, 16], and most researchers be-
lieve this will deliver machines with over a billion compute
cores, building on sharply reduced memory per core and
heterogeneous computing or accelerators. Further, these ar-
chitectural trends will force applications to use mixed par-
allelism (e.g., MPI+X), or rely on new, often fine-grained
task-based systems, both of which introduce more diverse
sources of non-determinism [4]. Given these trends, pre-
vious research that focused only on controlling small-scale
non-determinism for single paradigms become impractical.
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When combating extreme-scale reproducibility challenges,
formal methods such as dynamic concurrency analysis and
control mechanisms, which work well at small scales, will
break. Simply put, there will be too much non-determinism
coming from too many sources. Furthermore, tools that
can effectively control schedules on a single-schedule do-
main can lose their efficacy on hybrid parallelism when non-
deterministic behavior is observed only as a result of an in-
terplay between multiple schedule domains.

In short, reproducibility on extreme-scale computing is a
grand challenge: we must perform more complex and expen-
sive operations while needing to scale them up to orders-of-
magnitude larger concurrency levels. Our proposed solution
to this challenge is a common multilevel toolset that uni-
fies complementary and targeted tools that can build on the
strengths of one another. Clearly, a broad research agenda
will be required to achieve this goal.

What are the important levels of reproducibility
for application development? We view reproducibility
as a continuum. Depending on specific code development
needs, users may require only the final result to be externally
deterministic [4]. Further, users may require bit-precise re-
producibility in a scale-invariant fashion (e.g., independent
of MPI process or thread counts), or only less strict sta-
tistical guarantees. Other users may require intermediate
results to be reproducible through consistent schedules be-
tween runs. However, because there are multiple interme-
diate levels, internally deterministic [4] behaviors increase
complexity. Thus, we must understand common applica-
tion properties that can benefit from various reproducibility
levels.

How to identify and limit the targeted sources of
non-determinism? Not all non-determinism is relevant to
the required level of reproducibility. We must develop ways
to identify and limit the relevant sources of non-determinism
while letting loose other sources to minimize performance
and scalability impact.

What should be the complementary capabilities
and composability attributes of tools for effective
search-space reduction? Some tools must scalably ana-
lyze the severity levels of non-determinism and reduce the
search space; other tools must provide detailed analysis on
the reduced space; yet, others must analyze the various man-
ifestations of non-determinism, e.g., quantifying the impact
on floating point arithmetic operations. In order for these
tools to build on one another, we must understand a variety
of use cases and workflows.

How to coordinate tools in multiple-schedule do-
mains effectively? A growing trend towards hybrid par-
allelism adds yet another dimension: how to combine tools
with the same capabilities in different schedule domains, e.g.,
combining an MPI-schedule-controlling tool with a thread-
schedule-controlling tool. Would it still be effective to ex-
plore alternative schedules of one domain while permitting
non-determinism in other domains?

How to evaluate the effectiveness of the toolset?
Setting up controlled experiments in the presence of non-
determinism is challenging on its own right. Thus, one needs
to research systematic ways to introduce or remove non-
determinism into applications for evaluation.

3. CURRENT PRACTICE AND BENEFITS
It is well known that software debugging and testing are
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Figure 1: Main building blocks of our approach

expensive. For example, the National Institute of Standards
and Technology (NIST) estimates that software errors cost
the U.S. economy $60 billion annually, and half of the cost
is due to developers’ time since they overall spend about
25% of their time for debugging and testing. Our experi-
ences indicate that there is a large gap in the amount of
time required to address various classes of bugs. In par-
ticular, concurrency-related non-deterministic errors are far
more costly to fix; the larger the concurrency, the more ex-
pensive the debugging process becomes.

Further, computational science and engineering applica-
tions are often in continuous development—they have a fre-
quent feedback loop with experiments; the result of an ex-
periment, for instance, may lead to changes in physics theo-
ries and practices, or may require new code to be developed
for new physics regimes. In fact, for applied science organi-
zations like Lawrence Livermore National Laboratory, code
development is often on the critical path to their mission.

