
Isolation of Malicious External Inputs in a
Security Focused Adaptive Execution Environment

Aaron Paulos, Partha Pal, Richard Schantz, Brett
Benyo

BBN Technologies
Cambridge, USA

{apaulos, ppal, schantz, bbenyo}@bbn.com

David Johnson, Mike Hibler, Eric Eide
University of Utah

Salt Lake City, USA
{johnsond, hibler, eeide}@cs.utah.edu

Abstract— Reliable isolation of malicious application inputs is
necessary for preventing the future success of an observed
novel attack after the initial incident. In this paper we describe,
measure and analyze, Input-Reduction, a technique that can
quickly isolate malicious external inputs that embody
unforeseen and potentially novel attacks, from other benign
application inputs. The Input-Reduction technique is
integrated into an advanced, security-focused, and adaptive
execution environment that automates diagnosis and repair. In
experiments we show that Input-Reduction is highly accurate
and efficient in isolating attack inputs and determining casual
relations between inputs. We also measure and show that the
cost incurred by key services that support reliable
reproduction and fast attack isolation is reasonable in the
adaptive execution environment.

Keywords— Adaptive Security; Execution Environment;
Novel Attacks; Record & Replay; Survivability;

I. INTRODUCTION
Considering the recent escalation in sophisticated attacks

against high-value systems, we believe there is a
fundamental need for security technologies to adaptively
respond to compromises stemming from completely
unforeseen attacks that exploit previously unknown
vulnerabilities. Many procedures for dealing with the
aftermath of novel attacks are manual, time consuming and
require a high-level of cyber-security and system’s expertise.
Example corrective actions include cleansing a system of
rogue code, repairing damaged data, patching faulty code
and defenses, restoring trust in existing credentials and
restoring service availability. While some of these corrective
actions can be automated, repair actions usually depend on a
significant amount of accurate knowledge about the how the
attack was delivered, and what happened between the time
the attack was executed and the time it was detected. In this
context, one of the main difficulties encountered in the
aftermath of a compromise is to reliably reproduce the
undesired application state or failure with a minimal set of
application inputs. Such a technique when coupled with an

adaptive repair toolkit will help facilitate and automate a
number of corrective actions in a timely manner.

In this paper, we describe an on-the-fly dynamic search
technique called Input-Reduction, as a method for isolating
fault-triggering inputs delivered to a protected application.
Input-Reduction decouples the detection of undesired
conditions (i.e., fault manifestations) from isolation
decisions. This allows Input-Reduction to integrate with a
wide range of sensors capable of detecting undesired
conditions, failure states and underlying faults.

This paper also describes and evaluates how we integrate
Input-Reduction with the prototype Advanced Adaptive
Applications (A3) execution environment. In A3, the reliable
reproduction of an observed undesired condition is a critical
step towards reasoning about the undesired manifestation as
well as any underlying security problems that may exist.
Isolating attack inputs enables A3 to conduct security-
focused hypothesis testing of the application’s configuration,
underlying binaries and security policies more efficiently.
The goal of such hypothesis testing is to discover a
corrective action that makes the application more resilient
against the initial attack.

In this paper, we make the following three contributions:
� We describe Input-Reduction, a technique for

isolating malicious inputs from benign inputs.
� We present an integration and evaluation of Input-

Reduction within a secure and adaptive execution
environment.

� We evaluate and decompose the cost of
infrastructure services in A3 that facilitate Input-
Reduction.

The rest of the paper is organized as follows. In Section
II we describe the A3 prototype within which Input-
Reduction is implemented and evaluated. Section III
describes the Input-Reduction procedure. Section IV presents
an experimental evaluation of Input-Reduction. We further
examine the integrated cost implications of services and
capabilities within A3 that support recording and detection of
undesired conditions, which Input-Reduction uses. Section V
discusses and contrasts the goals and features of Input-
Reduction and A3 with other related works. Section VI
concludes the paper with a brief discussion of future work
and our contributions.

This work is being supported by the Unites States Air Force and
DARPA under Contract No. FA8750-10-C-0242. The U.S.

Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright

notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

2013 International Conference on Availability, Reliability and Security

978-0-7695-5008-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ARES.2013.15

82

II. THE A3 ADAPTIVE EXECUTION ENVIRONMENT
Input-Reduction is realized in the context of the

prototype A3 survivability-focused execution environment
[1, 2]. A3 containerizes individual applications, enforces
mandatory mediation of application input/output (I/O), and
provides a framework for developing adaptive middleware
procedures to dynamically counter attacks. An earlier work
[1] described and evaluated an initial implementation of the
preventive features of A3 based upon mandatory mediation
of application inputs in crumple zones, a software structure
that absorbs attacks. Later, [2] described the initial design
and preliminary evaluation of a key subset of an envisioned
portfolio of security-focused adaptive procedures that A3
supports. That work postulated that the performance of
adaptive procedures for attack diagnostics and hypothesis-
driven patch testing would greatly benefit from efficient
isolation and reduction of inputs.

To isolate malicious inputs, Input-Reduction uses A3’s
replay services to load a check pointed state and adaptively
play-back a recorded execution. Input-Reduction also uses
A3’s capabilities to detect undesirable application and
system states, for the purpose of guiding its search. These
integrated capabilities demand a level of sophisticated
execution management that is not commonly available when
applications are run in current application environments, and
are highlighted in the description of A3 in this section.

 In A3, a protected application executes in its own
container and is given the impression that it has the entire
host to itself. In the current prototype, containers are
implemented as guest Virtual Machines (VM) running over a
Xen [21] microkernel. The protected application’s
interactions with the network and disk are intercepted by a
network crumple zone (NCZ) and a storage crumple zone
(SCZ) respectively, each implemented as its own container.
The crumple zones are responsible for enforcing preventive
policies on interactions through them. The three VMs,
containing the protected application and the NCZ and SCZ,
are collectively called the production conglomerate, and
enable the advanced execution management features that are
necessary to perform security-focused adaptive procedures
like Input-Reduction. Most of the adaptive maneuvers are
actually carried out in an experiment conglomerate, a
separate set of VMs that are independent of the production
conglomerate, leaving the production conglomerate free to
perform its primary task. When an undesired condition is
detected, the application in the production conglomerate is
rolled-back to an earlier check pointed state, and an
experiment conglomerate is created to perform security-
focused adaptive procedures. The A3 Controller is used to
manage A3 and orchestrate the experimentation process.
Human operators may use a GUI Dashboard to manipulate
the state of the experiment conglomerate, e.g., select a
check-point, or configure, execute and monitor an adaptive
procedure. Fig. 1 depicts the A3 environment.

