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Abstract—Universal Asynchronous Receiver Transmitter
(UART) implements serial communication between peripherals
and remote embedded systems. The UART protocol is defined
based on fixed frequencies with a sampling method to achieve
robustness under reasonable frequency variations between
systems. Such design specifications are natural for clocked
domains. This work investigates whether this simple clocked
hardware protocol can be advantageously implemented using
asynchronous design techniques. A full duplex clocked and
asynchronous UART are implemented and compared. The
asynchronous design results in average power of about one-
fourth that of the clocked design under standard operating
modes.

Index Terms—Universal Asynchronous Receiver Transmitter,
UART, Asynchronous Circuits, Relative Timing

I. INTRODUCTION

Universal Asynchronous Receiver Transmitter (UART) is
a communication protocol which translates data from a par-
allel stream to a serial stream which is transmitted across
the communication link. The UART communication protocol
dictates that communication occurs at a predefined frequency.
The two devices on the link generate their frequencies in-
dependently, and new events arrive asynchronously to the
local clock. This requires that the data stream is sampled to
ensure reliability even when the frequencies at the two ends
of the link vary somewhat from the specified frequency. This
is normally achieved through having a local internal clock
with a frequency that is significantly higher than the channel
sampling rate.

UART is an I/O communication protocol commonly used
to communicate with slow peripherals. Wang et. al. [1] shows
an FPGA implementation of a UART while Yu et. al. [2] im-
plements a multichannel UART controller using asynchronous
FIFOs (First In First Out) which allows communication with
multiple blocks at different baud requirements. Idris et. al. [3]
proposes the addition of BIST techniques to a UART design
and Norhuzaimin et. al. [4] implements a UART for high
speed operations. Many of these designs propose the addition
of new hardware aiming at customizing the core for specific
operations. However, all designs use an architecture similar to
the synchronous UART designed by Litochevski [5], which
was used for the clocked implementation described in this
paper. It includes a full duplex asynchronous serial commu-
nication system used extensively to realize general serial bus
protocols like RS232, RS422 and RS485. The synchronous
design is derived from this clocked design by making control
modifications to the clocked data path.

This work investigates whether the simple clocked UART
hardware protocol can be advantageously implemented using
asynchronous design techniques. Power reduction is the tar-
geted advantage since performance is dictated by the proto-
col. Employing clocked design, the receiver must constantly
sample the serial input line at the high frequency internal
clock to determine the start of a new data transmission. The
asynchronous design, on the other hand, does not need to
sample the input line, rather it can reactively respond to the
arrival of a new transmission. This is the basis for the expected
power advantages of this study.

The contribution of this work are as follows. Firstly, an
analysis on how to intrusively modify a synchronous periph-
eral into an asynchronous one is presented. Secondly, benefits
of this approach at different activity and idle times is analyzed.
Thirdly, a comparison with different ways of clock gating the
clocked design are studied to measure the benefits in terms of
power and energy.

II. BACKGROUND

The clocked and asynchronous implementations are de-
signed to be as comparable as possible. Therefore, an asyn-
chronous bundled data design style is used. The data paths
of the two designs are identical, and the same synthesis and
physical design scripts are used for the two designs (minus
clock optimization algorithms for the asynchronous design).

A. Relative Timing (RT)

Timing is the fundamental difference between clocked and
asynchronous design flows. The effect of time on a system is
to order and sequence events. In this work we have adopted the
relative timing (RT) methodology to represent the sequencing
that timing imposes on circuits [6]. A RT constraint consists
of a common timing reference and a pair of events that are
ordered in time for correct circuit operation. We call the
common reference a point-of-divergence, or pod, and the
ordered events the point-of-convergence, or poc. A constraint
is represented as pod 7→ poc0+m ≺ poc1 where poc0
must occur in time before poc1 with margin m. Hence the
maximum path delay from pod to poc0 must be less than the
minimum path delay from pod to poc1. This is represented
by two related design constraint equations set_max_delay
and set_min_delay, which perform timing driven synthe-
sis that enforce the constraints on the logic paths.

