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Abstract— A single layer nanothermite spin coated gel has 

been utilized as a solid-state exothermic energy release layer for 

triggered microchip transience. A proportional combination of 

self-assembled CuO/Al nanothermite and Napalm-B as gelling 

agent has been used to develop for the first time a spinable 

nanothermite film onto the surface of a micro-chip. This layer 

when ignited instantaneously releases enough heat energy to melt 

the surface of the underlying substrate and any surface-bound 

microdevices, electronic feature or any surface deposited 

component. We observe the effect of thermite enabled 

destruction prior and post ignition through microscopic imaging 

and electrical measurements on surface bound components. 

Keywords—chip transience; Nanoenergetics; Nanothermite; 

Self-Assembly; MEMS  

I. INTRODUCTION  

Many sophisticated electronics are in use in critical 
defense, financial and technological fields. Protection of these 
technologies and data are hence of outmost importance. Many 
protocols based on chemical attack, encryption algorithms, 
self-destructing electronics are in place to for data and 
technology protection [1-3]. In most of such devices an 
explosive material, a flammable element or an acid reservoir is 
stationed near the electronic circuit that needs to be destroyed 
and when needed, these destructive devices were triggered to 
release the destructive agent. The main drawback in these 
kinds of devices was that these methods would only partially 
destroy a chip, which could still lead to data and technology 
being lost to the wrong hands. For complete destruction a layer 
of transient material needs to be integrated with the microchip. 

In this paper we present the use of nanothermite films as 
instruments for devising self-destructing microchips. 
Nanothermites have been studied before for their ignition 
properties [5], combustion wave speeds [6] and reaction 
temperatures [7]. Since thermite combustion is a solid state 
diffusion controlled reaction, the best way to achieve this is to 
ensure maximum interfacial contact between the oxidizer and 
the fuel. Various mixing techniques viz. physical mixing [8], 
sol-gel synthesis [9], self-assembly [10] and ultrasonic mixing 
[11] have been reported earlier. Comparatively self-assembled 
CuO/Al nanocomposite have been shown to have better energy 
release characteristics, due to better interfacial contact between 
the fuel and oxidizer and no particle sintering as might be the 
case with ultrasonic mixing. Hence we choose CuO/Al 
nanocomposite as the material of our choice. 

 Self-assembly of CuO/Al nanocomposites via electrostatic 
interaction [12], charge transfer [13], polymer assisted binding 
[14] have been reported. In this paper we concentrate on 
polymer assisted binding, since it allows for multiple particle 
binding at the same oxidizer particle, with the polymer of 
choice being Poly (4-vinylpyridine) P4VP. The pyridyl group 
of P4VP allows binding for both metal and metal oxides [15]; 
hence P4VP can be used to bind both oxidizer and fuel together 
forming a self-assembled homogeneous composite held 
together by chemical bonds between fuel-polymer-oxidizer.  

Nanothermites as coatable thin films have never been 
studied before; hence this study is first of its kind. The coated 
energy release layer is ignitable using a microfabricated heater 
or an electric spark and does not require external oxygen; 
hence can be incorporated within a sealed chip package. We 
report the first results of chip transience experiments when this 
layer is deposited on top of a MEMS chip. We observed that 
upon ignition the chip Al metallization is burned and fused 
within seconds, destroying metal semiconductor junctions and 
other features on the chip. We also report the electrical 
measurements on a surface resistor during the transience. 

II. MATERIALS AND METHODS 

A. Materials 

Copper Oxide (CuO) Nanopowder / Nanoparticles (CuO, 
99%, <80nm) and Aluminum (Al) Nanopowder / 
Nanoparticles (Al, 99.9%, <40nm, metal basis) were purchased 
from US Research Nanomaterials, Inc. Houston, TX. Poly 4-
vinylpyridine (P4VP) average Mw ~160,000, 2-Propanol 

anhydrous and analytical standard Benzene (≥99.9%) were 

purchased from Sigma Aldrich, St. Louis, Missouri. Gasoline 
was purchased from local gas stations. Polystyrene beads were 
also purchased from local stationary stores. 

