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Abstract— Reliable isolation of malicious application inputs is 
necessary for preventing the future success of an observed 
novel attack after the initial incident. In this paper we describe, 
measure and analyze, Input-Reduction, a technique that can 
quickly isolate malicious external inputs that embody 
unforeseen and potentially novel attacks, from other benign 
application inputs. The Input-Reduction technique is 
integrated into an advanced, security-focused, and adaptive 
execution environment that automates diagnosis and repair. In 
experiments we show that Input-Reduction is highly accurate 
and efficient in isolating attack inputs and determining casual 
relations between inputs. We also measure and show that the 
cost incurred by key services that support reliable 
reproduction and fast attack isolation is reasonable in the 
adaptive execution environment. 

Keywords— Adaptive Security; Execution Environment; 
Novel Attacks; Record & Replay; Survivability;  

I.  INTRODUCTION 
Considering the recent escalation in sophisticated attacks 

against high-value systems, we believe there is a 
fundamental need for security technologies to adaptively 
respond to compromises stemming from completely 
unforeseen attacks that exploit previously unknown 
vulnerabilities. Many procedures for dealing with the 
aftermath of novel attacks are manual, time consuming and 
require a high-level of cyber-security and system’s expertise. 
Example corrective actions include cleansing a system of 
rogue code, repairing damaged data, patching faulty code 
and defenses, restoring trust in existing credentials and 
restoring service availability. While some of these corrective 
actions can be automated, repair actions usually depend on a 
significant amount of accurate knowledge about the how the 
attack was delivered, and what happened between the time 
the attack was executed and the time it was detected. In this 
context, one of the main difficulties encountered in the 
aftermath of a compromise is to reliably reproduce the 
undesired application state or failure with a minimal set of 
application inputs. Such a technique when coupled with an 

adaptive repair toolkit will help facilitate and automate a 
number of corrective actions in a timely manner. 

In this paper, we describe an on-the-fly dynamic search 
technique called Input-Reduction, as a method for isolating 
fault-triggering inputs delivered to a protected application. 
Input-Reduction decouples the detection of undesired 
conditions (i.e., fault manifestations) from isolation 
decisions. This allows Input-Reduction to integrate with a 
wide range of sensors capable of detecting undesired 
conditions, failure states and underlying faults. 

This paper also describes and evaluates how we integrate 
Input-Reduction with the prototype Advanced Adaptive 
Applications (A3) execution environment. In A3, the reliable 
reproduction of an observed undesired condition is a critical 
step towards reasoning about the undesired manifestation as 
well as any underlying security problems that may exist. 
Isolating attack inputs enables A3 to conduct security-
focused hypothesis testing of the application’s configuration, 
underlying binaries and security policies more efficiently. 
The goal of such hypothesis testing is to discover a 
corrective action that makes the application more resilient 
against the initial attack. 

In this paper, we make the following three contributions: 
� We describe Input-Reduction, a technique for 

isolating malicious inputs from benign inputs. 
� We present an integration and evaluation of Input-

Reduction within a secure and adaptive execution 
environment. 

� We evaluate and decompose the cost of 
infrastructure services in A3 that facilitate Input-
Reduction. 

The rest of the paper is organized as follows. In Section 
II we describe the A3 prototype within which Input-
Reduction is implemented and evaluated. Section III 
describes the Input-Reduction procedure. Section IV presents 
an experimental evaluation of Input-Reduction. We further 
examine the integrated cost implications of services and 
capabilities within A3 that support recording and detection of 
undesired conditions, which Input-Reduction uses. Section V 
discusses and contrasts the goals and features of Input-
Reduction and A3 with other related works. Section VI 
concludes the paper with a brief discussion of future work 
and our contributions. 
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II. THE A3 ADAPTIVE EXECUTION ENVIRONMENT 
Input-Reduction is realized in the context of the 

prototype A3 survivability-focused execution environment 
[1, 2]. A3 containerizes individual applications, enforces 
mandatory mediation of application input/output (I/O), and 
provides a framework for developing adaptive middleware 
procedures to dynamically counter attacks. An earlier work 
[1] described and evaluated an initial implementation of the 
preventive features of A3 based upon mandatory mediation 
of application inputs in crumple zones, a software structure 
that absorbs attacks. Later, [2] described the initial design 
and preliminary evaluation of a key subset of an envisioned 
portfolio of security-focused adaptive procedures that A3 
supports. That work postulated that the performance of 
adaptive procedures for attack diagnostics and hypothesis-
driven patch testing would greatly benefit from efficient 
isolation and reduction of inputs. 

To isolate malicious inputs, Input-Reduction uses A3’s 
replay services to load a check pointed state and adaptively 
play-back a recorded execution. Input-Reduction also uses 
A3’s capabilities to detect undesirable application and 
system states, for the purpose of guiding its search. These 
integrated capabilities demand a level of sophisticated 
execution management that is not commonly available when 
applications are run in current application environments, and 
are highlighted in the description of A3 in this section. 

 In A3, a protected application executes in its own 
container and is given the impression that it has the entire 
host to itself. In the current prototype, containers are 
implemented as guest Virtual Machines (VM) running over a 
Xen [21] microkernel. The protected application’s 
interactions with the network and disk are intercepted by a 
network crumple zone (NCZ) and a storage crumple zone 
(SCZ) respectively, each implemented as its own container. 
The crumple zones are responsible for enforcing preventive 
policies on interactions through them. The three VMs, 
containing the protected application and the NCZ and SCZ, 
are collectively called the production conglomerate, and 
enable the advanced execution management features that are 
necessary to perform security-focused adaptive procedures 
like Input-Reduction. Most of the adaptive maneuvers are 
actually carried out in an experiment conglomerate, a 
separate set of VMs that are independent of the production 
conglomerate, leaving the production conglomerate free to 
perform its primary task.  When an undesired condition is 
detected, the application in the production conglomerate is 
rolled-back to an earlier check pointed state, and an 
experiment conglomerate is created to perform security-
focused adaptive procedures. The A3 Controller is used to 
manage A3 and orchestrate the experimentation process. 
Human operators may use a GUI Dashboard to manipulate 
the state of the experiment conglomerate, e.g., select a 
check-point, or configure, execute and monitor an adaptive 
procedure. Fig. 1 depicts the A3 environment. 

