
Power to the Points:
Validating Data Memberships in Clusterings

Parasaran Raman

School of Computing, University of Utah

Salt Lake City, Utah

praman@cs.utah.edu

Suresh Venkatasubramanian

School of Computing, University of Utah

Salt Lake City, Utah

suresh@cs.utah.edu

Abstract—In this paper, we present a method to attach
affinity scores to the implicit labels of individual points in a
clustering. The affinity scores capture the confidence level of
the cluster that claims to “own” the point. We demonstrate that
these scores accurately capture the quality of the label assigned
to the point. We also show further applications of these scores
to estimate global measures of clustering quality, as well as
accelerate clustering algorithms by orders of magnitude using
active selection based on affinity.

This method is very general and applies to clusterings
derived from any geometric source. It lends itself to easy
visualization and can prove useful as part of an interactive
visual analytics framework. It is also efficient: assigning an
affinity score to a point depends only polynomially on the
number of clusters and is independent both of the size and
dimensionality of the data. It is based on techniques from the
theory of interpolation, coupled with sampling and estimation
algorithms from high dimensional computational geometry.

Keywords-Natural Neighbor Interpolation; Validating Clus-
terings; Power Diagrams;

I. INTRODUCTION

Clustering is an unsupervised exploratory data mining

technique that generates predictions in the form of implicit

labels for points. These predictions are used for exploration,

data compression, and other forms of downstream data

analysis, and so it is important to verify the accuracy

of these labels. However, because of the unsupervised

nature of clustering, there is no direct way to validate the

data assignments. As a consequence, a number of indirect

approaches have been developed to validate a clustering

at a global level[1, 2]. These include internal, external

and relative validation techniques, and methods based on

clustering stability that assume a clustering (algorithm) is

good if small perturbations in the input do not affect the

output clustering significantly1.

But all these approaches are global. They assign a single
number to a clustering and cannot capture the potentially

wide variation in label quality within a clustering. Consider

This research was supported by NSF award CCF-0953066.
1There are supervised variants of clustering. However, these typically

require domain knowledge, and the immense popularity of clustering comes
precisely from the fact that it can be applied as a first filter to acquire a
deeper understanding of the data.

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

Figure 1. MNIST Handwritten digits. L-R are numbers {0,6,4,9}. The
numbers on the top row are very hard to identify even for a human. The
bottom row is unambiguous.

for example a clustering of the MNIST digits database

with a few example images displayed in Figure 1.

By global measures of clusterability, the clustering would

be considered “good”. However, as we can see in the picture

in the top row, there are a number of images for which the

correct cluster is not as obvious. What we would like in

this case is a way to quantify this lack of confidence for

each image separately. Such a measure would give a lower

confidence rating to the labels for images in the top row, and

a downstream analysis task could incorporate this uncertainty

into its reasoning. A single number describing the quality

of the clustering would not suffice in this case, because the

downstream analysis might only select a few points (cluster

centers, or a representative sample) for further processing.

A. Our Work

In this paper we present a scheme to assign local affinity

scores to points that indicate the “strength” of their assign-

ment to a cluster. Our approach has a number of attractive

features.

• it is very general: it takes a clustering generated by

any method and returns the local affinity scores without

relying on probabilistic or other modeling assumptions.

It does this by using the ideas of proximity and shared

volume: intuitively, a point has strong affinity for a
cluster if (when treated as a singleton cluster) its region
of influence overlaps significantly with the region of
influence of the cluster.

• it is very efficient to compute: computing the local

affinity of a point depends solely on the number of

clusters in the data and an error parameter: there is

2013 IEEE 13th International Conference on Data Mining

1550-4786/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDM.2013.147

617

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276279086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

no dependence on the data size or dimensionality. We

show that this can be improved further by progressive

refinement, allowing us to avoid computing affinities

for points that we are very confident about.

• it lends itself to easy visualization, which is very useful

for diagnostic purposes.

• the local affinities we compute can also be used to vali-

date the number of clusters in the data as well speeding

up clustering computations by focusing attention on

points that can affect decision boundaries (as with active

learning techniques).

B. Overview of our ideas

Clustering is about proximity: points are expected to have

similar labels if they are close to each other and not to

others. In other words, the regions of influence of points

belonging to the same cluster must overlap [3]. Therefore,

a point should be associated with a cluster if its region of

influence significantly overlaps the region of influence of the

cluster, and does not have such an overlap with other clusters.

And more importantly, we can quantify the confidence of

this association by measuring the degree of overlap.

The method we propose elaborates on this idea to incorpo-

rate a variety of more general notions of regions of influence

that can incorporate cluster importance, density and even

different cluster shapes. The key idea is to define regions

of influence as elements of an appropriate weighted power

diagram (a generalization of a Voronoi diagram) and use

shared volume to quantify how different regions overlap.