B. Asynchronous CAD Tool Flow

The asynchronous CAD tool flow used is summarized in
Fig. 1. Asynchronous controller design begins with a spec-
ification, which is synthesized either by hand or by using
asynchronous synthesis tools like petrify, 3D, minimalist [7]–
[9]. The result is a circuit definition which is then tech
mapped to gates of the standard cell library. A reset signal
is usually added to the element to ensure correct initialization.
The element is then characterized. The timing graph of the
circuit must be represented as a directed acyclic graph for
the EDA tool flow to performing timing driven sizing, op-
timization and static timing analysis. Therefore, timing cuts
are generated for the design as set_disable_timing
constraints. The relative timing constraints are generated. RT
constraints are represented as two separate delay paths mapped
to set_max_delay and set_min_delay algorithms. The
system is designed in Verilog using behavioral and/or struc-
tural representations of the characterized asynchronous design
modules. The design is simulated for functional correctness.
Relative timing constraints are mapped onto asynchronous
module instances in the design which allow the commercial
EDA tools to perform timing-driven synthesis and physical
design and post-layout timing validation.
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Fig. 1. Simplified Relative Timing Multi-Synch. Design Flow

C. Synchronous Implementation

The UART design consists of three main blocks as shown
in Fig. 2 – transmitter, receiver, and baud generator, plus two
status registers tx busy and rx busy. The baud generator deals
with the generation of the baud frequency clock pulses from
the input clock. The transmitter and the receiver block, which
perform the data transfer, are independent of each other and
hence this design can achieve full duplex communication.

1) Baud Generator: The baud generator creates a 16×
baud clock based on the baud-rate (BR) specified for the
communication which is provided to both transmitter and
receiver blocks to generate their own baud clock pulse. The
faster clock allows the receiver to align the sampling pulse
as desired and provides a faster response time from the
transmitter. The baud clock frequency and baud-limit are
calculated as per Eqn. 1 and 2.

Baud Freq =
16 · BR

gcd(Clock Freq, 16 · BR)
(1)

Baud Limit =
Clock Freq

gcd(Clock Freq, 16 · BR)
− Baud Freq (2)

2) Transmitter Block: A new data transfer in the UART is
initiated by the new tx data, which indicates the availability
of the tx data. This data is stored in the tx hold reg in the
next clock cycle. The parallel stream of data (tx data) is
converted into a serial stream using a shift register. The start
of the shift operation sets the internal status register tx busy
to indicate a new data transfer. tx busy can also be used as
data validity signal for clock gating the transmitter block. The
shift operation follows at the baud clock frequency to send
the data out on the ser out data line. A counter of 16 is used
to generate the rising edge for the baud clock from the 16×
the baud clock provided by the baud generator. The status of
any data transfer is maintained by a status register to indicate
a valid/invalid operation indicated by an interrupt signal. The
resetting of the tx busy status register is detected by another
counter of 10 which counts the number of bits transmitted.
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Fig. 2. UART Block Diagram
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Fig. 3. LC circuit implementation

3) Receiver Block: The receiver block is the dual of the
transmitter block. The UART communication format consists
of a start bit followed by 8 data bits and one stop bit indicating
the end of the communication. This block monitors the input
line for new data which is indicated by the start bit. The
rx busy status register is set when the start bit is recognized.
This block operates at two different edges of the baud clock
pulse generated by a 16 bit shift counter from the 16× baud
clock. The sampling and shifting at the shift register occurs at
the middle of the incoming data pulse at the falling edge of
the baud clock pulse which is generated at the count of 8 from
the counter. After receiving the end bit of the ser in data, the
serial data is moved to the rx hold reg register at the rising
edge of the baud clock frequency generated at the count of 16
on the counter. Thus a parallel stream of 8-bit data (rx data)
is generated which is indicated by the new rx data interrupt
signal. There is also a 3-bit counter to track the number of
input bits received.

III. ASYNCHRONOUS UART DESIGN

The RT based asynchronous design approach adds asyn-
chronous handshaking controls to enable and steer the local
UART clock. Thus the datapath is nearly identical to that of
the clocked design. This results in the asynchronous design
being 4-8% larger than the clocked design. The power benefit
of the asynchronous UART implementation derives from the
presence of substantial idle times on the communication
channel, and the reactive nature of the design to data transfer
conditions rather than polling as occurs in clocked designs.