A3 supports replay at two levels: at the application level, 
where an application’s inputs are played back, and at the VM 
level, where the entire VM’s operation is played back 
deterministically. These two replay options address different 

tradeoffs, such as overhead incurred and playback fidelity, 
the merits of which are beyond the scope of this paper. For 
Input-Reduction’s evaluation of inputs, we currently use the 
more mature application-level replay. Application replay 
requires detailed-enough recordings that will allow 
reconstruction and playback of discrete inputs to the 
application. For Input-Reduction against a server-class 
application, this amounts to capturing packet-level network 
events over mediated channels and crumple zones. This type 
and level of playback is well-suited for revisiting the input-
output behavior of an application such as a web-server. 

A3’s mandatory mediation of application I/O provides a 
suitable interposition point for supporting record and replay 
of applications that are driven by discrete external inputs. 
Request-Reply protocols are widely used throughout server-
class applications and embody this messaging style 
paradigm. To evaluate Input-Reduction, we use a file-storage 
web-service, implemented with Apache and PHP. To record 
network inputs with a sufficient level of detail to play back 
HTTP requests, we have implemented a service based on 
libpcap[9], called httpdump. The httpdump recording 
structure allows replay to totally order HTTP requests in 
terms of the time they pass the network interface, and to 
derive an understanding of the requesting clients’ session and 
concurrency semantics, without requiring distributed logging 
and synchronized clocks. Request semantics can be derived 
using the client's network of origin, client's authentication 
credentials, request inter-arrival times and causal 
dependencies in the web-service requests (e.g., a file F must 
be uploaded before a download of file F). 

In A3, detection of undesirable conditions is provided by 
preventive policies in crumple zones and VM Introspection 
(VMI) of each container’s execution state. While crumple 
zones monitor edge interactions with the application, to 
monitor process execution we implement a VMI service that 
inspects the machine state of A3 containers from Xen’s 
hypervisor.  Detection of undesirables serves two purposes: 
first, it acts as a trigger to initiate post-incident procedures 
such as Input-Reduction, and second, during Input-
Reduction these detections are used to help guide the search 
by indicating whether a given replay (i) contributes to 
reproducing the undesired condition, or (ii) triggers 
additional watch conditions imposed as part of adaptive 
diagnostic analyses of an observed attack. 

 
Fig. 1 - A3's Replay Infrastructure 

83



 

It might seem counter-intuitive that preventive policies 
can indicate an undesired condition, since enforcement of 
preventive policies implies that a non-compliant interaction 
has been blocked. However, A3 crumple zone policies 
control outbound interactions as well—so even though the 
policy may prevent the exfiltration attempt, the compromise 
that led to that manifestation probably occurred in the past. 
Furthermore there are no guarantees that the policies are 
perfect, especially in the context of novel attacks. It might be 
the case that part or all of the attack sequence successfully 
passed through the crumple zone, installed a backdoor, and 
then a subsequent interaction violates the policy. In all cases, 
we assume that an observed violation indicates compromise. 

In this work, we implement VMI capabilities as a 
configurable service called vmprobesys. Vmprobesys is built 
upon XenAccess [19], a low-level library for accessing the 
machine state of a guest VM in Xen.  Vmprobesys monitors 
and reports function calls from the guest OS that match a 
filtering specification involving process identifiers and 
system call attributes. Events that match the specification are 
reported to the A3 Controller as a short observation. An 
abridged VMI probe specification for our example 
application is shown in Fig. 2 and used in experimentation 
later in this paper. In this specification, the probe service is 
used to evaluate system calls that control process creation 
and network interactions for the protected application. The 
directive ProcessListNames is used to report a process 
existence status for the specified process names, here httpd 
and php-cgi. Vmprobesys reports the process ids (PID and 
PPID) whenever a process is created or destroyed. This 
capability is mostly used for auditing purposes and higher 
level analyses looking for anomalies in the list of active 
instances of processes. The directives Functions and Filter 
are used to monitor the functions whose invocation and 
subsequent results are of interest.  Filterable Functions are 
listed under the Function directive. The Filter directive 
defines a condition that can be evaluated over a probed 
function call and it’s return values. For instance, the first 
Filter specifies that the do_exit function call with a SEGV 
parameter for an httpd process is an event of interest.  

Higher-level analyses and subsequent reactions to 
observations from vmprobesys are performed at the A3 
Controller. Performing high-order analyses inside 
vmprobesys would severely impact the performance of the 
guest VM, because monitoring guest function calls involves 
breakpointing the applications execution. Thus, adding 
complex logic to analyze multiple observations inside the 
vmprobesys code will adversely impact the applications 

performance. This design decision is acceptable, because 
reporting latencies from vmprobesys to A3 controller are 
consistently less than 10ms.  

III. INPUT-REDUCTION 
Input-Reduction is used to reorganize a recorded input 

set I in such a way that sub-sets of I can be matched against a 
user-defined objective function F, also known as a predicate. 
The predicate is defined when a replay experimenter, or 
other automated agent, selects a sub-set of any undesirable 
observations that were reported within the same interval as 
the input recording. In most cases, the predicate F will be a 
single undesirable observation detected by A3’s preventive 
protections, as that observation is usually the one that 
triggered an adaptation by A3. In other cases, multiple 
observations might have been reported that warrant 
individual inspection on a case-by-case basis. After the 
predicate is selected, Input-Reduction orchestrates four 
search procedures (called phases) that submit variations of 
recorded inputs to the application and wait for an observed 
event(s) that matches the predicate. The inputs that do not 
contribute to making F true are removed from further 
consideration. In this way, the search is used to “reduce” a 
full recording to a smaller sub-set R of recorded inputs. 