At first glance, this idea is doomed to fail: computing

Voronoi regions (and their volumes) is extremely difficult in

high dimensions. We show how the volumes of these regions

can be estimated (a) without actually computing them and

(b) with provable guarantees on the estimates via the use

of ε-net-based sampling and techniques for sampling from

convex bodies in high dimensions efficiently. The resulting

scheme is accurate and yields the affinity score of a point

in time independent of the data size and dimensionality. It

runs extremely fast in practice, taking only milliseconds

to compute the scores. These scores can also be computed

progressively using iterative refinement, so we can focus on

the problem cases (points of low affinity) directly.

C. Applications

The local affinity scores we compute can be viewed as a

general diagnostic tool for evaluating clusterings and even

computing clusterings faster. We demonstrate this with a set

of key applications.

Evaluating the clusterability of data. We have already

explained how we expect local affinity scores to certify

whether data labels are accurate or not. In addition, combining

local affinity scores provides another measure for the global

quality of a clustering. We will show that this measure

matches prior notions[2, 4] of global quality of a clustering

and thus is a more general tool for clustering quality. We will

also show that this global measure can be used to solve the

vexing problem of identifying the right number of clusters in

a clustering [5, 6, 7], and has certain advantages over other

approaches like the often-used “elbow method”[7] which

looks at the point marginal gain of adding an additional

cluster drops.

Active Clustering. Clustering algorithms usually have a

non-linear time dependence on the input size, and so as

data sizes grow, the time to cluster grows even faster. This

motivates “bootstrapping” strategies where the algorithm first

clusters a small sample of the data, and uses this partial

clustering to find points that lie on cluster boundaries (and

would have greater influence on the resulting clustering). The

most important step in this “active” approach to clustering[8,

9, 10] is selecting the points to add to the process. We show

that if we use points of low affinity as the active points used

to seed the next round of clustering, we can obtain accuracy

equal to that obtained from the entire data set but with orders

of magnitude faster running time.

II. BACKGROUND

Clusterings can be validated globally in three different

ways [1]. Internal validation mechanisms look at the structure

of a clustering and attempt to determine its quality[4]. For

example, the ratio of the minimum inter-cluster distance to

the maximum intra-cluster distance is a measure of how

well-separated clusters are, and thus how good the clustering

is. External validation measures can be employed when

a reference clustering exists. In this case, an appropriate

distance between clusterings must be defined, and then

the given clustering can be compared to the reference

clustering[2]. Relative validation measures look at different

runs of a clustering algorithm and compare the resulting

clusterings produced[2].

Cluster stability[11, 12, 13] is another way to validate

clusterings. The goal here is to determine how robust a

clustering solution is to small perturbations in algorithm

parameters. This idea was used to do model selection; for

example, the “right” number of clusters is the one that

exhibits the most stable clusterings. Stability in general has

been studied extensively in the statistics and machine learning

communities, as a way to understand generalization properties

of algorithms. The paper by Elisseeff et al. [14] provides

a good overview of this literature and the monograph by

Luxburg[15] focuses on clustering.

Probabilistic Modeling: Where admissible (for example

when effective models of the data can be built), probabilistic

modeling yields posterior likelihoods for a cluster assignment

in the form of conditional probabilities p(C | x) for point x
and cluster C. We view our approach as complementary

to (and more general than) model-based validation. Our

approach is purely data-driven with no further assumptions,

which is appropriate when initially exploring a data set.

618

We also show that the affinity scores produced by our

method closely match the likelihoods produced by a standard

clustering approach like GMMs. Note that probabilistic

modeling can be used to choose a particular way of clustering

the data, but in the setting we consider, a clustering is already

given to us (possibly even by consensus clustering or some

other method), and the goal is to validate it.

Validation versus outlier detection: Local validation

bears a superficial resemblance to outlier detection: in both

cases the goal is to evaluate individual points based on

how well they “fit” into a clustering. There are important

differences though. An outlier affects the cost of a clustering

by being far away from any cluster, but it will usually be

clear what cluster it might be assigned to. In contrast, a point

whose labeling might be invalid is usually in the midst of

the data. Assigning it to one cluster or another might not

actually change the clustering cost, even though the label

itself is now unreliable.

III. PRELIMINARIES

Let P be a set of n points in R
d. We assume a distance

measure D on R
d, which for now we will take to be the

Euclidean distance. A clustering is a partition of P into

clusters C = {C1, C2, . . . , Ck}. We will assume that we can

associate a representative ci with a cluster Ci. For example,

the representative could be the cluster centroid, or the median.