Operation of the asynchronous implementation is dictated
by linear handshake controllers (LC), as shown in Fig. 3.
The purpose of the controllers is firstly to generate the local
timing reference to determine the frequency of operation and
secondly to produce the high power clock signal that drives
the latch and/or flip-flops in the data path thereby freeing
the design of its need for a continuous clock. Two separate
controller protocols are used to control and time the data flow
in the Transmitter and Receiver blocks. Their operations are
described in Fig. 7.
A. Baud Generator

The requirement of a specified baud frequency to transmit
and receive data is the sole reason why the asynchronous
UART consists of a baud generator and cannot be fully
clockless. The design of this block is identical to that of
the synchronous implementation. The baud clock needs to
be active only during the data transmission, hence it can
be paused during idle time. The pausing of this block is
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Transmitter LC block function ::
lr↑ → rr↑ & la↑ → ra↑ → rr↓ → lr↓ → la↓

Receiver LC block function ::
lr↑ → la↑ → lr↓ → la↓, clk↑ & rr↑ → ra↑ → rr↓ → ra↓

Fig. 7. LC circuit operation for Transmitter and Receiver block

achieved by gating the incoming global reference clock signal
at input based on the asynchronous handshake network. If both
new tx data and new rx data are unasserted the clock to the
baud generator is gated through a synchronizer.
B. Transmitter block

The transmitter block consists of the same shift register as
the clocked design, but the clock control network is replaced
by an asynchronous handshake network. An asynchronous
handshake network consists of a generic fork element, a LC
circuit, and a control block as shown in Fig. 5. The start
of any new transmission is indicated by the new tx data
signal. The fork broadcasts this request signal from the sender
to the two outgoing channels (tx req and start req). The
acknowledge associated with these two requests (load ack and
tx done) is synchronized with a C-element before passing it as
tx done ack [10]. The C-element output only changes when
both the inputs are identical (Fig. 4). The upper channel goes
into a LC block (Fig. 3) which generates a clock signal to load
the parallel tx data in the Shift Register, this is controlled by
the load req signal. The load req signal also determines the
mode of operation of the shift register. The load ack signal
indicates the latching of the data. The separation between
loading the parallel data and shifting on the ser out channel
is achieved making load ack the enabling signal along with
start req for the control block. This ensures the generation
and supply of baud clock to the shift register is preceded by
the loading operation. The OR gate allows the Shift Register
to be clocked by either the baud clock or the asynchronous
handshake request but it shifts data only when the load signal
is set low.

When load ack is asserted, a new data bit will be shifted
out every 16 baud clock 16 ticks. The need to maintain
a count for the number of bits transmitted is met by a 4-
bit counter clocked by the baud clock. The number of bits
to be transmitted include 8 data bits, and one start and one
stop bit. The tx done signal is generated at the count of 10,
thus indicating the end of the data transmission. Availability
of tx done results in tx done ack being generated and hence
completing active part of the handshake. The reset phase of
the handshake follows which resets the counters in the control
block.
C. Receiver block

Any new data reception in a UART is indicated by a start bit.
At reset the rx done signal is low. When the ser in goes low,

indicating the start of a new communication, the C-element
output enables the control block. The control block generates
the baud clock with a clocked counter to store incoming data
bits at the shift register. There is another counter to count
the number of incoming bits. When all the 10-bits (the 8-bit
data and start and stop bits) are received the rx done signal is
enabled indicating completion data reception. This resets the
C-element output thus completing the four-cycle handshake.
The clock signal for the hold register is generated at the end of
the handshake cycle, converting the serial stream into parallel
8-bit data. A new data reception is then indicated to the core
by a request on the new rx data.

IV. RESULTS

The synchronous and asynchronous UART circuits are im-
plemented using the Artisan academic library in IBM’s 65nm
10SF process. Each circuit is written in Verilog, synthesized
using Design Compiler (DC) and place and routed using
SoC Encounter. The functional validation of these designs
is performed using Modelsim simulator with their parasitics
Standard Delay Format (SDF) file back-annotated. Both these
designs are made to transmit and receive the same set of
data. A Value Change Dump (VCD) file is generated for each
simulation using the parasitics SDF from place and route. The
VCD file along with the Standard Parasitic Exchange Format
(SPEF) are used to generate the power numbers for the designs
using Primetime PX.