Input-Reduction is designed around two goals and an 
assumption. It should quickly isolate a reduced input set. It is 
important to minimize the number of state resets (check-
point loading), as these operations tend to be very expensive. 
Finally, for many types of attacks, the attack payload will be 
contained within a single application input that was 
processed right before an observed anomaly is detected. For 
attacks that lie dormant, the algorithm can further selectively 
apply longer timeouts, although, this class of attack is not our 
main focus. Under these guidelines, Input-Reduction will 
discover if an observation is reproducible in relation to a 
given starting check-point (state), and, if reproducible, it can 
uniquely isolate up to three dependent inputs that contribute 
to the predicate, or reduce the input set to a sub-set range of 
4+ dependent inputs. When considering ordered dependent 
inputs, Input-Reduction aims to identify the first case that 
triggers the predicate. Thus, it is not optimized for more 
complex input sets such as symmetric input (i.e., ABCBA 
where A followed by B triggers the predicate). The 
complexity of Input-Reduction is approximately linear in the 
number of input submissions.  While the processing times 
for each individual submission may vary, the complexity of 
Input-Reduction is always dominated by the trial-setup and 
state reset costs, so the size of the input does not tend to 
matter in practice. Furthermore, A3 can manage the input-set 
size by varying the frequency of check-pointing, thus 
preventing unbounded growth in input recordings. 

Input-Reduction is inherently expressive, fast, and 
flexible, but provides no optimal search guarantees, as this 
will unnecessarily slow execution time. That is, the search 
may quickly reduce an input set to contain the malicious 
inputs, plus a few other residual benign inputs. While Input-
Reduction is generalizable to the reduction of discrete 
messaging inputs, this work demonstrates a specialized 
search for HTTP inputs. In A3, we use Input-Reduction to 

ProcessListNames httpd, php-cgi 
Functions sys_execve, sys_waitpid, do_exit, sys_fork, 
sys_clone, sys_socketcall 
Filter f=do_exit,name=^httpd,arg=code:signal,aval=SEGV 
Filter f=sys_execve,name=^httpd 
Filter f=sys_socketcall,name=^httpd,arg=call,aval=accept 
Filter f=sys_socketcall,name=^httpd,arg=call,aval=connect 
Filter f=sys_waitpid,name=^httpd,when=post,rval=^[1-9] 
 

Fig. 2 - Abridged VMI Probe Specification 
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submit HTTP requests as inputs via the replay service, and 
implement a predicate interface to handle observations 
reported from A3’s Host Controller as shown in Fig 3. In A3, 
we use tunable parameters to account for client semantics 
including inter-arrival time of HTTP requests, exact message 
time stamps, socket-timeouts, and emulation of client thread-
pool size. Input-Reduction can also vary replay speed and an 
end-of-submission-cycle timeout value that is used to 
determine how long to wait for a match on the predicate after 
submitting a final input. In the absence of client-side 
recording, which would not be enforceable against an 
arbitrary attacker, we feel there is sufficient flexibility in 
Input-Reduction’s ability to submit inputs and emulate client 
behaviors when coupled with A3’s replay service. 

The four phases of Input-Reduction are as follows: 
Phase 1 – Reverse-order Submission works backwards 

from the last recorded input to the first input. For example 
given a set {1, 2, 3}, Input-Reduction would submit 3, then 
2, then 1 as individual inputs. A terminating condition is 
defined as a predicate match or the expiration of a 
configurable duration end-of-cycle timeout that follows the 
last submitted input. In other words, the phase must end after 
a preconfigured timeout. Input-Reduction always leads with 
reverse-order submission based upon the assumption that 
many attacks will be self-contained within a single input near 
the end of a recorded set, and that costly state resets are only 
required for initialization. Phase 1 has the added benefit of 
assessing if the set contains dependent inputs, i.e., ordering 
semantics. Phase 1 is always followed by Phase 2. 

Phase 2 – In-order Submission follows the reverse order 
submission phase, only requires a state resets during 
initialization, and has the same terminating conditions as 
Phase 1. If the predicate was not triggered in Phase 1, input 
submission will start from the first recorded input. 
Otherwise, the submission will start from the last submitted 
input that directly preceded the predicate match in Phase 1. 
A Phase 2 predicate match that follows a reverse-order miss 
in Phase 1 implies that the input set was ordered, which is 
often useful in future debugging sessions. If a single 
submitted input triggers the predicate, Input-Reduction is 
complete and returns a reduced set containing the single 
input. If the predicate was matched and there is more than 
one input remaining, Input-Reduction will proceed to Phase 
3 if the set is ordered and to Phase 4 if the set is unordered. If 

the predicate is not matched after the end-of-cycle timeout in 
Phase 2, the recording may not be capable of reproducing the 
undesired condition from the starting checkpoint and 
recorded inputs. This may be due to the level of the 
recording, the configuration of Input-Reduction’s tunable 
parameters, or the starting checkpoint. In this case, Input-
Reduction will signal a negative result and terminate. 

Phase 3 – Divide, Conquer, Expand (D/C/E) takes an 
ordered input-set and proceeds to use a ½ divide, conquer 
and ½ expand approach to iteratively test smaller, followed 
by larger, sets and narrow the attack sub-set I. While the 
D/C/E phase is much more efficient in cumulative input 
reduction, each pass requires a state reset operation. This is 
why we do not start with this phase. The main purpose of 
Phase 3 is to pre-process ordered sets that may contain many 
innocuous inputs to the left of the last input in the set. Phase 
3 attempts to eliminate those inputs prior to proceeding to 
Phase 4 as an efficiency step. The termination case for Phase 
3 is defined as the last predicate match that occurs between a 
divide iteration and an expand iteration. It occurs when the 
starting point for successive divide and expand steps is 
within 1 input and a true-positive against the predicate is 
observed. Regardless of outcome, Phase 3 invokes Phase 4. 