A Voronoi diagram [16] on a set of sites S =
{s1, s2, . . . , sk} ⊂ R

d is a partition of R
d into regions

V1, . . . Vk such that for all points in Vi, the site si is the

closest neighbor. Formally, Vi = {p ∈ R
d | D(p, si) ≤

D(p, sj), j �= i}. When D is the Euclidean distance, the

boundary between two regions is always a hyperplane, and

therefore each cell Vi is a convex polyhedron with at most

k − 1 faces.

w1

w2

w3

w4

Figure 2. The power diagram of
a set of points. The sphere radius
is proportional to the weight w

We will also make use of a

generalization of the Voronoi

diagram called the power di-
agram [17]. Suppose that we

associate an importance score

wi with each site si. Then the

power diagram on S (see Fig-

ure 2) is also a partition of Rd

into k regions Vi, such that

Vi = {p ∈ R
d | D2(p, si) −

wi ≤ D2(p, sj)−wj , j �= i}.
Power diagrams allow differ-

ent sites to have different influence, but retain the property

that all boundaries between regions are hyperplanes and all

regions are polyhedra in Euclidean space2.

Finally, we will frequently refer to the volume Vol(S) of

a region S ⊂ R
d. In general, this denotes the d-dimensional

2The squared distance is crucial to making this happen; without it, arcs
could be elliptical or hyperbolic.

volume of S with respect to the standard Lebesgue measure

on R
d. If S is not full-dimensional, this should be understood

as referring to the lower-dimensional volume, or the volume

of the relative interior of S; for example the “volume” of a

triangle in three dimensions is its area, and the volume of a

line segment is its length.

IV. DEFINING AFFINITY SCORES

As we discussed in Section I, the region of influence of a

point is how we define its affinity to clusters. Each cluster

has a region of influence. If we now consider a particular

point in the data and treat it as a singleton cluster, its region

of influence will overlap neighboring clusters. We measure

the affinity of a point to a cluster to be the proportion of
influence it overlaps from that cluster. We now define these

ideas formally.

Defn 4.1 (Region of Influence): Let C = C1, C2, . . . Ck

be a clustering of n points. A region of influence function
is a function R : C → 2R

d

on C such that all R(Ci) (which

are subsets of Rd) are disjoint.

The simplest region of influence function is a Voronoi

cell. Specifically, consider a clustering with k clusters, each

cluster Ci having representative ci. Let C be the set of these

representatives. Consider any point x ∈ CH(C) (the convex

hull of C). Let V1, V2, . . . , Vk be the Voronoi partition of

C, and let U1, U2, . . . , Uk, Ux be the Voronoi partition of

C∪{x}, with Ux being the Voronoi cell of x. Then we define

the region of influence, R(Ci) = Vi, and Rx(Ci) = Ui.

Defn 4.2 (Affinity Scores): Let R be a region-of-influence

function. Let C = C1, C2, . . . Ck be a clustering. For

any point x, let Cx denote the clustering C1 \ {x}, C2 \
{x}, . . . , Ck \ {x}, {x}, and let Rx(C) denote the region of

influence of a cluster C ∈ Cx. Then the affinity score of x
is the vector (α1, α2, . . . , αk), where

αi =
Vol(R(Ci) ∩Rx({x}))

Vol(Rx({x}))

Voronoi Site
New Point
NNI region

0.6

0.2 0.2

C1

C2 C3

q

Figure 3. In this example, the red point is
“stealing” the shaded area from the Voronoi
cells of C1, C2, C3.

In the above def-

inition, Rx({x}) is

the region of influ-

ence x has carved

out for itself, and

αi merely captures

the proportion of

Rx({x}) that comes

from the (original)

cluster Ci. Note that

all Voronoi regions

can be bounded by drawing an axis aligned bounding box

around the points.

Continuing our example of Voronoi-based regions of

influence, the Voronoi cell Ux of x “steals” volume from

Voronoi cells around it (Figure 3 illustrates this concept).

We can compute the fraction of Ux that comes from any

619

other cell. For any point pi ∈ P , let αi =
Vol(Vi∩Ux)

Vol(Ux)
. Then

αi represents the (relative) amount of volume that x “stole”

from pi. Note that
∑

αi = 1, and if x = pi, then αi = 1.

The affinity score captures the entire set of interactions

of a point with the clusters. It is often convenient to reduce

this to a single score value. For example, since at most one

αi can be strictly greater than 0.5, we can define a point

as stable if such an αi exists, and say that it is assigned to

cluster i. In general, we will define the stability of a point

to be σ(p) = maxαi. The stability of a point lies between

0 and 1 and a larger value indicates greater stability.

Note: The idea of area stealing was first defined in

the context of natural neighbor interpolation[18], where the

αi values were then used to compute an interpolation of

function values at the pi. In this paper we will use the αi

directly without computing any interpolants.

A. A Rationale For Affinity

The simplest way to define influence is by distance. For

example, we could define the affinity of a point to a cluster

as the (normalized) distance between the point and the cluster

representative. Our definition of affinity generalizes distance

ratios: in one dimension, affinity calculations yield the same

result as distance ratios, since the “area” stolen from a cell

is merely half the distance to that cell. But affinity can

capture stronger spatial effects, as our next example shows.