Reproducibility plays a critical role in every aspect of this
code development effort; when there are no reliable mecha-
nisms to repeat the code behavior or to achieve the same nu-
merical results, debugging, testing, and verification become
increasingly expensive tasks. However, current techniques to
managing the effects of non-determinism are largely primi-
tive and ineffective, leading to a significant increase in the
development cost. Programmers often implement ad hoc so-
lutions directly in their codes. This is not only error-prone,
but also leads to performance or accuracy losses [15, 13] and
results in redundant efforts across many codes. As noted
before, the ad hoc approach will be ineffective and costly
on future systems in which an explosion in concurrency will
multiply the effects of non-determinism [18, 19].

By furthering our research agenda, the resulting toolset
will significantly improve productivity of programmers across
the full application development life-cycle. The research im-
pact is doubled, since the time saved by the toolset will pro-
duce extra minutes of other useful code development work.
The common multilevel toolset can reduce the redundant
efforts across codes, and will provide best performance and
accuracy subject to the required reproducibility level.

4. THE PRUNER TOOLSET
We recently launched a project called Pruner (Provid-

ing Reproducibility on Ubiquitously Non-deterministic En-
vironments and Runs) to embody our unified, targeted, and
multilevel approach. Pruner aims to innovate scalable con-
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currency analysis and control mechanisms for extreme-scale
computing. Applications can use these mechanisms to achieve
reproducibility of both their execution and their simulation
results easily and efficiently. We plan to accomplish this goal
by developing a multilevel analysis and control toolset that
blends static analysis with run-time techniques to detect,
control, and eliminate targeted sources of non-determinism.

Figure 1 shows the main building blocks of our proposed
toolset. Our toolset represents a multilevel approach be-
cause it will provide multiple levels of reproducibility by con-
trolling and analyzing combined sources of non-determinism
introduced from many levels of parallelism, including process-
level and thread-level parallelism. We plan to use bench-
marks to demonstrate that our toolset scales and to show
its effectiveness by integrating it directly into strategies used
by mission-critical applications for their testing, debugging,
and verification.

To execute our objectives, we organize the project as three
research and development thrust areas.

The first thrust advances relevant analysis techniques to
detect, analyze, and identify root causes of non-determinism
that are introduced by concurrency. However, performing
these capabilities exhaustively on all potential code sites
of non-determinism within a large application can be in-
tractable. Thus, we will investigate techniques that combine
static analysis [6, 17] with automatic, as well as user-guided,
dynamic verification techniques [22, 20, 21]. Statically prun-
ing benign sites can ease the pressure on our run-time com-
ponent, allowing it to scale.

To complement our concurrency analysis and control tech-
niques, we plan to develop a suite of numerical-analysis tools
and a control-flow analyzer. Our numerical tools, which
quantify the impacts of non-determinism due to different
orders of floating-point arithmetic operations, will mix de-
tailed techniques such as GAPPA-based analysis [4] with
more scalable approximation methods such as guided ran-
dom testing. These techniques are essential, as the current
explosion in concurrency continues to intensify the adverse
effects of this numerical non-determinism—e.g., the growth
in numerical errors of a global summation is generally pro-
portional to the degree of concurrency [19].

The control-flow non-determinism analyzer will efficiently
compare the control flows between runs to narrow down non-
determinism to specific points in execution. To ensure scala-
bility, we will base our techniques on the Stack Trace Analy-
sis Tool (STAT) [2, 12, 1], extending it to perform temporal
(e.g., phases), spatial (e.g., processes), and code-space (e.g.,
functions) reductions to attribute a specific control flow to
the observed non-deterministic behaviors.

The second thrust area advances techniques to force non-
determinism to surface, as not all non-determinism is easy
to be observed. Currently, programmers rely on arduous
manual processes and spend days trying to reproduce rarely-
occurring concurrency bugs at large scale [11]. These pro-
cesses often involve ad hoc techniques, such as changing pro-
cess counts or configurations, choosing different compiler op-
timizations, or modulating the absolute times at which con-
current events are issued, and are largely ineffective. Thus,
we will develop systematic concurrency control techniques
that force alternative schedules to expose non-deterministic
behavior. Such techniques already exist for limited cases in
tools like the Distributed Analyzer of MPI (DAMPI) [20,
21], but the challenge will be to apply similar techniques to

Our benchmark shows DAMPI’s control of non-
determinism incurs low overhead at scale. 
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Figure 2: DAMPI overhead at 1K processes

other sources of non-determinism at scale. In this context,
we will develop novel and highly-scalable distributed algo-
rithms for shared-memory programming models, for exam-
ple, exploiting the OpenMP tools API [9] to control thread
schedules.