Phase 4 – Bookend + D/C/E is used to uniquely identify 
2 or 3 dependent inputs, and in the worst case, reduce the 
input set to a smaller range of 4+ inputs from the initial set. 
Phase 4 takes a reduced input set from Phase 3 or Phase 2 
that may contain zero or more innocuous inputs in the 
middle of that set. Initially, Phase 4 tests that only the first 
and last input in the set is part of the attack to check for 
exactly 2 dependent inputs (thus the name bookend). A 
positive result will occur if Phase 1 and Phase 2 have 
effectively restricted the input sets two bookends. Phase 4 
will try the initial bookend, and if that test fails, it will then 
use D/C/E over the middle of the set and wrap each D/C/E 
iteration with input 0 and input N-1 of the phases’ starting 
set.  Intuitively, Phase 4 will submit the start of the bookend, 
then play a step of D/C/E, and then finally submit the last 
input of the bookend. This will continue until the D/C/E 
tests, wrapped in the bookend, are complete. As a result of 
the final phase, Input-Reduction will identify up to three 
unique inputs, or the bookend plus some range of inputs that 
contain a mix of malicious and innocuous inputs. 

For robustness, each phase includes a parameter to 
repeatedly retry up-to-N attempts to match the predicate. In 
terms of minimizing costly state resets, the reverse- and in-
order replays only require a single state reset, while the 
D/C/E and bookend tests require a restart after each division. 
Since Input-Reduction does not attempt to optimally isolate 
reduced sets nor takes into consideration time-depended 
predicates (e.g., hibernating attack), a false-positive would be 
defined as a resulting reduced set that will no longer trigger 
the predicate effect given an infinite timeout. A false-
negative would be defined as an irreproducible predicate 
assuming an accurate starting state, timeout configuration 
and playback fidelity.  It is our intuition that using 
deterministic-replay for input submission would minimize 
the chances of false-positives and false-negatives, which we 
plan to examine in later work. 

 
Fig. 3 - Integrating Input-Reduction in A3 
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IV. EVALUATION 
To evaluate Input-Reduction we use a 2.2 Ghz quad-core 

processor, 8GB of memory, and 1CPU and 512MB Xen PV-
guests for the A3 containers. As an exemplar protected 
application, we use a file-storage web-service application 
implemented with Apache 2.2.19 and PHP 5.3.6. The web-
service provides a Wiki document management interface 
supporting file upload, download, delete and indexing.  Web-
service clients are physically located on a separate machine 
connected via a 100Mb LAN at the time of recording. By 
design, the web-service’s implementation and the 
deployment have been left with embedded security holes, 
such as misconfigured discretionary access control settings, 
and function calls which make use of user inputs without 
input validation that may be exploited remotely. 
Collectively, these security holes represent many of the 
CWE/SANS Top 25 Most Dangerous Software Errors [12] 
and expose the application to a range of common attacks. 

In the following three sub-sections, we first examine the 
efficacy and efficiency of Input-Reduction in isolating 
malicious inputs. We then examine the fixed costs for 
detecting undesired conditions in a containerized 
environment that ultimately drive Input-Reduction. In the 
final Section IV.C, we examine the VMI costs that are 
associated with a deeper inspection during Input-Reduction. 

A. Efficacy and Efficiency of Input-Reduction 
 To demonstrate and assess the accuracy and 

performance of Input-Reduction we experiment with two 
attack recordings that represent common attacks that can be 
easily packaged in HTTP requests: 

Segv – In CVE-2012-0021 [6], a malformed HTTP 
message with malformed cookie field may be used to trigger 
a segmentation-fault in an Apache process. The attack’s 
payload is contained within a single HTTP request, and the 
segfault signal is almost immediate. This undesired condition 
is easily detected by vmprobesys’ monitoring of SIGSEGV 
exits as described in Section II.  

PHP Backdoor – The Syrian-Shell [22] PHP backdoor is 
an application-level attack. The attack is loaded into 
Apache’s htdocs directory via a misconfigured Discretionary 
Access Control setting and a path-traversal vulnerability that 
is exploited during a file storage operation. The detection of 
a policy violation occurs after two dependent requests: an 
HTTP POST operation to upload the Syrian Shell into the 
htdocs directory, then a HTTP GET invocation on the attack 
script. The second request triggers a bind call when 
attempting to open a back door. This bind call is also 
detected by vmprobesys.  

With A3, Input-Reduction can be configured to use 
different playback speeds, including “as recorded” using the 
same inter-arrival time between requests that was observed 
during recording, and “fixed-time”, where requests are 
played back at a chosen fixed interval. To illustrate Input-
Reduction, Fig. 4 graphs a replay for the PHP backdoor 
example using recorded time. The time of the replay is 
plotted on the X-axis in milliseconds, and the y-axis is 
categorical where each entry represents the submission of a 
single replay input. Although it is not visible in the 

granularity of the graph, each single input is plotted 
horizontally, as a column, and conveys the replay’s request-
to-response latency for each input. Fig. 4 labels the phases of 
Input-Reduction in colored boxes, where the shaded boxes 
indicate that the predicate was not triggered in that replay 
iteration, and white boxes indicate a match. 