0.27
0.03

d

dC1

C2

C3

C4

C5

q1

q2

Figure 4. Illustration of the difference
between distance-based and area-based in-
fluence measures

Consider the con-

figuration shown in

Figure 4. The point

q1 is equidistant

from the cluster cen-

ters c2 and c3 and

so would have the

same distance-based

influence with re-

spect to these clus-

ters. But when we

examine the configuration more closely, we see that the

presence of c4 is reducing the influence of c3 on q1, and

this effect appears only when we look at a planar region of

influence. We validate using by 100 runs of k-means with

random seeds. We observe that q1 was assigned to c2 in

15 runs and to c3 in only 2 runs. A distance-based affinity

would have suggested an equal “affinity” for the two clusters,

whereas a volume-based affinity incorporates the effects of

other clusters.

Similarly, q2 is twice as close to c1 compared to c2 or

c5, which would result in the distance-based influence of c1
being equal to the influence of c2 and c5 combined. When

we validate this using k-means, we find that q2 is exclusively
assigned to cluster center c1. Here, C1 has a “shielding”

effect on q2 that prevents it from ever being assigned to

those clusters: this shielding can only be detected with a

truly spatial affinity measure.

B. Visualization

The affinity scores define a vector field over the space

the data is drawn from. The stability σ(p) defines a scalar

field and can be visualized (in low dimensions). Consider the

clustering depicted in Figure 5(a). We can draw a contour

map where each level connects points with the same stability

score (unlike in a topographical map, more deeply nested

contours correspond to lower stability scores). We can also

render this as a greyscale heatmap (where the lower the

affinity, the brighter the color). These visualizations, while

simple, provide a visual rendering of affinity scores that is

useful as part of an exploratory analysis pipeline.

C. Extensions

Our definition of affinity is not limited to Euclidean

spaces. It can be generalized to a variety of spaces merely

by modifying the way in which we construct the Voronoi

diagrams. In all cases, the resulting affinity scores will result

from a volume computation over polyhedra.

Giving clusters varying importance: density-based meth-
ods: Consider a generalized clustering instance where each

cluster Ci has an associated weight wi, with a larger wi

indicating greater importance. Instead of constructing the

Voronoi diagram, we will construct the power diagram
defined in Section III. Specifically, the region of influence

Ri for cluster Ci will be defined as the set R(Ci) =
{x|d2(pi, x) − wi ≤ d2(pj , x) − wj}. We compute the

affinity vector as before, with the weight of a singleton

x set appropriately depending on the weight function used.

For example, if w(Ci) = |Ci|/n, then w(x) = 1/n.

Consider the examples depicted in Figure 6. The left-hand

figure has 100 points in each of five clusters, and the right-

hand figure has 500 points in each of four outer clusters and

100 points in the center cluster. Notice that there is a lot more

instability (as seen by the contours) in the sparser example,

much of which is due to the presence of the central cluster.

However, once the density of the outer clusters increases,

the effect of the inner cluster is much weaker, and there are

fewer unstable regions.

We can also extend our Voronoi-based definition of affinity

to clusterings in Bregman spaces[19] and kernel spaces[20]

by reducing the resulting affinity score to volume computation

on polyhedra, just as in the Euclidean space. We omit further

discussion of these settings in the interest of space.

V. ESTIMATING AFFINITY

The many different ways of defining affinity scores via

regions of influence all reduce to the following: given a set

of representatives C = {c1, . . . , ck} and a query point x,

estimate the volume of a single cell in the Voronoi diagram

620

(a) Data in five clusters (b) A contour plot (c) Heat map

Figure 5. Visualizing the affinity scores

(a) A data set with 100
points in each cluster

(b) A data set with 100
points in the center cluster
and 500 points in the rest.

Figure 6. Density changes affinity regions

of C or C ∪{x}, and estimate the volume of the intersection

of two such cells.

In two dimensions, the Voronoi (or weighted Voronoi)

diagram of k points can be computed in time O(k log k)[16],

and the intersection of two convex polygons can be computed

in O(k) time[21]. Any polygon with k vertices can be

triangulated in O(k) time using O(k) triangles, and then

the area can be computed exactly in O(k) time (O(1) time

per triangle). In three dimensions, computing the Voronoi

diagram takes O(k2) time, and computing the intersection

of two convex polyhedra can be done in linear time [22].

Tetrahedralizing the convex polyhedron can also be done in

linear time.[23].

This direct approach to volume computation does not scale.

In general, a single cell in the Voronoi diagram of k points

in R
d can have complexity O(k�d/2�). We now propose

an alternate strategy that provably approximates the affinity

scores to any desired degree of accuracy in polynomial time

using random sampling.