By all means, the exploration space of alternative sched-
ules is large, so we will investigate advanced heuristics that
can significantly bound this search space. We will also de-
velop efficient ways to repeat the replay of small regions of
execution during exploration, including transactional mem-
ory based schedule replay in which many alternative sched-
ules are replayed in transactional memory without having to
require a full restart for each alternative schedule. We will
also investigate ways to parallelize replays.

The final thrust area advances mechanisms to ensure that
internal execution schedules are consistent with those made
in prior runs. Consistent schedules have many advantages,
including consistent numerical results between runs. How-
ever, achieving numerical consistency is becoming a greater
challenge, as our applications are increasingly exploiting non-
deterministic concurrency patterns such as polling-based MPI
communication patterns [3] and threads contributing par-
tial sums in different orders [19, 14]. To gain numerical
consistency, applications are currently adopting heavyweight
mechanisms [15], often leading to excessive performance or
precision losses.

In response, we will investigate deterministic concurrent
event ordering. These methods will enable programmers
to fix the order of concurrent events (e.g., the message-
matching order of a receive site) to achieve the desired level
of consistency. We will also investigate multilevel techniques
whereby the results of reductions, in conjunction with non-
associative floating point operations, provide different repro-
ducibility guarantees: scale-invariant, run-to-run, or statis-
tical (e.g., bounded error growth) reproducibility. Overall,
the focus of this thrust is to develop techniques that can
maximize performance subject to acceptable reproducibility
properties.

For this, scalability is the key aspect, and we plan to de-
velop ways to create a feedback loop with the users so that
they can specify a region of the code (e.g., selected functions)
or a window of execution (e.g., the final phase) on which to
focus. We plan to further explore ways to create equivalence
relations among execution paths so that reproduced paths
will be equivalent instead of exact.

Across all three thrusts, we will explore novel trade-off
schemes that exchange reproducibility levels with perfor-
mance and scalability [5]. To minimize the performance
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impact, we will combine highly-scalable run-time analysis
with static analysis. In our previous work, we showed that
distributed run-time techniques can incur low overheads and
scale well as long as we limit the number of sites that are
examined. For example, DAMPI uses a scalable Lamport-
clock-based algorithm to detect at run-time those message
matches that can occur in any order–i.e., the matches that
do not form a happened-before relation. Figure 2 shows that
medium-to-large benchmarks with limited non-deterministic
wild-card MPI receive sites only ran up to ˜2x slower under
DAMPI at 1,024 MPI processes. In the case of the outliers
such as LU, the wild-card receives that DAMPI analyzed
as non-deterministic turned out to be deterministic due to
specific uses of message tags. In particular, LU employs a
scheme where wild-card receives uses a unique tag for each
sender. We will develop various static techniques to extract
information such as tag patterns, which can further limit the
number of sites our run-time component has to examine.

Finally, evaluating our approaches to identify and elim-
inate non-determinism requires a reliable test and valida-
tion setup. For this, we will pursue the following two di-
rections. First, we will evaluate the overhead incurred by
our techniques when applied to benchmarks or applications
for which we explicitly know the level of non-determinism.
Second, we will develop a series of worst-case benchmarks,
expanding the previously developed MPITEST suite [18], to
measure the amounts of non-determinism in applications.

5. CONCLUDING REMARKS
Reproducibility plays a pivotal role in computational sci-

ence and engineering applications. However, neither the
current ad hoc approaches nor disparate, special-purpose
tools will be powerful enough to provide this essential abil-
ity to the level demanded by extreme-scale computing. We
propose a novel common multilevel toolset that embodies a
unified, targeted, and multilevel approach as an effective—yet
scalable—means to analyze, control, and eliminate sources
of non-determinism. The notion of multiple levels of repro-
ducibility will open the door for affordable reproducibility
without solely relying on bit-precise reproducibility. The
targeted approach will limit the sources of non-determinism
to the required level while letting loose other sources to min-
imize performance and scalability impacts. The unified ap-
proach will enable quick narrowing down of the search space.
By furthering a broad research agenda, we hope to produce a
common toolset that can significantly improve productivity
of programmers across the full code development life-cycle.
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