B. Exothermal Energy Release 

The exothermic spontaneous reaction follows reaction as 
shown in equation 1, where CuO is the oxidizer (A) and Al is 
the fuel (F). The equation also gives the value for ΔHf which is 
the heat of formation. The energy release during the reaction 
depends on number of parameters such as equivalence ratio, 
size of Al nanoparticles and time of sonication. 

  u    l    l      u       -          
-            (1) 

Al nanoparticles are chosen such that their size are at least 
half of the size of CuO nanoparticles so as to allow for more 
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binding of fuel particles per oxidizer particle. Sonication time 
is optimized as described in [3] and equivalence ratio is 
defined as in Eq. (2).   
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 It has been noted before that the best burning 
characteristics are observed for an equivalence ratio of 1.6 for 

CuO/Al The oxidizer/fuel ratio (
 

 
)
         

 is obtained from 

Eq. (1), and since we already know   we can find the amount 
of fuel needed for any amount of oxidizer. 

C. Self Assembled Nano-Thermite Synthesis  

The process involves three major steps (a) Coating P4VP 

on CuO nanoparticles, (b) Assembling with Al nanoparticles 

and (c) Separation of free particles from the thermite. The 

entire process is summarized in Fig. 1. We start with 0.5g of 

CuO nanoparticles and sonicated with 500 ml of 2-Propanol 

with 0.1% (w/v) P4VP for 4 hours. The polymers coats on the 

surface of the nanoparticles and the coated nanoparticles are 

separated from the solution by centrifuging at 4000 rpm for ~ 

10 minutes. The separated particles are re-suspended, 

sonicated for 2 hours in 200 ml 2-Propanol and centrifuged for 

at least 4-5 times to remove access polymer sticking to the 

nanoparticle surface. Post sonication we are left with 

uniformly coated CuO nanoparticles ready to be assembled 

with Al nanoparticles. Prior to mixing with Al nanoparticles 

the polymer coated CuO nanoparticles are baked at 120°C for 

1.5 hours to dry out any residual solvent trace and catalyze 

bonding between the polymer and the CuO particle surface. 

The particles are not ready to be mixed with Al nanoparticles. 

In order to achieve proper assembling we begin with 0.4g 

of the polymer coated CuO nanoparticles and mix them with 

equivalent amount of Al nanoparticles (0.17g) in 1.5 ml of 2-

Propanol in a sealed vial and sonicate for at least 4 hours to 

ensure proper dispersion. The mixture was diluted with 2 ml 

of 2-Propanol and sonicated further for 30 minutes. The 

assembled particles were retrieved from the mixture by 

repetitively centrifugation and washing with 2-Propanol for 4-

5 times and finally dried at 95°C for 10 minutes. At the end of 

the drying step we are left behind with fine self-assembled 

nanothermite powder. 

D. Napalm-B gelling agent 

We prepare the gelling agent with gasoline, benzene and 

polystyrene. To improve the flammability and fluidity of the 

substance the compositional ratio for polystyrene is reduced 

from 46% to 30% and the percentage for gasoline is 40% and 

Benzene 30%. In a beaker of 300 ml capacity we add 40 ml 

gasoline and 30 ml of Benzene and to this is added grounded 

polystyrene small amounts at a time and allowed to foam and 

settle by gentle stirring. 

After preparing Napalm gel, nanothermite and the gel were 

mixed together to create a uniformly suspended sol-gel of 

nanothermite. 0.5 ml of the gelling material is taken in a glass 

vial and to that is added 2g of thermite and sonicated for 

several hours to achieve homogeneous consistency of the  

 

 

 
 
Figure 1. Flowchart describing steps for synthesizing nanocomposite powder 

starting with CuO and Al nanoparticles and Poly(4-vinylpyridine) as 

assembling matrix. 

 

nanothermite suspension in Napalm gel. 

E. Transience Chip 

A Si-based microchip with metal-Si junction components 

is used to demonstrate qualitatively the functioning of the 

thermite gel. Another Si microchip with Al resistors is 

fabricated to establish quantitatively the effect of thermite gel 

through real time resistance measurement. First a layer of 
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Figure 2. Simplified process flow for transience test chip. 
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0.5µm thickness aluminum was deposited by e-beam  

evaporation. After that the layer was patterned using standard 

photolithographic technique, in this case positive photoresist 

AZ9260 was used along with 1:1 400 MIF developer. The 

Fabrication steps for the chip are summarized in Fig. 2.  

Both chips are spin coated with the Thermite-gel at 4000 

rpm to create a thermite film of 0.5 mm thick. The ignition can 

be initiated by either an electric trigger through a micro heater 

or an electric spark.  