Let Ux be the Voronoi cell of x in the Voronoi diagram of

C ∪ {x}. We say that the point y is stolen from s(y) � ci
if (i) y ∈ Ux and (ii) y’s second nearest neighbor is ci. We

can then write αi =
Vol({x|s(x)=ci})

Vol(Ux)
. Note that given a point

x and any point y, we can verify in O(k) time whether

y ∈ Ux and also compute s(y) by direct calculation of the

appropriate distance measure.

Let (α1, α2, . . . , αk) be the affinity scores for x. Suppose

we now sample a point y uniformly at random from Ux. We

can find s(y) in O(k) time and this provides one update to

αi. The number of such samples needed to get an accurate

estimate of each αi is given by the theory of ε-samples. Let

μ be a measure defined over X and let R be a collection of

subsets of X . An ε-sample with respect to (X,R) and μ is

a subset S ⊂ X such that for any subset R ∈ R,

∣
∣
∣
μ(S ∩R)

μ(S)
− μ(R)

μ(X)

∣
∣
∣ ≤ ε.

By standard results in VC-dimension theory[24], a random

subset of size O(d
ε2) is an ε-sample for a range space (X,R)

of VC-dimension d.

If we now consider the discrete space [1 . . . k] with the

measure μ(i) = αi, then the set of ranges R is the set

of singleton queries {1 . . . k}, and the VC-dimension of

([1 . . . k],R) is a constant. This means that if we sample a

set S of O(d
ε2) points from Ux, and set α̃i =

|{x∈S|s(x)=i}
|S| ,

then |α̃i − αi| ≤ ε for all i.

A. Sampling from Ux

We now have a strategy to estimate the affinity scores

of x. Sample the number of points from Ux as prescribed

above and then estimate α̃i by computing the owners of

samples. Standard rejection sampling (sample from a ball

enclosing Ux and reject points outside it) does not work

in high dimensions as the number of rejected points grows

exponentially with the dimension. For example in twenty

dimensions, over one thousand points are rejected for each

good sample in experiments.

To solve this problem, we make use of the extensive

literature on sampling from a convex polyhedron in time

polynomial in d, following a groundbreaking randomized

polynomial time algorithm[25]. At a high level, these are

all MCMC methods: they use different random walks to

621

Algorithm 1 SamplePolytope
Input: Collection of halfplanes H defining convex region

K = ∩h∈Hh, number of samples m.

Output: m points uniformly sampled from K.

Construct affine transform T such that TK is centered

and isotropic.

Fix burn-in parameter b
Run Hit-And-Run for d steps on TK, ending in z = z0
for i = 1 . . .m do

Set zi to be result of one Hit-And-Run move from

zi−1

Return (T−1z1, . . . , T
−1zm).

extract a single uniform sample from the polyhedron effi-

ciently. We describe the sampling procedure in Algorithm 1.

One of the most effective strategies in practice for doing

this is known as hit-and-run[26]. It works as follows.

0 5 10 15 20

2

4

6

8

10

12

14

16

18

20

22

C
4 C

3

C
2

q

C
1

C1

C2

C3C4

Figure 7. Illustration of Hit-And-
Run for sampling from a Voronoi
cell. Samples are shown in blue.

Starting with some point x in

the desired polytope K, we

pick a direction at random,

and then pick a point uni-

formly on the line segment

emanating from x in that

direction and ending in the

boundary of K. We refer to

this step as Hit-And-Run. It

has been shown[27] that this

random walk mixes very well,

making O(d3) calls to a mem-

bership oracle to produce a

single sample (under some technical assumptions). Figure 7

illustrates the uniformity in the distribution of samples using

Hit-And-Run for the Voronoi cell of the point q with just a

few samples.

Algorithm 2 (AFFINITY) summarizes the process for

computing the affinity score of a single point.

Reducing dimensionality: The above sampling proce-

dure runs in time O(d3) per point. However, d can be quite

large. We make one final observation that replaces terms

involving d by terms involving k 	 d for Euclidean distance

measures (or Euclidean distances derived from a kernel).

The Voronoi diagram of k points in d dimensions, where

k < d, has a special structure. The k points together define

a k− 1-dimensional subspace H of Rd. This means that any

vector p ∈ R
d can be written as p = u + w where u ∈ H

and w ⊥ u. The Euclidean distance ‖p− p′‖2 can be written

as ‖u− u′‖2 + ‖w − w′‖2. In particular, this means that in

any subspace of the form H + w for a fixed w ⊥ H, the

distance between two points is merely their distance in H.

Therefore, each Voronoi cell V can be written as V ′+H⊥,

where V ′ ⊂ H and H⊥ is the orthogonal complement of

Algorithm 2 AFFINITY: Computing the affinity score for a

point

Input: A clustering C = C1, C2, . . . , Ck with representatives

c1, . . . , ck and a point x.