A3 supports replay at two levels: at the application level,
where an application’s inputs are played back, and at the VM
level, where the entire VM’s operation is played back
deterministically. These two replay options address different

tradeoffs, such as overhead incurred and playback fidelity,
the merits of which are beyond the scope of this paper. For
Input-Reduction’s evaluation of inputs, we currently use the
more mature application-level replay. Application replay
requires detailed-enough recordings that will allow
reconstruction and playback of discrete inputs to the
application. For Input-Reduction against a server-class
application, this amounts to capturing packet-level network
events over mediated channels and crumple zones. This type
and level of playback is well-suited for revisiting the input-
output behavior of an application such as a web-server.

A3’s mandatory mediation of application I/O provides a
suitable interposition point for supporting record and replay
of applications that are driven by discrete external inputs.
Request-Reply protocols are widely used throughout server-
class applications and embody this messaging style
paradigm. To evaluate Input-Reduction, we use a file-storage
web-service, implemented with Apache and PHP. To record
network inputs with a sufficient level of detail to play back
HTTP requests, we have implemented a service based on
libpcap[9], called httpdump. The httpdump recording
structure allows replay to totally order HTTP requests in
terms of the time they pass the network interface, and to
derive an understanding of the requesting clients’ session and
concurrency semantics, without requiring distributed logging
and synchronized clocks. Request semantics can be derived
using the client's network of origin, client's authentication
credentials, request inter-arrival times and causal
dependencies in the web-service requests (e.g., a file F must
be uploaded before a download of file F).

In A3, detection of undesirable conditions is provided by
preventive policies in crumple zones and VM Introspection
(VMI) of each container’s execution state. While crumple
zones monitor edge interactions with the application, to
monitor process execution we implement a VMI service that
inspects the machine state of A3 containers from Xen’s
hypervisor. Detection of undesirables serves two purposes:
first, it acts as a trigger to initiate post-incident procedures
such as Input-Reduction, and second, during Input-
Reduction these detections are used to help guide the search
by indicating whether a given replay (i) contributes to
reproducing the undesired condition, or (ii) triggers
additional watch conditions imposed as part of adaptive
diagnostic analyses of an observed attack.

Fig. 1 - A3's Replay Infrastructure

83

It might seem counter-intuitive that preventive policies
can indicate an undesired condition, since enforcement of
preventive policies implies that a non-compliant interaction
has been blocked. However, A3 crumple zone policies
control outbound interactions as well—so even though the
policy may prevent the exfiltration attempt, the compromise
that led to that manifestation probably occurred in the past.
Furthermore there are no guarantees that the policies are
perfect, especially in the context of novel attacks. It might be
the case that part or all of the attack sequence successfully
passed through the crumple zone, installed a backdoor, and
then a subsequent interaction violates the policy. In all cases,
we assume that an observed violation indicates compromise.

In this work, we implement VMI capabilities as a
configurable service called vmprobesys. Vmprobesys is built
upon XenAccess [19], a low-level library for accessing the
machine state of a guest VM in Xen. Vmprobesys monitors
and reports function calls from the guest OS that match a
filtering specification involving process identifiers and
system call attributes. Events that match the specification are
reported to the A3 Controller as a short observation. An
abridged VMI probe specification for our example
application is shown in Fig. 2 and used in experimentation
later in this paper. In this specification, the probe service is
used to evaluate system calls that control process creation
and network interactions for the protected application. The
directive ProcessListNames is used to report a process
existence status for the specified process names, here httpd
and php-cgi. Vmprobesys reports the process ids (PID and
PPID) whenever a process is created or destroyed. This
capability is mostly used for auditing purposes and higher
level analyses looking for anomalies in the list of active
instances of processes. The directives Functions and Filter
are used to monitor the functions whose invocation and
subsequent results are of interest. Filterable Functions are
listed under the Function directive. The Filter directive
defines a condition that can be evaluated over a probed
function call and it’s return values. For instance, the first
Filter specifies that the do_exit function call with a SEGV
parameter for an httpd process is an event of interest.

Higher-level analyses and subsequent reactions to
observations from vmprobesys are performed at the A3
Controller. Performing high-order analyses inside
vmprobesys would severely impact the performance of the
guest VM, because monitoring guest function calls involves
breakpointing the applications execution. Thus, adding
complex logic to analyze multiple observations inside the
vmprobesys code will adversely impact the applications

performance. This design decision is acceptable, because
reporting latencies from vmprobesys to A3 controller are
consistently less than 10ms.

III. INPUT-REDUCTION
Input-Reduction is used to reorganize a recorded input

set I in such a way that sub-sets of I can be matched against a
user-defined objective function F, also known as a predicate.
The predicate is defined when a replay experimenter, or
other automated agent, selects a sub-set of any undesirable
observations that were reported within the same interval as
the input recording. In most cases, the predicate F will be a
single undesirable observation detected by A3’s preventive
protections, as that observation is usually the one that
triggered an adaptation by A3. In other cases, multiple
observations might have been reported that warrant
individual inspection on a case-by-case basis. After the
predicate is selected, Input-Reduction orchestrates four
search procedures (called phases) that submit variations of
recorded inputs to the application and wait for an observed
event(s) that matches the predicate. The inputs that do not
contribute to making F true are removed from further
consideration. In this way, the search is used to “reduce” a
full recording to a smaller sub-set R of recorded inputs.