III. EXPERIMENTAL RESULTS 

A. Ignition 

An electric spark was used to ignite the nanothermite gel. 
Once ignited the gel burns for a while because of the presence 
of Napalm. The adiabatic flame temperature of the thermite 
flame has been reported before to be ~3794K and that for 
Napalm ~2774K. It is Napalm which ignites first and keeps the 
thermite burning. Due to the high temperatures of the reaction 
and the presence of polymer P4VP a lot of gaseous 
intermediates are generated during the reaction which causes a 

regional high pressure zone to develop propelling the flame 
front (combustion front) as if in an explosion. The high 
temperature prolonged burning of Napalm ensures that all the 
self-assembled nanothermite is used up and that the chip 
experiences a prolonged exposure to very high temperatures. 
Fig. 3 shows optical  images of a burning microchip. The 

burning action appears to be concentrated in the middle region 
of the chip. 

B. Chip Transience 

Post combustion the charred nanothermite reaction residue 

is scrapped off the microchip surface with faint brushing and 

the chip was imaged under an optical microscope Fig 4. 

Shows images of the entire chip after the nanothermite 

combustion with charred reaction residue and after the residue 

is brushed off the surface of the microchip. which shows 

evidence of destruction of the components on the chip through 

burning and fusion of metals at the surface. 

A detailed view under 10x and 20x magnification under a 

microscope provides photographic evidence of complete and 

wide spread metallization damage on the chip surface. All the 

micro features and metal deposition on the chip surface has 

been completely destroyed as shown in Fig. 5. 

C. Real-Time Electrical Resistance Measurements 

Electrical measurements provide a quantitative measure of 

the damage caused under transience. In addition to the optical 

examination we measured the real-time resistance of an 

aluminum resistor on the substrate coated with the 

nanothermite before and during transience. Experimentally the 

resistivity of the nanothermite film prior to the ignition was 

very high and the value of the nominal resistance of the Al 

resistor was unchanged by the nanothermite coating.  The 

sample was next placed under a probe station and ignited. 

  

  

Figure 3. Ignition of CuO/Al nanothermite film deposited on top of MEMS 

chip as viewed simultaneously using a CCD camera and a stereoscopic 
microscope. (a) & (b) Side views through a CCD camera taken 5 seconds 

apart give an idea of combustion rate as flame is seen dying reduced in (b). (c) 

and (d) Top view as viewed from a stereoscopic microscope with a mounted 
camera taken at the same instances as the images in (a) &(b) 

  
 
Figure 4. After burn image of the chip showing nanothermite fusion with the 

chip, (a) Before brushing off of charred after burn residue (b) After brushing 

off the charred residues off the surface showing fused nanothermite and chip 
surface and destruction of surface components 

  

  

  
 
Figure 5. (a) 10x zoom before ignition, (b) 10x zoom after ignition showing 

metal fusion with chip surface and melting of deposited metal components. 

(c),(d),(e) and (f) show conclusive evidence of metallization damage 
component destruction at the chip surface at 20x zoom 
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Fig. 6 shows the plot of the test resistance versus time 

during the ignition event. Note that the resistance increases 

from ~ 100 Ω to ~ .  kΩ in less than 5 seconds after ignition.   

The resistance change is irreversible. The measurements 

shown in Fig. 6 provide conclusive evidence that the thermite 

damage is extensive and sufficient to disable most silicon 

microchips. 

Figure 6.  Resistance of aluminum test resistor at the surface of the chip 
during the transience event. Note that the resistance irreversibly increases 

several orders of magnitude in a few seconds after ignition.  

IV. CONCLUSION 

The paper discussed a method for deposition and use of a 
solid-state exothermal energy release layer for the triggered 
destruction of microchips (chip transience). We report for the 
first time the use of a spinable nanothermite film that when 
ignited releases intense heat sufficient to melt the surface of the 
underlying substrate and any surface-bound microdevices. The 
film contains a mixture of self-assembled CuO/Al 
nanothermite and Napalm B as a gelling agent. It is observed 
that the energy release layer is ignitable using a 
microfabricated heater with concerted electronics or even an 
electric spark and does not require external oxygen; hence can 
be incorporated within a sealed chip package. We report the 
first results of chip transience experiments when this layer is 
deposited on top of a MEMS chip. We observed that upon 
ignition the Al metallization is burned and fused within 
seconds, destroying metal semiconductor junctions and other 
features on the chip. 
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