Output: Affinity vector (α1, . . . , αk) for x

m← c
ε2

Set all αi ← 0
for j = 1 . . . k do

Set Hj as the halfplane supporting Ux with respect to

cj in the Voronoi diagram.

Call SamplePolytope({H1, . . . ,Hk},m) to generate m
samples z1, z2, . . . zm ∈ Ux = ∩Hj .

for i = 1 . . .m do
Compute s = argminj=1...k d(zi, cj).
αs = αs + 1/m

Return (α1, . . . , αk).

H consisting of all vectors orthogonal to H. Thus, we can

project all points onto H while retaining the same volume

ratios as in the original space. This effectively reduces the

problem to a k-dimensional space. The actual projection

is performed by doing an singular value decomposition on

the k × d matrix of the cluster representatives. Once this

transformation is done, we call AFFINITY as before.

The resulting algorithm computes the affinity scores for a

point in time O(k3/ε2).

Progressive Refinement of Affinity Scores: In many

applications, we care only about points with low stability

since they define decision boundaries. But most points are

likely to have high stability scores, and computing the scores

of all points is wasteful. We describe a progressive refinement

strategy that “zooms in” on the unstable points quickly. We

begin with a very coarse grid on the data. For each cell, we

first compute the stability score of points at the corners of

the cell. If the corners are highly stable, we skip this cell,

else we subdivide it further and repeat. We seed the process

with a grid that has n cells (and therefore is subdivided into

n1/d segments in each dimension.

We show the effect of this progressive refinement method

for two dimensional data in Figure 8. The heatmap on the left

only contains
√
n cells and the one in the middle contains

10
√
n cells. Note that the middle heat map is very similar

to the heatmap on the right that uses no refinement strategies

at all, and uses far fewer stability evaluations.

VI. EXPERIMENTS

We demonstrate the benefits of affinity scores in this

section. We show that

1) affinity scores identify points on the true cluster bound-

ary which is useful to determine how a particular point

affects the clustering of data.

622

(a) Heatmap with very
coarse gridding

(b) Heatmap with moderate
gridding

(c) Heatmap of stability
computed on all points

Figure 8. Reducing computation through progressive refinement

2) affinity scores can be used to speed up clustering by

actively selecting points that matter.

3) aggregated stability scores help with determining clus-

terability and model selection.

4) our method is practical and scales well with dimension-

ality and data size.

Data Setup: In two and three dimensions, affinity scores

can be calculated via direct volume computations. We use

built-in routines provided by CGAL (http://www.cgal.org) to

compute the scores exactly and validate our sampling-based

algorithm. For higher dimensional data, we perform the initial

data transformation (if needed) in C and use a native routine

for Hit-And-Run in MATLAB. All experiments are run on

a Intel Quad Core CPU 2.66GHz machine with 4GB RAM.

Reported times represent the results of averaging over 10

runs.

We created a synthetic dataset in R
2 namely, 2D5C for

which data is drawn from 5 Gaussians to produce 5 visibly

separate clusters with 100 points each. We also use a variety

of datasets from the UCI repository. See Table I for details.

Dataset #Points #Dimensions #Clusters

Soybean 47 35 4
Iris 150 4 3
Wine 178 13 3
MNIST (Training) 10000 784 10
Protein 17766 357 3
Adult 32561 123 2
MNIST (Test) 60000 784 10
CodRNA 488565 8 2
Covtype 581012 54 7

Table I
DATASETS.

A. Using Affinity Scores to Identify Poorly Clustered Points

We start by evaluating how well affinity scores in general

(and stability specifically) pick out points that are “well

assigned” or “poorly assigned”. The MNIST digits data set

is a good test case because it contains ground truth (the

actual labeling) and we can visually inspect the results to

see how the method performed.

We run a k-means algorithm on the MNIST test data and

compute affinity scores of the points. We sort each digit

cluster by the stability score and then pick one element

at random from the top 10 and one from the bottom 10.

Figure 9 shows the results for four digits The first row shows

points that had high stability in the clustering (close to 1.0

in each case). We can see that the digits are unambiguous.

The second row shows digits from the unstable region (the

top affinity scores are 0.38, 0.46, 0.34 and 0.42 respectively).

Notice that in this case the digits are far more blurred. In

fact, the 4 and 9 look similar, as do the 0 and 6. The second

highest affinity scores for the ones in the bottom row are

0.21, 0.19, 0.24 and 0.28 and they correspond to clusters {4,

0, 9 and 7}.

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

Figure 9. Results of running k-means on MNIST training data. First row:
high affinity. (L-R) 0.96, 1.0, 1.0, 0.92. Second row: low affinity: (L-R)
0.38, 0.46, 0.34, 0.42.