Input-Reduction is designed around two goals and an
assumption. It should quickly isolate a reduced input set. It is
important to minimize the number of state resets (check-
point loading), as these operations tend to be very expensive.
Finally, for many types of attacks, the attack payload will be
contained within a single application input that was
processed right before an observed anomaly is detected. For
attacks that lie dormant, the algorithm can further selectively
apply longer timeouts, although, this class of attack is not our
main focus. Under these guidelines, Input-Reduction will
discover if an observation is reproducible in relation to a
given starting check-point (state), and, if reproducible, it can
uniquely isolate up to three dependent inputs that contribute
to the predicate, or reduce the input set to a sub-set range of
4+ dependent inputs. When considering ordered dependent
inputs, Input-Reduction aims to identify the first case that
triggers the predicate. Thus, it is not optimized for more
complex input sets such as symmetric input (i.e., ABCBA
where A followed by B triggers the predicate). The
complexity of Input-Reduction is approximately linear in the
number of input submissions. While the processing times
for each individual submission may vary, the complexity of
Input-Reduction is always dominated by the trial-setup and
state reset costs, so the size of the input does not tend to
matter in practice. Furthermore, A3 can manage the input-set
size by varying the frequency of check-pointing, thus
preventing unbounded growth in input recordings.

Input-Reduction is inherently expressive, fast, and
flexible, but provides no optimal search guarantees, as this
will unnecessarily slow execution time. That is, the search
may quickly reduce an input set to contain the malicious
inputs, plus a few other residual benign inputs. While Input-
Reduction is generalizable to the reduction of discrete
messaging inputs, this work demonstrates a specialized
search for HTTP inputs. In A3, we use Input-Reduction to

ProcessListNames httpd, php-cgi
Functions sys_execve, sys_waitpid, do_exit, sys_fork,
sys_clone, sys_socketcall
Filter f=do_exit,name=^httpd,arg=code:signal,aval=SEGV
Filter f=sys_execve,name=^httpd
Filter f=sys_socketcall,name=^httpd,arg=call,aval=accept
Filter f=sys_socketcall,name=^httpd,arg=call,aval=connect
Filter f=sys_waitpid,name=^httpd,when=post,rval=^[1-9]

Fig. 2 - Abridged VMI Probe Specification

84

submit HTTP requests as inputs via the replay service, and
implement a predicate interface to handle observations
reported from A3’s Host Controller as shown in Fig 3. In A3,
we use tunable parameters to account for client semantics
including inter-arrival time of HTTP requests, exact message
time stamps, socket-timeouts, and emulation of client thread-
pool size. Input-Reduction can also vary replay speed and an
end-of-submission-cycle timeout value that is used to
determine how long to wait for a match on the predicate after
submitting a final input. In the absence of client-side
recording, which would not be enforceable against an
arbitrary attacker, we feel there is sufficient flexibility in
Input-Reduction’s ability to submit inputs and emulate client
behaviors when coupled with A3’s replay service.

The four phases of Input-Reduction are as follows:
Phase 1 – Reverse-order Submission works backwards

from the last recorded input to the first input. For example
given a set {1, 2, 3}, Input-Reduction would submit 3, then
2, then 1 as individual inputs. A terminating condition is
defined as a predicate match or the expiration of a
configurable duration end-of-cycle timeout that follows the
last submitted input. In other words, the phase must end after
a preconfigured timeout. Input-Reduction always leads with
reverse-order submission based upon the assumption that
many attacks will be self-contained within a single input near
the end of a recorded set, and that costly state resets are only
required for initialization. Phase 1 has the added benefit of
assessing if the set contains dependent inputs, i.e., ordering
semantics. Phase 1 is always followed by Phase 2.

Phase 2 – In-order Submission follows the reverse order
submission phase, only requires a state resets during
initialization, and has the same terminating conditions as
Phase 1. If the predicate was not triggered in Phase 1, input
submission will start from the first recorded input.
Otherwise, the submission will start from the last submitted
input that directly preceded the predicate match in Phase 1.
A Phase 2 predicate match that follows a reverse-order miss
in Phase 1 implies that the input set was ordered, which is
often useful in future debugging sessions. If a single
submitted input triggers the predicate, Input-Reduction is
complete and returns a reduced set containing the single
input. If the predicate was matched and there is more than
one input remaining, Input-Reduction will proceed to Phase
3 if the set is ordered and to Phase 4 if the set is unordered. If

the predicate is not matched after the end-of-cycle timeout in
Phase 2, the recording may not be capable of reproducing the
undesired condition from the starting checkpoint and
recorded inputs. This may be due to the level of the
recording, the configuration of Input-Reduction’s tunable
parameters, or the starting checkpoint. In this case, Input-
Reduction will signal a negative result and terminate.

Phase 3 – Divide, Conquer, Expand (D/C/E) takes an
ordered input-set and proceeds to use a ½ divide, conquer
and ½ expand approach to iteratively test smaller, followed
by larger, sets and narrow the attack sub-set I. While the
D/C/E phase is much more efficient in cumulative input
reduction, each pass requires a state reset operation. This is
why we do not start with this phase. The main purpose of
Phase 3 is to pre-process ordered sets that may contain many
innocuous inputs to the left of the last input in the set. Phase
3 attempts to eliminate those inputs prior to proceeding to
Phase 4 as an efficiency step. The termination case for Phase
3 is defined as the last predicate match that occurs between a
divide iteration and an expand iteration. It occurs when the
starting point for successive divide and expand steps is
within 1 input and a true-positive against the predicate is
observed. Regardless of outcome, Phase 3 invokes Phase 4.

Phase 4 – Bookend + D/C/E is used to uniquely identify
2 or 3 dependent inputs, and in the worst case, reduce the
input set to a smaller range of 4+ inputs from the initial set.
Phase 4 takes a reduced input set from Phase 3 or Phase 2
that may contain zero or more innocuous inputs in the
middle of that set. Initially, Phase 4 tests that only the first
and last input in the set is part of the attack to check for
exactly 2 dependent inputs (thus the name bookend). A
positive result will occur if Phase 1 and Phase 2 have
effectively restricted the input sets two bookends. Phase 4
will try the initial bookend, and if that test fails, it will then
use D/C/E over the middle of the set and wrap each D/C/E
iteration with input 0 and input N-1 of the phases’ starting
set. Intuitively, Phase 4 will submit the start of the bookend,
then play a step of D/C/E, and then finally submit the last
input of the bookend. This will continue until the D/C/E
tests, wrapped in the bookend, are complete. As a result of
the final phase, Input-Reduction will identify up to three
unique inputs, or the bookend plus some range of inputs that
contain a mix of malicious and innocuous inputs.