Since the PHP attack contains two order-dependent 
inputs, the first phase of the replay, reverse-order, leads to no 
input reduction. In the second phase, in-order traversal 
triggers the predicate after the 92nd input. Collectively, these 
two phases indicate that trigging the predicate is possible 
given the recorded input set and that the attack is order-
dependent. As mentioned earlier, factors including time of 
the starting checkpoint, log-size, replay-timing, and the 
existence of causally-related attack inputs will influence 
predicate reproducibility. For example, if events that 
occurred prior to the first recorded input of the recorded set 
are needed to trigger the predicate, then the replay 
experiment will fail at this point. For this particular attack 
set, Input-Reduction has now determined that the input-set 
was indeed ordered, and can proceed to divide, conquer and 
expand to test for further reductions.  From about the 300 
second mark until the final divide test, Input-Reduction will 
reduce the set by 98% before returning the result of the 
search. The total replay-time using the recorded inter-arrival 
times of the input set is ~357 seconds. During this particular 
replay, there were eleven total state resets (application 
restarts) in the experiment. In absolute terms, the final result 
of Input-Reduction shown in Fig. 4 actually reduced the PHP 
Backdoor attack set to two inputs: the POST request which 
injects the script and the GET request that triggered VMI. 

To examine the effectiveness of different Input-
Reduction configurations we conduct four unique Input-
Reduction experiments in A3: 

� Input-Reduction Experiment 1 – With only an 
experiment conglomerate, we test the PHP 
backdoor attack set. We execute the replay using 
the recorded request arrival times, a 3000ms socket-
timeout and a 6-client thread-pool. 

� Input-Reduction Experiment 2 – Starting from the 
configuration in experiment 1, we alter the replay 
speed to be fixed at 333ms between HTTP requests. 

� Input-Reduction Experiment 3 – With only an 
experiment conglomerate, we test the Segv attack 
set. We execute the replay using a fixed replay 

 
Fig. 4 - Input-Reduction of PHP Backdoor 
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speed of 333ms between requests, a 3000ms socket-
timeout and a 6-client thread-pool. 

� Input-Reduction Experiment 4 – In a configuration 
with both a production and experiment 
conglomerate running on the same host, we run 
Input-Reduction against the Segv attack set, while 
at the same time, the production conglomerate 
processes index requests from 7-clients at 333hz. 
The replay speed is configured for a fixed 333ms 
between requests, with the same socket-timeout and 
client thread pool size as the other experiments. 

The results in Table 1 examine and group the four logical 
phases of Input-Reduction vertically, against the four 
experiment configurations described above (horizontally). 
For each phase, we’ve captured the number of inputs, the 
size of the reduced set at completion of the phase, the 
cumulative reduction in set size, the number of passes over 
the data where each pass indicates that a state reset is 
required, and excluding the state reset duration(s), the time it 
took to replay inputs and wait for any observations. 

Comparing the results of the PHP backdoor experiments 
(Exp. 1 and 2), we observe a 98% and 88% input reduction 
against the initial input set. The additional input reduction 
accuracy for the recorded-time replay comes at a total cost of 
356.91 seconds and one less state reset, as compared to 
127.45 seconds for the fixed-time experiment. We derive 
total time here, by summing the replay times of all four 
phases. These findings suggest that reasonable input 
reduction can be achieved quite fast by using a faster than 
recorded time fixed timing interval for replay. To enhance 
the accuracy of the replay, slower timing, or in this case, 
recorded time, can be used on the resulting sets to improve 
the reduction accuracy even further. 

In the first of the two segv experiments (Exp. 3), Input-
Reduction identifies the exact attack input (id 148) in 5.66 
seconds during two replay phases. Like the earlier PHP 
Input-Reduction experiments, the first segv experiment does 
not include a batch of clients concurrently making requests 
against the protected application in the host conglomerate. 

In the second segv experiment (Exp. 4), we rerun the 
same segv Input-Reduction experiment concurrently with an 
active production conglomerate that services requests from 

seven clients at 333Hz. Without question, the additional load 
impacts Input-Reduction.  While the reduction results are 
quite good, with an input reduction of 92% in 17.48 seconds 
and two additional state resets, we see a relationship between 
the additional load on the production conglomerate and the 
accuracy of Input-Reduction. Since, as evaluators, we know 
that the attack input is contained in the single non-dependent 
input 148, when we consider the data in Table 1 we see that 
the initial reverse order replay overran the attack input by 
seven inputs, the in-order replay then overran the input by 
five inputs, and ultimately, the bookend tests failed two 
consecutive times to end the experiment. Each of the 
outcomes can be attributed to the timing of the Input-
Reduction’s test-observe-decide cycle. We believe that the 
additional resource load (i.e., resource usage) on the 
experimental platform and the increased volume of 
observations reported to the controller from the concurrent 
production conglomerate have the effect of increasing 
latencies in the test-observe-decide loop of Input-Reduction. 
In effect, the increased cost leads to timing overruns (i.e., a 
type of race condition) where the actionable information 
arrives after the end-of-cycle timeout. One way to redress 
this effect, would be to increase the end-of-cycle timeout 
configuration, either automatically (e.g., via exponential 
decay) or manually on a case-by-case basis, to cope with the 
increased load from the production conglomerate. 

Taken as a whole, the analysis of the Input-Reduction in 
the context of the HTTP-based web-service application 
demonstrates that the Input-Reduction is effective and 
accurate in isolating malicious inputs that reproduce an 
observed undesired condition at run-time. Both the accuracy 
and efficiency of Input-Reduction can be affected by 
configuration of the replay experiment attributes. Attributes 
such as latencies of observations delivered to the controller, 
end-of-cycle timeouts, and replay speed all effect outcomes 
for Input-Reduction. We observe that slower replay speeds 
generally lead to a greater degree of accuracy in the Input-
Reduction outcome. Under this observation, one might be 
inclined to run Input-Reduction in two or more passes, 
starting from a fast replay, to rapidly prune innocuous inputs 
that do not contribute to matching the predicate, and then 
progress to slowing the replay speed over the newly reduced 

Table 1. Comparison of Set-Reduction Replay Experiments 

 Phpbackdoor @rec-time Phpbackdoor @333 Segv @333 Segv with host traffic @333 
Phase: 

Reverse 
Order 

Input Size (Reduced Size) 120 (120) 120 (120) 165 (17) 165 (24) 
Replay Passes 1 1 1 1 

Cumulative Reduction 0 % 0 % 90 % 85 % 
Replay Duration 162.79 seconds 42.00 seconds 5.63 seconds 8.15 seconds 