We also validate the affinity scores against the results

produced by probabilistic modeling. We run an EM algorithm

to estimate the data parameters for a Gaussian mixture model

and use the final cluster centers obtained to run our volume-

stealing based stability method. To get a holistic view of

the label affinities (instead of just looking at the maximum

affinity value), we compute the entropy of the affinity score

for each point (note that the affinity scores sum to 1 for each

point), and we also compute the entropy of the conditional

623

probabilities obtained from the EM algorithm for each point.

We now have two vectors of entropies, and we measure their

correlation using Pearson’s linear correlation coefficient. For

2D5C, Soybean and the Iris data sets, we obtain a correlation

of 0.922, 0.893 and 0.935 respectively.

This further shows that affinity scores capture the strength

of assignment of a point to a cluster. We reiterate that our

approach merely requires the user to present a clustering

obtained by any algorithm.

B. Using Affinity Scores to Accelerate Clustering

Most clustering algorithms take time that is non-linear

in the number of points. Intuitively, points at the core of a

cluster are less useful in determining the cluster boundaries,

but there are more of them. Ideally, we’d like to subsample

points in the core, and supersample points on the boundary

to get a subset of points that can effectively recover the

true clustering. Since many clustering algorithms run in

time quadratic in the number of points, a good heuristic to

obtain fast algorithm is to try and sample O(
√
n) such “good

points”.

We will use stability scores to identify these points in two-

stage iterative approach. Firstly, we run a k-means++[28]

seeding step to initialize k cluster centers. We then compute

stability scores for all points and set the stability threshold

at σ(x) = 0.5. We fix a fraction 0 < α < 1 (set by

cross validation) and then select a sample of points of

size 5α
√
n from the pool of stable points, selecting the

remaining 5(1− α)
√
n points at random from the unstable

pool. In order to remove anomalies arising from any specific

clustering method, we then run a spatially-aware consensus

procedure[29] on this small set using k-means, hierarchical

agglomerative clustering (single-linkage, average-linkage and

complete-linkage variants) and DBSCAN[30] as the seed

clusterings. We then assign all remaining points to their

nearest cluster center. We compare this to running the same

consensus procedure with all the points.

Table II summarizes the data sets used, and the sample

sizes we used in each case. Figure 10 summarizes the results.

In each case, the speedup over a full clustering approach

is tremendous – typically a 25x speedup. Moreover, the

accuracy remains unimpaired: above each bar is the Rand

index comparing the clustering produced (active or full) to

ground truth. In all data sets, the numbers are essentially the

same, showing that our method produces as good a clustering

as one that uses all the data.

As a baseline to evaluate our method, we also compared our

approach with a random baseline, where we merely picked a

random sample of the same size. We also measured the Rand

index of the resulting clusterings, and the corresponding

numbers were 0.49 for CovType, 0.55 for CodRNA, 0.81

for MNIST, and 0.48 for Protein. In all cases, our method

improved over the random baseline, thus demonstrating its

effectiveness at finding good clusterings.

Dataset Points Samples # Stable # Unstable

Protein 17766 665 499 166
MNIST (all) 70000 1323 992 331
CodRNA 488565 3495 2621 874
Covtype 581012 3810 2858 952

Table II
DATA SETUP FOR ACTIVE CLUSTERING.

� ��� ��� ��� ��� �
	
��
�������������

��
����

�	���

�
��	�

�
�� !�

"

�

#�
�#

�
�#��#�#�$��#�����%�
��&�����
�

�$�����$
�#��#�#�$��#�����%�
��'�#(��)�*�#
�!��#

�$��������#�����%�)��������
����$$��
$ *

 0.88 0.89

 0.51 0.49

0.64 0.62

0.56 0.57

Figure 10. Performance of active sampling for consensus clustering. Rand
Index is displayed above the bar for each method and each data set

C. Using Affinity Scores for Model Selection and Cluster-
ability

While affinity scores are local, we can compute an

aggregate score for a clustering by averaging the stability

scores for each point. We now show that this aggregated score

acts as a measure of clusterability and has useful properties

that make it more effective in model selection.

(a) Choosing k. Determining the correct number of

clusters for a given data is a difficult problem in clustering,

especially in an unsupervised setting. The standard approach

is to use some variant of the “elbow method” to analyze the

trade-off curve between number of clusters and clustering

cost. Since splitting a cluster typically improves the clustering

cost, these methods attempt to find locations where the gra-

dient changes dramatically, or where a point of “diminishing

returns” is reached in further splitting.

� � � � � � � 	
 �� ��
�
����������
�����

�

���

���

���

��	

�

��
��
�
��
��
��
��
!"
��
#�
��
��
�

���� ���	
��
���

�������� !"��#��$���
����������
�����

Figure 11. k-means cost Vs Number of
clusters

Aggregate stabil-

ity is more sensitive

to splits of “good

clusters”. When we

split a good cluster

we actually decrease
the average stabil-

ity of the clustering,

because all points

along the boundary

of the new cluster

used to be very sta-

ble and now will no longer be so.