For robustness, each phase includes a parameter to
repeatedly retry up-to-N attempts to match the predicate. In
terms of minimizing costly state resets, the reverse- and in-
order replays only require a single state reset, while the
D/C/E and bookend tests require a restart after each division.
Since Input-Reduction does not attempt to optimally isolate
reduced sets nor takes into consideration time-depended
predicates (e.g., hibernating attack), a false-positive would be
defined as a resulting reduced set that will no longer trigger
the predicate effect given an infinite timeout. A false-
negative would be defined as an irreproducible predicate
assuming an accurate starting state, timeout configuration
and playback fidelity. It is our intuition that using
deterministic-replay for input submission would minimize
the chances of false-positives and false-negatives, which we
plan to examine in later work.

Fig. 3 - Integrating Input-Reduction in A3

85

IV. EVALUATION
To evaluate Input-Reduction we use a 2.2 Ghz quad-core

processor, 8GB of memory, and 1CPU and 512MB Xen PV-
guests for the A3 containers. As an exemplar protected
application, we use a file-storage web-service application
implemented with Apache 2.2.19 and PHP 5.3.6. The web-
service provides a Wiki document management interface
supporting file upload, download, delete and indexing. Web-
service clients are physically located on a separate machine
connected via a 100Mb LAN at the time of recording. By
design, the web-service’s implementation and the
deployment have been left with embedded security holes,
such as misconfigured discretionary access control settings,
and function calls which make use of user inputs without
input validation that may be exploited remotely.
Collectively, these security holes represent many of the
CWE/SANS Top 25 Most Dangerous Software Errors [12]
and expose the application to a range of common attacks.

In the following three sub-sections, we first examine the
efficacy and efficiency of Input-Reduction in isolating
malicious inputs. We then examine the fixed costs for
detecting undesired conditions in a containerized
environment that ultimately drive Input-Reduction. In the
final Section IV.C, we examine the VMI costs that are
associated with a deeper inspection during Input-Reduction.

A. Efficacy and Efficiency of Input-Reduction
 To demonstrate and assess the accuracy and

performance of Input-Reduction we experiment with two
attack recordings that represent common attacks that can be
easily packaged in HTTP requests:

Segv – In CVE-2012-0021 [6], a malformed HTTP
message with malformed cookie field may be used to trigger
a segmentation-fault in an Apache process. The attack’s
payload is contained within a single HTTP request, and the
segfault signal is almost immediate. This undesired condition
is easily detected by vmprobesys’ monitoring of SIGSEGV
exits as described in Section II.

PHP Backdoor – The Syrian-Shell [22] PHP backdoor is
an application-level attack. The attack is loaded into
Apache’s htdocs directory via a misconfigured Discretionary
Access Control setting and a path-traversal vulnerability that
is exploited during a file storage operation. The detection of
a policy violation occurs after two dependent requests: an
HTTP POST operation to upload the Syrian Shell into the
htdocs directory, then a HTTP GET invocation on the attack
script. The second request triggers a bind call when
attempting to open a back door. This bind call is also
detected by vmprobesys.

With A3, Input-Reduction can be configured to use
different playback speeds, including “as recorded” using the
same inter-arrival time between requests that was observed
during recording, and “fixed-time”, where requests are
played back at a chosen fixed interval. To illustrate Input-
Reduction, Fig. 4 graphs a replay for the PHP backdoor
example using recorded time. The time of the replay is
plotted on the X-axis in milliseconds, and the y-axis is
categorical where each entry represents the submission of a
single replay input. Although it is not visible in the

granularity of the graph, each single input is plotted
horizontally, as a column, and conveys the replay’s request-
to-response latency for each input. Fig. 4 labels the phases of
Input-Reduction in colored boxes, where the shaded boxes
indicate that the predicate was not triggered in that replay
iteration, and white boxes indicate a match.

Since the PHP attack contains two order-dependent
inputs, the first phase of the replay, reverse-order, leads to no
input reduction. In the second phase, in-order traversal
triggers the predicate after the 92nd input. Collectively, these
two phases indicate that trigging the predicate is possible
given the recorded input set and that the attack is order-
dependent. As mentioned earlier, factors including time of
the starting checkpoint, log-size, replay-timing, and the
existence of causally-related attack inputs will influence
predicate reproducibility. For example, if events that
occurred prior to the first recorded input of the recorded set
are needed to trigger the predicate, then the replay
experiment will fail at this point. For this particular attack
set, Input-Reduction has now determined that the input-set
was indeed ordered, and can proceed to divide, conquer and
expand to test for further reductions. From about the 300
second mark until the final divide test, Input-Reduction will
reduce the set by 98% before returning the result of the
search. The total replay-time using the recorded inter-arrival
times of the input set is ~357 seconds. During this particular
replay, there were eleven total state resets (application
restarts) in the experiment. In absolute terms, the final result
of Input-Reduction shown in Fig. 4 actually reduced the PHP
Backdoor attack set to two inputs: the POST request which
injects the script and the GET request that triggered VMI.

To examine the effectiveness of different Input-
Reduction configurations we conduct four unique Input-
Reduction experiments in A3:

� Input-Reduction Experiment 1 – With only an
experiment conglomerate, we test the PHP
backdoor attack set. We execute the replay using
the recorded request arrival times, a 3000ms socket-
timeout and a 6-client thread-pool.

� Input-Reduction Experiment 2 – Starting from the
configuration in experiment 1, we alter the replay
speed to be fixed at 333ms between HTTP requests.

� Input-Reduction Experiment 3 – With only an
experiment conglomerate, we test the Segv attack
set. We execute the replay using a fixed replay

Fig. 4 - Input-Reduction of PHP Backdoor

86

speed of 333ms between requests, a 3000ms socket-
timeout and a 6-client thread-pool.

� Input-Reduction Experiment 4 – In a configuration
with both a production and experiment
conglomerate running on the same host, we run
Input-Reduction against the Segv attack set, while
at the same time, the production conglomerate
processes index requests from 7-clients at 333hz.
The replay speed is configured for a fixed 333ms
between requests, with the same socket-timeout and
client thread pool size as the other experiments.