Phase: 
 In-Order 

Input Size (Reduced Size) 120 (93) 120 (94) 17 24 (13) 
Replay Passes 1 1 1 1 

Cumulative Reduction 23 % 22 % 99 % 92 % 
Replay Duration 109.79 seconds 32.67 seconds .03 seconds 4.42 seconds 

Phase:  
Divide, 

Conquer, 
Expand 

Input Size (Reduced Size) 93 (15) 94 (16) N/A N/A 
Replay Passes 7 6 

Cumulative Reduction 88 % 88 % 
Replay Duration 83.44 seconds 46.96 seconds 

Phase: 
Bookend + 

DCE 

Input Size (Reduced Size) 5 (2) 16 (16) N/A 13 (13) 
Replay Passes 2 2 2 

Cumulative Reduction 98 % 88 % 92 % 
Replay Duration .89 seconds 5.82 seconds 4.91 seconds 
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set to enhance the accuracy of the outcome. 

B. Fixed Cost Component of Input-Reduction 
Preventive policies enforced by VMI and mandatory 

mediation are necessary to support Input-Reduction in A3. 
While our initial assessment of the benefits of preventive 
protections [1] is positive, we wanted to make sure that they 
do not make the prototype execution environment cost-
prohibitive for enabling adaptive procedures such as Input-
Reduction. With this motivation, this sub-section analyzes 
the performance costs of A3’s preventive protection services 
that were used to generate the input and observation 
recordings used in the previous sections experimentation. 

To conduct a fair and measured comparison we first 
examine the impact of preventive protections on external 
application clients, where two crumple zones are used to 
enforce I/O mediation, vmprobesys monitors undesired 
operational conditions, and application-level recording 
captures data on the network channel. We then remove 
preventive protections one layer at a time to decompose and 
attribute cost to individual protections. As a metric of cost, 
we measure the HTTP round-trip latency for 1, 3, 5 and 7 
concurrent clients issuing three requests per second. 

We use the following configuration, defined specifically 
for the protected web-service application, for preventive 
protections to exercise A3’s core components: 

� Storage Crumple Zone 
o Filter file system operations on .exe, .dll, 

.bat, .sh, .so objects 
� Network Crumple Zone 

o Filter HTTP headers >128 bytes in length 
o Filter HTTP requests >10 HTTP Headers 
o Filter out-of-range WS query strings 

� Virtual Machine Introspection 
o Apply the specification from Section II 

In 24 experiments we test six configurations, slowly 
increasing the quality and depth of preventive protections: 

1. Dom0 Host Baseline – Without any protections, the 
web-service runs on Dom0. This configuration is 
the baseline comparison measurement. 

2. Virtual Guest Baseline – Without any protections, 
the web-service runs inside a guest VM. This 
configuration includes Xen VM costs. 

3. Storage Crumple Zone (SCZ) – With preventive 
SCZ protections, the web-service runs in a 
container. This configuration includes storage 
channel mediation and includes filtering costs. 

4. Network Crumple Zone (NCZ) – Building upon the 
previous configuration, add a NCZ with a canary-
replica to taste-test and proxy Apache inputs to the 
WS. This configuration incorporates network 
channel mediation and proxy cost. 

5. Network Crumple Zone w/ Filters – Building upon 
the previous configuration, enable HTTP filtering 
for web-service requests. This configuration adds 
ingress filtering cost on the network channel. 

6. Guest Virtual Machine Introspection – Building 
upon the previous configuration, enable VMI 
monitoring for the protected application. 

Fig. 5 shows the request latencies (y-axis) for groups of 
concurrent clients and various configurations of the A3 
environment (x-axis). Latency results are normalized by 
removing outliers greater than three standard-deviations from 
each experiment’s mean. In the worst case experiment, this is 
less than a 2.8% reduction in the count of experimental 
observations, implying experimental jitter was minimal. At 
first glance, Fig. 5 shows a pattern of increased cost as the 
number of concurrent clients and preventive protections are 
increased. As expected, even the virtualization cost increases 
from the external client’s perspective when evaluating the 
web-service in a virtual guest compared to on the host 
(BASELINE-FC8-VM versus BASELINE-FC8-Dom0). The 
virtualization cost can be attributed to the experiment load 
over fixed quality-of-service guarantees for the guest VM 
(i.e., 1VCPU, 512MB Memory). While the Xen-based 
prototype is acceptable for research and evaluation, this 
observation implies that light-weight containerization 
alternates such as OS virtualization would benefit A3. 

At low loads (1 and 3 clients), the SCZ mediation 
introduces a modest cost of 44% and 28% over the 
BASELINE-FC8-VM, and increases to 160% and 183% in 
the five and seven client configurations. Storage costs are 
attributable to the SCZ’s UNFS implementation, which is not 
used in either of the baseline experiments. UNFS offers A3 a 
strong degree of isolation and a nice interception point to 
mediate storage operations. As an alternative, we could use 
closer to application techniques such as system call 
interception to drive down storage mediation costs, but at the 
price of losing the strong isolation from external SCZs in A3.  

The next configuration (SCZ+NCZ+PROXY) introduces 
NCZ mediation. The NCZ implements a full application 
proxy to intercept and execute HTTP requests. If the 
execution does not trigger a bad effect, the initial request will 
be proxied to the protected application. Use of the full-
application proxy incurs over twice the cost in processing an 
application request, as all requests are processed in both the 
application and NCZ domains. Furthermore, since the NCZ 
and application domains are backed by the SCZ, the storage 
channel traffic is effectively doubled. In this configuration, 
we see a 7.7%, 32.8%, 39.7% and 104.8% increase in costs 
as clients are scaled. When further enabling the NCZ filters 
(SCZ+NCZ+PROXY+FILTER), deep inspection of the 
HTTP payload increases the cost 19.9%, 30.8%, 17.5% and 
15.6% respectively over the non-filtered case. This 

 
Fig. 5 – Supporting Service Overheads 
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observation leads us to believe that that some of the network 
filtering costs will be absorbed by the machinery 
implementing the proxying functionality. While the 
efficiency of the full-application proxy is poor, the value of 
the NCZ’s full-application proxy lies in its ability to absorb 
the attack before it touches the real application. The proxy 
will further inform A3’s adaptive procedures to help 
diagnose underlying problems, starting with Input-
Reduction.  