Three different designs for the synchronous UART are
implemented and compared against the asynchronous UART
for power and area benefits. The first design (Clocked – Not
gated) is a synchronous version without any clock gating.
Since the UART is a very slow peripheral with large idle times,
a better comparison to asynchronous designs would be against
a clock gating design which is implemented in the second and
the third design. Clock gating was introduced in the second
design (Clocked – Auto gated) using Design Compiler, while
for the third design (Clocked – Manually gated) clock gating
was introduced manually. The third design used a behavioral
definition for clock gating and prevented DC from modifying
it. Since the receiver block always polls for the incoming data,
only the transmitter block was clock gated. All registers in the

TABLE I
AREA AND POWER BENEFITS FOR ASYNCHRONOUS DESIGN.

Area Power
Core Area Active(100%) Idle(100%) Idle(90%)

Asynchronous Design 1.00× 1.00× 1.00× 1.00×
Clocked – Not gated 0.96× 1.72× 5.00× 4.67×
Clocked – Auto gated 0.92× 1.01× 4.32× 3.99×
Clocked – Manually gated 0.96× 1.66× 4.14× 3.89×
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TABLE II
COMPARISON OF AREA AND POWER NUMBERS FOR DIFFERENT DESIGNS.

Area Power (µW) Simulation-Time
Core Area Active (0% Idle Time) Idle (100% Idle Time)
µm sq switching internal leakage total switching internal leakage total µs

Asynchronous Design 2268.14 4.43 15.38 6.68 26.49 0.00 00.71 6.62 07.33 4000
Clocked – Not gated 2186.94 2.90 37.29 5.42 45.61 2.79 28.18 5.27 36.25 4000
Clocked – Auto gated 2088.94 3.00 18.81 5.04 26.85 3.81 22.88 4.97 31.66 4000
Clocked – Manually gated 2186.75 3.81 34.95 5.32 44.07 2.76 22.68 5.20 30.63 4000
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Fig. 8. Average Power with respect to percentage idle time

asynchronous design are clocked by handshake controls only
when valid data is present.

Tab. I and II report the power and area numbers for the
designs. Since UART can have a lot of Idle time, power
consumption comparisons have two modes of operation –
idle and active. In the idle mode the test bench enforces no
transfer of data either from the transmission block or from the
receive block. For the active mode, both the transmitter and the
receiver is forced to transfer at the highest frequency permitted
by the protocol. Comparison of the total active power shows
a 72% and 68% benefit as compared to the designs with no
clock gating and manual clock gating respectively, while minor
benefit are seen with automatic clock gated design. Major
benefits are seen for the 90% idle time power comparison
with the synchronous UART designs consuming about 4× the
power of the asynchronous design. No switching power occurs
in idle mode for the asynchronous circuit since the clock is
enabled to the baud generator only in the active mode. There
is the cost of a small increase in area due to the asynchronous
handshake network.

The designs were also analysed for variations in the activity
factor by varying the idle time for the devices. Fig. 8 and 9
show a comparison of performance of the designs in terms
of power and energy consumption per transfer for the same
data transmitted but over varying idle time percentage. The
curve is generated by fitting it with respect to the points
marked on the graph. Fig. 8 along with Tab. II provide a good
comparison for all the designs. The numbers for clock gating
done automatically and manually shows a difference between
fine-grained and coarse grained clock gating respectively. Fine
grained clock gating results in big switching power savings
during active mode but the extra logic for this gains comes
at the cost of increased switching activity in the idle mode.
This overhead shows a gradual increase in the average total
power with increase in idle time in the graph, whereas the
other designs show a decrease in the average total power. The
comparison for energy per transfer also shows the impact of
the clock and the clock gating overhead for the synchronous
designs. The increase in the energy per transfer of the syn-
chronous UARTs as idle time increases is substantial. For the
asynchronous design this is mostly only attributed to leakage.
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V. CONCLUSION

This work presents a comparison of four designs for
UART consisting of three synchronous ones with and with-
out clock gating and an asynchronous implementation. The
asynchronous design uses the same tools and flows as the syn-
chronous design. The asynchronous design shows a substantial
benefit in terms of total power. The drawbacks of clock and
clock gating overhead are reflected by these comparisons with
about 4× higher power consumption by synchronous designs
as compared to the asynchronous version. The asynchronous
techniques allows a reactive generation of clock pulses at the
time of transfer as opposed to having a continuous clock for
the synchronous design. This results in an overall improvement
in terms of power and energy for slow peripherals like UART,
thus making them ideal for such peripheral which remain idle
most of the time.
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