The results in Table 1 examine and group the four logical
phases of Input-Reduction vertically, against the four
experiment configurations described above (horizontally).
For each phase, we’ve captured the number of inputs, the
size of the reduced set at completion of the phase, the
cumulative reduction in set size, the number of passes over
the data where each pass indicates that a state reset is
required, and excluding the state reset duration(s), the time it
took to replay inputs and wait for any observations.

Comparing the results of the PHP backdoor experiments
(Exp. 1 and 2), we observe a 98% and 88% input reduction
against the initial input set. The additional input reduction
accuracy for the recorded-time replay comes at a total cost of
356.91 seconds and one less state reset, as compared to
127.45 seconds for the fixed-time experiment. We derive
total time here, by summing the replay times of all four
phases. These findings suggest that reasonable input
reduction can be achieved quite fast by using a faster than
recorded time fixed timing interval for replay. To enhance
the accuracy of the replay, slower timing, or in this case,
recorded time, can be used on the resulting sets to improve
the reduction accuracy even further.

In the first of the two segv experiments (Exp. 3), Input-
Reduction identifies the exact attack input (id 148) in 5.66
seconds during two replay phases. Like the earlier PHP
Input-Reduction experiments, the first segv experiment does
not include a batch of clients concurrently making requests
against the protected application in the host conglomerate.

In the second segv experiment (Exp. 4), we rerun the
same segv Input-Reduction experiment concurrently with an
active production conglomerate that services requests from

seven clients at 333Hz. Without question, the additional load
impacts Input-Reduction. While the reduction results are
quite good, with an input reduction of 92% in 17.48 seconds
and two additional state resets, we see a relationship between
the additional load on the production conglomerate and the
accuracy of Input-Reduction. Since, as evaluators, we know
that the attack input is contained in the single non-dependent
input 148, when we consider the data in Table 1 we see that
the initial reverse order replay overran the attack input by
seven inputs, the in-order replay then overran the input by
five inputs, and ultimately, the bookend tests failed two
consecutive times to end the experiment. Each of the
outcomes can be attributed to the timing of the Input-
Reduction’s test-observe-decide cycle. We believe that the
additional resource load (i.e., resource usage) on the
experimental platform and the increased volume of
observations reported to the controller from the concurrent
production conglomerate have the effect of increasing
latencies in the test-observe-decide loop of Input-Reduction.
In effect, the increased cost leads to timing overruns (i.e., a
type of race condition) where the actionable information
arrives after the end-of-cycle timeout. One way to redress
this effect, would be to increase the end-of-cycle timeout
configuration, either automatically (e.g., via exponential
decay) or manually on a case-by-case basis, to cope with the
increased load from the production conglomerate.

Taken as a whole, the analysis of the Input-Reduction in
the context of the HTTP-based web-service application
demonstrates that the Input-Reduction is effective and
accurate in isolating malicious inputs that reproduce an
observed undesired condition at run-time. Both the accuracy
and efficiency of Input-Reduction can be affected by
configuration of the replay experiment attributes. Attributes
such as latencies of observations delivered to the controller,
end-of-cycle timeouts, and replay speed all effect outcomes
for Input-Reduction. We observe that slower replay speeds
generally lead to a greater degree of accuracy in the Input-
Reduction outcome. Under this observation, one might be
inclined to run Input-Reduction in two or more passes,
starting from a fast replay, to rapidly prune innocuous inputs
that do not contribute to matching the predicate, and then
progress to slowing the replay speed over the newly reduced

Table 1. Comparison of Set-Reduction Replay Experiments

 Phpbackdoor @rec-time Phpbackdoor @333 Segv @333 Segv with host traffic @333
Phase:

Reverse
Order

Input Size (Reduced Size) 120 (120) 120 (120) 165 (17) 165 (24)
Replay Passes 1 1 1 1

Cumulative Reduction 0 % 0 % 90 % 85 %
Replay Duration 162.79 seconds 42.00 seconds 5.63 seconds 8.15 seconds

Phase:
 In-Order

Input Size (Reduced Size) 120 (93) 120 (94) 17 24 (13)
Replay Passes 1 1 1 1

Cumulative Reduction 23 % 22 % 99 % 92 %
Replay Duration 109.79 seconds 32.67 seconds .03 seconds 4.42 seconds

Phase:
Divide,

Conquer,
Expand

Input Size (Reduced Size) 93 (15) 94 (16) N/A N/A
Replay Passes 7 6

Cumulative Reduction 88 % 88 %
Replay Duration 83.44 seconds 46.96 seconds

Phase:
Bookend +

DCE

Input Size (Reduced Size) 5 (2) 16 (16) N/A 13 (13)
Replay Passes 2 2 2

Cumulative Reduction 98 % 88 % 92 %
Replay Duration .89 seconds 5.82 seconds 4.91 seconds

87

set to enhance the accuracy of the outcome.

B. Fixed Cost Component of Input-Reduction
Preventive policies enforced by VMI and mandatory

mediation are necessary to support Input-Reduction in A3.
While our initial assessment of the benefits of preventive
protections [1] is positive, we wanted to make sure that they
do not make the prototype execution environment cost-
prohibitive for enabling adaptive procedures such as Input-
Reduction. With this motivation, this sub-section analyzes
the performance costs of A3’s preventive protection services
that were used to generate the input and observation
recordings used in the previous sections experimentation.

To conduct a fair and measured comparison we first
examine the impact of preventive protections on external
application clients, where two crumple zones are used to
enforce I/O mediation, vmprobesys monitors undesired
operational conditions, and application-level recording
captures data on the network channel. We then remove
preventive protections one layer at a time to decompose and
attribute cost to individual protections. As a metric of cost,
we measure the HTTP round-trip latency for 1, 3, 5 and 7
concurrent clients issuing three requests per second.

We use the following configuration, defined specifically
for the protected web-service application, for preventive
protections to exercise A3’s core components:

� Storage Crumple Zone
o Filter file system operations on .exe, .dll,

.bat, .sh, .so objects
� Network Crumple Zone

o Filter HTTP headers >128 bytes in length
o Filter HTTP requests >10 HTTP Headers
o Filter out-of-range WS query strings

� Virtual Machine Introspection
o Apply the specification from Section II

In 24 experiments we test six configurations, slowly
increasing the quality and depth of preventive protections:

1. Dom0 Host Baseline – Without any protections, the
web-service runs on Dom0. This configuration is
the baseline comparison measurement.