In the final experiment, VMI probes are used to monitor 
a select set of system calls against the protected application. 
VMI is by far the greatest contributor to preventive 
protection cost, but is also the most informative to Input-
Reduction. As client count scales, VMI increases client 
latencies 137%, 103%, 101% and 68% over the network 
filtering experiment. It is interesting to note that the latency 
percentage decreases at each step as clients are added. Upon 
inspection, this behavior is explained through the blocking 
read semantics of the fixed-size client networking pool that 
is used to test the web-service. In practice, blocking reads 
will regulate the specified client request frequencies, 
effectively limiting the number of requests sent to the server 
and load. Upon further examination of client invocation data 
collected (not graphed), we do in-fact see a 91%, 83%, 85% 
and 76% percent reduction in total number of HTTP GET 
requests between the two configurations. 

The poor performance of VMI is attributed to its use of 
software break pointing, like most debuggers. VMI-based 
preventive protection in A3 is more costly than the 
protections offered by crumple zones. On the other hand, 
VMI protections are independent of the untrusted application 
containers. Thus, VMI can provide a stronger security 
guarantee, and watch the application and inform Input-
Reduction in ways that crumple zones cannot. In the next 
section we further decompose and assess VMI costs. 

C. Composable Costs of Input-Reduction 
Detection provided by VMI monitoring, is instrumental 

for deep diagnostic inspection of a protected application and 
further informing Input-Reduction. However as shown in 
previous sections experimentation, VMI is also the greatest 
contributor to preventive protection costs. In this sub-section, 
we break down VMI costs. We further consider the cost 
implication of deep inspection, with an eye towards 
improving the vmprobesys design for Input-Reduction. 

At runtime, we have used VMI to monitor execve, 
waitpid, fork, clone, socketcall and exit entry points into the 
kernel. We further filter accept, bind, connect, getpeername 
and getsockname calls invoked through the multiplexed 
sys_socketcall interface on 32-bit Linux. Monitoring the 
system call interface, VMI will capture all system call 
operations whether they originate from the protected 
application, or from some other application executing in the 
guest VM. This implies that the VMI cost in the previous 
section is not only attributed to load on the protected web-
service, but also on the whole host. To quantify this 
observation, we profile the system calls made by the web-
service using the strace tool on Linux, and compare the call 
counts with the number of intercepted VMI calls in Table 2. 

The non-starred section in Table 2 lists the six probed 
system calls, prefixed by sys_, while the shaded section lists 
six filtered sub-groupings of sys_socketcall invocations. The 
first five starred subgroups reflect the exact filtering 
specification in Fig. 2, while the other socket calls entry (last 
row) counts any other unrelated socketcall invocations which 
are trapped. The counts indicate that during a three minute 
experiment with 7 clients, vmprobesys intercepts extraneous 
system calls that do not originate from the protected 
application, but undoubtedly impact performance.  The 
dominant interception point is the sys_socketcall interface 
registering 30,280 interceptions, of which 45% of calls are 
not attributed to the Apache process tree (i.e., Apache+PHP). 

Cost attributed to VMI is dependent on three factors: the 
number of probes, the complexity of the filtering logic in 
each probe and the applications use of the probe point. Given 
this, we examine the effects of probes and filtering logic on 
client request latencies in two experiments, and then describe 
improvements that can be made to vmprobesys in future 
work. In our first experiment, in Fig. 6, we examine the 
effects of probe counts across four configurations, where we 
gradually scale back the number of system call probes. The 
full configuration includes the six system call probes in 
Table 2. The second configuration (labeled five) we remove 
the sys_socketcall probe and filters, configuration four 
removes the sys_clone call, and configuration one leaves 
only the sys_execve call. We also ran configurations with 
three and two probes, but they add little value to these results 
and are not shown. Once again, the reduced number of 
invocations in the full configuration is attributed to the 
blocking read client semantics when invoking the web-
service application (described in IV.B). 

Fig. 6 shows that the sys_socketcall probe is the 
dominant factor for the web-service application. Its removal 
reduces the average client latencies by 43%, and leads to a 
greater degree of stability in the variance of client latencies 
(labeled ‘std’), whereas removal of the other probes lead to 
little positive change. This observation is attributed to the 
lower frequency of interceptions for those probes, and 
suggests that cost will mostly be a function of the number of 
traversed probes. Probe access is dictated by the nature of 
the protected application, here, a web-service and its use of 
sys_socketcall. We also conclude that non-dominant probes 

32-bit Syscall 
(*socketcall subset) 

strace –f of 
Apache  

VMI Syscall 
Probes 

sys_execve 8 12 
sys_waitpid 430 503 

sys_exit 0 13 
sys_fork 0 0 

sys_clone 17 98 
sys_socketcall N/A 30280 

*accept 6697 N/A 
*bind 8 N/A 

*connect 3393 N/A 
*getpeername 7 N/A 
*getsockname 3382 N/A 

*other socket calls 16793 N/A 

Table 2.  Application and VMI System Calls 
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will add little incremental cost over a single dominant probe. 
In the second VMI experiment, we varied the filtering 

logic using only sys_socketcall probes to understand the cost 
impact of filtering complexity. Filtering complexity includes 
both the cost associated with content parsing and pattern 
matching on the interface, and the local network cost of 
reporting to the A3 controller. Starting with five filters, we 
sequentially remove the accept filter first, and then the 
getsockname, connect, and bind filters, leaving only the 
getpeername filter in the final configuration. Fig. 7 shows 
that the filtering and reporting cost has no considerable effect 
on the client’s request-response latency. More to the point, 
the probes existence is the dominant cost driver, not the 
conditional selection of the filters or upstream reporting. We 
conclude that complex filtering of even the most traversed 
probes do not add too much incremental cost, once the 
probes existence is required for defense. 