2. Virtual Guest Baseline – Without any protections,
the web-service runs inside a guest VM. This
configuration includes Xen VM costs.

3. Storage Crumple Zone (SCZ) – With preventive
SCZ protections, the web-service runs in a
container. This configuration includes storage
channel mediation and includes filtering costs.

4. Network Crumple Zone (NCZ) – Building upon the
previous configuration, add a NCZ with a canary-
replica to taste-test and proxy Apache inputs to the
WS. This configuration incorporates network
channel mediation and proxy cost.

5. Network Crumple Zone w/ Filters – Building upon
the previous configuration, enable HTTP filtering
for web-service requests. This configuration adds
ingress filtering cost on the network channel.

6. Guest Virtual Machine Introspection – Building
upon the previous configuration, enable VMI
monitoring for the protected application.

Fig. 5 shows the request latencies (y-axis) for groups of
concurrent clients and various configurations of the A3
environment (x-axis). Latency results are normalized by
removing outliers greater than three standard-deviations from
each experiment’s mean. In the worst case experiment, this is
less than a 2.8% reduction in the count of experimental
observations, implying experimental jitter was minimal. At
first glance, Fig. 5 shows a pattern of increased cost as the
number of concurrent clients and preventive protections are
increased. As expected, even the virtualization cost increases
from the external client’s perspective when evaluating the
web-service in a virtual guest compared to on the host
(BASELINE-FC8-VM versus BASELINE-FC8-Dom0). The
virtualization cost can be attributed to the experiment load
over fixed quality-of-service guarantees for the guest VM
(i.e., 1VCPU, 512MB Memory). While the Xen-based
prototype is acceptable for research and evaluation, this
observation implies that light-weight containerization
alternates such as OS virtualization would benefit A3.

At low loads (1 and 3 clients), the SCZ mediation
introduces a modest cost of 44% and 28% over the
BASELINE-FC8-VM, and increases to 160% and 183% in
the five and seven client configurations. Storage costs are
attributable to the SCZ’s UNFS implementation, which is not
used in either of the baseline experiments. UNFS offers A3 a
strong degree of isolation and a nice interception point to
mediate storage operations. As an alternative, we could use
closer to application techniques such as system call
interception to drive down storage mediation costs, but at the
price of losing the strong isolation from external SCZs in A3.

The next configuration (SCZ+NCZ+PROXY) introduces
NCZ mediation. The NCZ implements a full application
proxy to intercept and execute HTTP requests. If the
execution does not trigger a bad effect, the initial request will
be proxied to the protected application. Use of the full-
application proxy incurs over twice the cost in processing an
application request, as all requests are processed in both the
application and NCZ domains. Furthermore, since the NCZ
and application domains are backed by the SCZ, the storage
channel traffic is effectively doubled. In this configuration,
we see a 7.7%, 32.8%, 39.7% and 104.8% increase in costs
as clients are scaled. When further enabling the NCZ filters
(SCZ+NCZ+PROXY+FILTER), deep inspection of the
HTTP payload increases the cost 19.9%, 30.8%, 17.5% and
15.6% respectively over the non-filtered case. This

Fig. 5 – Supporting Service Overheads

88

observation leads us to believe that that some of the network
filtering costs will be absorbed by the machinery
implementing the proxying functionality. While the
efficiency of the full-application proxy is poor, the value of
the NCZ’s full-application proxy lies in its ability to absorb
the attack before it touches the real application. The proxy
will further inform A3’s adaptive procedures to help
diagnose underlying problems, starting with Input-
Reduction.

In the final experiment, VMI probes are used to monitor
a select set of system calls against the protected application.
VMI is by far the greatest contributor to preventive
protection cost, but is also the most informative to Input-
Reduction. As client count scales, VMI increases client
latencies 137%, 103%, 101% and 68% over the network
filtering experiment. It is interesting to note that the latency
percentage decreases at each step as clients are added. Upon
inspection, this behavior is explained through the blocking
read semantics of the fixed-size client networking pool that
is used to test the web-service. In practice, blocking reads
will regulate the specified client request frequencies,
effectively limiting the number of requests sent to the server
and load. Upon further examination of client invocation data
collected (not graphed), we do in-fact see a 91%, 83%, 85%
and 76% percent reduction in total number of HTTP GET
requests between the two configurations.

The poor performance of VMI is attributed to its use of
software break pointing, like most debuggers. VMI-based
preventive protection in A3 is more costly than the
protections offered by crumple zones. On the other hand,
VMI protections are independent of the untrusted application
containers. Thus, VMI can provide a stronger security
guarantee, and watch the application and inform Input-
Reduction in ways that crumple zones cannot. In the next
section we further decompose and assess VMI costs.

C. Composable Costs of Input-Reduction
Detection provided by VMI monitoring, is instrumental

for deep diagnostic inspection of a protected application and
further informing Input-Reduction. However as shown in
previous sections experimentation, VMI is also the greatest
contributor to preventive protection costs. In this sub-section,
we break down VMI costs. We further consider the cost
implication of deep inspection, with an eye towards
improving the vmprobesys design for Input-Reduction.

At runtime, we have used VMI to monitor execve,
waitpid, fork, clone, socketcall and exit entry points into the
kernel. We further filter accept, bind, connect, getpeername
and getsockname calls invoked through the multiplexed
sys_socketcall interface on 32-bit Linux. Monitoring the
system call interface, VMI will capture all system call
operations whether they originate from the protected
application, or from some other application executing in the
guest VM. This implies that the VMI cost in the previous
section is not only attributed to load on the protected web-
service, but also on the whole host. To quantify this
observation, we profile the system calls made by the web-
service using the strace tool on Linux, and compare the call
counts with the number of intercepted VMI calls in Table 2.

The non-starred section in Table 2 lists the six probed
system calls, prefixed by sys_, while the shaded section lists
six filtered sub-groupings of sys_socketcall invocations. The
first five starred subgroups reflect the exact filtering
specification in Fig. 2, while the other socket calls entry (last
row) counts any other unrelated socketcall invocations which
are trapped. The counts indicate that during a three minute
experiment with 7 clients, vmprobesys intercepts extraneous
system calls that do not originate from the protected
application, but undoubtedly impact performance. The
dominant interception point is the sys_socketcall interface
registering 30,280 interceptions, of which 45% of calls are
not attributed to the Apache process tree (i.e., Apache+PHP).

Cost attributed to VMI is dependent on three factors: the
number of probes, the complexity of the filtering logic in
each probe and the applications use of the probe point. Given
this, we examine the effects of probes and filtering logic on
client request latencies in two experiments, and then describe
improvements that can be made to vmprobesys in future
work. In our first experiment, in Fig. 6, we examine the
effects of probe counts across four configurations, where we
gradually scale back the number of system call probes. The
full configuration includes the six system call probes in
Table 2. The second configuration (labeled five) we remove
the sys_socketcall probe and filters, configuration four
removes the sys_clone call, and configuration one leaves
only the sys_execve call. We also ran configurations with
three and two probes, but they add little value to these results
and are not shown. Once again, the reduced number of
invocations in the full configuration is attributed to the
blocking read client semantics when invoking the web-
service application (described in IV.B).

Fig. 6 shows that the sys_socketcall probe is the
dominant factor for the web-service application. Its removal
reduces the average client latencies by 43%, and leads to a
greater degree of stability in the variance of client latencies
(labeled ‘std’), whereas removal of the other probes lead to
little positive change. This observation is attributed to the
lower frequency of interceptions for those probes, and
suggests that cost will mostly be a function of the number of
traversed probes. Probe access is dictated by the nature of
the protected application, here, a web-service and its use of
sys_socketcall. We also conclude that non-dominant probes

32-bit Syscall
(*socketcall subset)

strace –f of
Apache

VMI Syscall
Probes

sys_execve 8 12
sys_waitpid 430 503

sys_exit 0 13
sys_fork 0 0

sys_clone 17 98
sys_socketcall N/A 30280

*accept 6697 N/A
*bind 8 N/A

*connect 3393 N/A
*getpeername 7 N/A
*getsockname 3382 N/A

*other socket calls 16793 N/A

Table 2. Application and VMI System Calls

89

will add little incremental cost over a single dominant probe.
In the second VMI experiment, we varied the filtering

logic using only sys_socketcall probes to understand the cost
impact of filtering complexity. Filtering complexity includes
both the cost associated with content parsing and pattern
matching on the interface, and the local network cost of
reporting to the A3 controller. Starting with five filters, we
sequentially remove the accept filter first, and then the
getsockname, connect, and bind filters, leaving only the
getpeername filter in the final configuration. Fig. 7 shows
that the filtering and reporting cost has no considerable effect
on the client’s request-response latency. More to the point,
the probes existence is the dominant cost driver, not the
conditional selection of the filters or upstream reporting. We
conclude that complex filtering of even the most traversed
probes do not add too much incremental cost, once the
probes existence is required for defense.

To date, we have not attempted to optimize the VMI
implementation or probe selection. We leave this to future
work. To varying degrees, the effects of extraneous
interceptions may be mitigated by inserting probes on
demultiplexed kernel functions residing behind the
multiplexed socket interface, or move to 64-bit Linux, were
socket calls are not multiplexed. This would further reduce
cost, but will not address the fact that the system call
interface is a shared resource in the host container. A third
option, which we are actively pursuing, is to develop a user-
space probe target for vmprobesys. A user-space target will
allow vmprobesys to breakpoint the application logic that
triggers system call invocations, making VMI monitoring
even more powerful. We believe this will improve both the
accuracy and performance of A3 and Input-Reduction.

V. RELATED WORK
Input-Reduction is a form of delta debugging [13, 15,

18], an automatic software testing approach that aims to find
a minimal application input that reproduces a previously
observed failure. Starting from a failure-causing input, a
delta debugger generates and tests input variations that have
one or more input subsequences removed; the search ends
when no further input elements can be removed while
maintaining the observed failure. Delta is a general search
technique, and as such it makes no special considerations for
minimizing state resets for systems under test, or any
assumptions about the location of failure-relevant inputs.

Input-Reduction, on the other hand, attempts to quickly
isolate discrete message inputs from an input sequence under
the assumption that state resets are expensive and that
failure-causing inputs are likely to be near the end of a
recorded trace (i.e., temporally near an observed fault).

Previous research systems have incorporated delta
debugging into software execution and analysis
environments. For example, like A3, the Malfor system [3]
uses record-and-replay to capture inputs and detect security-
relevant behavior of a monitored application. Whereas A3's
Input-Reduction algorithm seeks to minimize the security-
relevant input, Malfor seeks to identify the security-relevant
processes within the monitored system; Neuhaus and Zeller
stated that input reduction was planned as a future Malfor
extension. Another environment that uses delta debugging is
Triage [16], an environment that couples delta, replay, and
common debugging tools for the purpose of performing
software fault diagnosis at production sites. Neither the
Malfor nor the Triage systems aim to support subsequent
adaptive procedures informed by the results of input
reduction for purposes of survivable execution.

As a whole, adaptive execution environments
incorporating per-application containerization, application-
focused monitoring, and adaptive defenses based upon
replay are generally not delivered as turn-key solutions.
Existing research addresses individual portions of A3’s
goals, but is often developed in isolation and for specific
purposes. This leaves users to integrate disparate components
when promoting survivability. Research and development to
transparently provide security measures via mediation of
application I/O [14, 20], closely monitor access to CPU
resources by splitting applications into isolated
compartments [4], and isolate individual applications into
per-VM containers [11] all fulfill individual parts of A3’s
containerization and mediation goals. While there has been
significant research into replay techniques [5, 7, 8, 10, 17]
and its use for identifying defects through techniques such as
omniscient and replay debugging [23, 24], few take an end-
to-end view of replay experimentation as it applies to
continually improving the resiliency of a contained
application. A3’s ongoing work is informed by the wealth of
information these works have uncovered concerning the
complexities of replay.

Fig. 6 - VMI Probe Effects

Fig. 7 - VMI Filter Effects

90

VI. CONCLUSION AND FUTURE WORK
In this paper, we describe Input-Reduction as a technique

for isolating attack inputs from other innocuous, recorded
inputs. A concrete realization of Input-Reduction in the A3
execution management environment is presented and
evaluated using attacks against a representative web-service
application. We further present a comprehensive evaluation
of the cost associated with the infrastructure services that are
necessary to perform Input-Reduction in A3.