To date, we have not attempted to optimize the VMI 
implementation or probe selection. We leave this to future 
work. To varying degrees, the effects of extraneous 
interceptions may be mitigated by inserting probes on 
demultiplexed kernel functions residing behind the 
multiplexed socket interface, or move to 64-bit Linux, were 
socket calls are not multiplexed. This would further reduce 
cost, but will not address the fact that the system call 
interface is a shared resource in the host container. A third 
option, which we are actively pursuing, is to develop a user-
space probe target for vmprobesys. A user-space target will 
allow vmprobesys to breakpoint the application logic that 
triggers system call invocations, making VMI monitoring 
even more powerful. We believe this will improve both the 
accuracy and performance of A3 and Input-Reduction. 

V. RELATED WORK 
Input-Reduction is a form of delta debugging [13, 15, 

18], an automatic software testing approach that aims to find 
a minimal application input that reproduces a previously 
observed failure.  Starting from a failure-causing input, a 
delta debugger generates and tests input variations that have 
one or more input subsequences removed; the search ends 
when no further input elements can be removed while 
maintaining the observed failure. Delta is a general search 
technique, and as such it makes no special considerations for 
minimizing state resets for systems under test, or any 
assumptions about the location of failure-relevant inputs.  

Input-Reduction, on the other hand, attempts to quickly 
isolate discrete message inputs from an input sequence under 
the assumption that state resets are expensive and that 
failure-causing inputs are likely to be near the end of a 
recorded trace (i.e., temporally near an observed fault). 

Previous research systems have incorporated delta 
debugging into software execution and analysis 
environments.  For example, like A3, the Malfor system [3] 
uses record-and-replay to capture inputs and detect security-
relevant behavior of a monitored application. Whereas A3's 
Input-Reduction algorithm seeks to minimize the security-
relevant input, Malfor seeks to identify the security-relevant 
processes within the monitored system; Neuhaus and Zeller 
stated that input reduction was planned as a future Malfor 
extension.  Another environment that uses delta debugging is 
Triage [16], an environment that couples delta, replay, and 
common debugging tools for the purpose of performing 
software fault diagnosis at production sites. Neither the 
Malfor nor the Triage systems aim to support subsequent 
adaptive procedures informed by the results of input 
reduction for purposes of survivable execution.  

As a whole, adaptive execution environments 
incorporating per-application containerization, application-
focused monitoring, and adaptive defenses based upon 
replay are generally not delivered as turn-key solutions. 
Existing research addresses individual portions of A3’s 
goals, but is often developed in isolation and for specific 
purposes. This leaves users to integrate disparate components 
when promoting survivability. Research and development to 
transparently provide security measures via mediation of 
application I/O [14, 20], closely monitor access to CPU 
resources by splitting applications into isolated 
compartments [4], and isolate individual applications into 
per-VM containers [11] all fulfill individual parts of A3’s 
containerization and mediation goals. While there has been 
significant research into replay techniques [5, 7, 8, 10, 17] 
and its use for identifying defects through techniques such as 
omniscient and replay debugging [23, 24], few take an end-
to-end view of replay experimentation as it applies to 
continually improving the resiliency of a contained 
application. A3’s ongoing work is informed by the wealth of 
information these works have uncovered concerning the 
complexities of replay. 

 
Fig. 6 - VMI Probe Effects  

Fig. 7 - VMI Filter Effects 
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VI. CONCLUSION AND FUTURE WORK 
In this paper, we describe Input-Reduction as a technique 

for isolating attack inputs from other innocuous, recorded 
inputs. A concrete realization of Input-Reduction in the A3 
execution management environment is presented and 
evaluated using attacks against a representative web-service 
application. We further present a comprehensive evaluation 
of the cost associated with the infrastructure services that are 
necessary to perform Input-Reduction in A3. 

Experiments demonstrate that Input-Reduction can be 
quite effective and efficient at removing innocuous inputs 
from a recording. In four experiments, Input-Reduction is 
capable of finding and isolating both non-dependent and 
dependent attack inputs within a reasonable complexity and 
time bound. Many attributes of Input-Reduction are tunable, 
and knobs such as end-of-cycle timeouts and inter-input 
replay speeds will have the largest effect on accuracy of 
Input-Reduction. To enhance both the efficiency and 
accuracy of Input-Reduction, we anticipate running Input-
Reduction twice, once with short end-of-cycle timeouts and 
fast replay, and a second time where replay speed and 
timeouts are widened to promote better accuracy. 

We find that VMI monitoring and analyses are the 
dominant factor affecting application scalability and 
performance in A3. We further demonstrate that VMI probes 
may be used selectively at run-time to minimize costs to 
client request latencies, albeit, selective coverage decreases 
monitoring of the protected application. We further describe 
how the use of VMI analyses may also be relegated to deep 
diagnostic inspection during replay experiments, where a 
premium is placed on reconstructing details of a successful 
attack in-order to quickly derive a successful patch. 

In future work, we plan on extending the breadth and 
depth of A3’s replay experiment portfolio, for the purposes 
of automating attack diagnostics and patch finding. For 
Input-Reduction, this goal implies revisiting the auto-tuning 
capabilities to enhance the accuracy of the technique. For 
diagnostic experiments, we are currently developing an 
extensible analysis infrastructure and a suite of configurable 
VMI-based analyses that may be used to finger-print the 
nature of an arbitrary attack. For variant experiments, we are 
developing an application build-and-test service and 
extensible crumple zone filter plug-in interface to 
automatically test changes to an application and its 
preventive policies. 
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