Experiments demonstrate that Input-Reduction can be
quite effective and efficient at removing innocuous inputs
from a recording. In four experiments, Input-Reduction is
capable of finding and isolating both non-dependent and
dependent attack inputs within a reasonable complexity and
time bound. Many attributes of Input-Reduction are tunable,
and knobs such as end-of-cycle timeouts and inter-input
replay speeds will have the largest effect on accuracy of
Input-Reduction. To enhance both the efficiency and
accuracy of Input-Reduction, we anticipate running Input-
Reduction twice, once with short end-of-cycle timeouts and
fast replay, and a second time where replay speed and
timeouts are widened to promote better accuracy.

We find that VMI monitoring and analyses are the
dominant factor affecting application scalability and
performance in A3. We further demonstrate that VMI probes
may be used selectively at run-time to minimize costs to
client request latencies, albeit, selective coverage decreases
monitoring of the protected application. We further describe
how the use of VMI analyses may also be relegated to deep
diagnostic inspection during replay experiments, where a
premium is placed on reconstructing details of a successful
attack in-order to quickly derive a successful patch.

In future work, we plan on extending the breadth and
depth of A3’s replay experiment portfolio, for the purposes
of automating attack diagnostics and patch finding. For
Input-Reduction, this goal implies revisiting the auto-tuning
capabilities to enhance the accuracy of the technique. For
diagnostic experiments, we are currently developing an
extensible analysis infrastructure and a suite of configurable
VMI-based analyses that may be used to finger-print the
nature of an arbitrary attack. For variant experiments, we are
developing an application build-and-test service and
extensible crumple zone filter plug-in interface to
automatically test changes to an application and its
preventive policies.

VII. REFERENCES
[1] P. Pal, R. Schantz, A. Paulos, J. Regehr, and M. Hibler.

“Advanced Adaptive Application (A3) Environment: initial
experience,” Proc. of the Middleware. Industry Track
Workshop. ACM, 2011. 8 p.

[2] P., Pal, et al. "A3: An Environment for Self-Adaptive
Diagnosis and Immunization of Novel Attacks," Sixth Intl.
Conf. on Self-Adaptive and Self-Organizing Systems
Workshops. IEEE, 2012. pp. 15-22.

[3] S. Neuhaus and A. Zeller. "Isolating Intrusions by Automatic
Experiments," Proceedings of the 13th Annual Symposium on
Network and Distributed System Security (NDSS), Feb. 2006.

[4] A. Bittau, P. Marchenko, M. Handley, and B. Karp. “Wedge:
splitting applications into reduced-privilege compartments”.

Proc. of the 5th USENIX Symp. on Networked Systems
Design and Implementation (NSDI). USENIX Association,
2008. pp. 309-322.

[5] G. Dunlap, S. King, S. Cinar, M. Basrai, and Peter M. Chen.
“Revirt: enabling intrusion analysis through virtual-machine
logging and replay,” Proc. of the 5th symposium on Operating
Systems Design and Implementation (OSDI). ACM, 2002. pp.
211-224.

[6] CVE-2012-0021. Web. Feb 2013 <http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-0021>

[7] S. King and P. Chen. “Backtracking intrusions,” Proc. of the
19th ACM Symposium on Operating Systems Principles
(SOSP). ACM, 2003. pp. 223-236.

[8] D. Lee, et al. “Respec: efficient online multiprocessor replay
via speculation and external determinism,” Proc. of the 15th
edition of Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM, 2010. pp. 77-90.

[9] Libpcap. Web. Feb 2013.
<www.sourceforge.net/projects/libpcap/>

[10] J. Newsome, D. Brumley, J. Franklin, and D. Song.
“Replayer: automatic protocol replay by binary analysis,”
Proc. of the 13th ACM conference on Computer and
Communications Security (CCS). ACM, 2006. pp. 311-321.

[11] J. Rutkowska. R Wojtczuk. Qubes OS Architecture. Jan.
2010. <qubes-os.org/files/doc/arch-spec-0.3.pdf>

[12] CWE/SANS TOP 25 Most Dangerous Software Errors. Web.
27 June 2011. <www.sans.org/top25-software-errors/>

[13] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering, 28(2):183–200, February 2002.

[14] M. Sherr and M. Blaze. “Application containers without
virtual machines,” Proceedings of the 1st ACM workshop on
Virtual machine security. ACM, 2009. pp. 39-42.

[15] G. Misherghi and Z. Su. HDD: Hierarchical delta debugging.
In Proc. of the 28th Intl. Conf. on Software Engineering
(ICSE), Shanghai, China, May 2006. pp. 142–151.

[16] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. “Triage:
diagnosing production run failures at the user's site,” In Proc.
of 21st ACM SIGOPS Symp. on Operating Systems
Principles (SOSP). ACM 2007. pp. 131-144.

[17] K. Veeraraghavan, et al. “Doubleplay: parallelizing sequential
logging and replay,” In Proc. of the 16th international
conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2011.
pp. 15-26.

[18] S. McPeak and D. Wilkerson. Delta. Web. 2003. http://delta.
tigris.org/.

[19] XenAccess – A virtual machine introspection library for Xen.
Web. Feb 2013. <http://code.google.com/p/xenaccess/>

[20] SquidGuard. Web. Feb 2013. <http://www.squidguard.org>
[21] P. Barham, et al. 2003. Xen and the art of virtualization.

SIGOPS Oper. Syst. Rev. 37, 5 (October 2003), 164-177.
[22] Syrian Web. Feb 2013.

http://packetstormsecurity.com/files/view/102849/syrian-
shell.tgz

[23] Y. Khoo, J. Foster, and M. Hicks. “Expositor: scriptable
time-travel debugging with first-class traces.” In Proc. of the
2013 Intl. Conf. on Software Engineering (ICSE '13). IEEE
Press, 2013. pp. 352-361.

[24] A. Visan, K. Arya, G. Cooperman, and T. Denniston.
“URDB: a universal reversible debugger based on
decomposing debugging histories.” In Proc. of the 6th
Workshop on Programming Languages and Operating
Systems (PLOS '11).

91