624

� � � � � � � 	
 �� ��
�
����������
�����

�

���

���

���

��	

�

��
��
�
��
��
��
��

�
��
��

��
��
���
!�
 "
��
��

���� ���	
��
���

����� �������!� "�����#���
����������
�����

Figure 12. Average stability cost Vs Number
of clusters

We demonstrate

this behavior by

plotting the cluster

cost and average

stability score for a

variety of data sets

from Table I. The

k-means algorithm

cost is plotted in

Figure 11 and the

average stability is

plotted in Figure 12. We see that for each data set, the

maximum stability is achieved at precisely the number of

clusters prescribed by ground truth. In contrast, the k-means

cost function strictly decreases, and it is more difficult to

identify clear “elbows” at the right number of clusters.

������ ������ �	
� �
	� ������
 �����
��������

�

���

���

���

���

���

���

���

���

���

�

 �
!	"
��
	�

#
�$
�

��

��������	
���
�
� ���������� 	�
����

�
����������
���������

%!���!#�
"#&�$�!# �!	"��	�

Figure 13. Aggregate Stability Vs Global Stability.

We also compare aggregate stability to standard measures

of global stability like the silhouette method, the Rand

index, and the Davies-Bouldin index[31]. As we can see

in Figure 13, all measures behave consistently on the data

sets (note that the Davies-Bouldin index is smaller when

the clustering is better). This shows that aggregate stability

acts like a global quality measure while still retaining local

structure.

(b) Data Clusterability. Another use for

aggregate stability is as measure of clusterability.

����� ����� ����� 	�
�� 	����
�
��������

����

����

����

���

���

����

����

����

	

��

�

�
��

��
��

���
��

�

 ��

!�
"�

�!#
��

�

��

$ ���$!���"���!#�
 �
%�����!�$�!����&����!�$!�����������$�

0 6 34 100 155

Figure 14. Clusterability of 2D5C data:
Average stability scores dip as variance in-
creases.

We illustrate this

by computing the

aggregate stability

for a clustering

of five Gaussians

with varying

(but isotropic)

covariance for each

cluster. Figure 16

shows what the

different clusterings

look like. As we

can see, the data

becomes progressively less clustered as the variance

increases, and therefore becomes less “clusterable”.

Figure 14 illustrates the aggregate stability scores for these

clusterings: as we can see, the scores drop similarly, and

by the time we reach the fifth instance (which is essentially

unclusterable), the stability numbers have dropped to nearly

zero. We also annotate the graphs with the number of unstable

points (with threshold σ(x) = 0.5) to illustrate that the

average stability is reducing consistently.

������ ������
	
��
��������

��

�
���
���
���
���
���
���
���
���
���
�

��
�

�
��

�!

"�#
��

��
$�#

��
%�

��

�#
&�

�
� ������
�%
�
����$�'�

(
���)�*#+�,
�
��

109 1036

Figure 15. Clusterability of two different
pair of digits in the MNIST data

As another illus-

tration of this, we

plot in Figure 15

the aggregate stabil-

ity of two different

pairs of numbers in

the MNIST dataset

(2 vs 6) and (4 vs 9).

As we have seen ear-

lier, the 2− 6 set is

easier to distinguish

than the 4 − 9 set,

and this is reflected

in the different sta-

bility scores for the clustering on these two pairs.

D. Evaluating Performance
Finally, we present an evaluation of the performance of our

method in terms of accuracy and running time. To validate

the quality of the results, we can compare our sampling-

based method to the exact scores we can obtain in two and

three dimensions as described earlier. Table III illustrates this

for the 2D5C and 3D5C data sets. We note that these error

reports come from choosing 1000 samples after a burn-in

of 1000 samples (this corresponds to an error ε = 0.04). As

we can see, the reported error is well within the predicted

range.
Table III also presents running times for the affinity score

computation. We note that the running times reported are

the total for computing the affinity scores for all points. We

only report the time taken by the sampler; the preprocessing

affine transformation is dominated by the sampling time. In

all cases, we used 1000 samples to generate the estimates.

Note that the procedure is extremely fast, even for the very

high dimensional MNIST data.

Dataset n d k Time (sec) Error

2D5C 500 2 5 0.11 ± 0.005 ± 0.02
3D5C 500 3 5 0.19 ± 0.008 ± 0.035
IRIS 150 4 3 0.24 ± 0.012 -
Soybean 47 35 4 0.31 ± 0.08 -
MNIST (test) 10000 784 10 0.58 ± 0.5 -

Table III
RUNTIMES AND EMPIRICAL APPROXIMATION TO EXACT AFFINITY

ACKNOWLEDGEMENTS

We are thankful to Jeff M. Phillips for discussions on local

notions of stability and in particular for his suggestions on

625

−2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

(a) Very low

−4 −2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

8

(b) Low

−4 −2 0 2 4 6 8 10 12 14
−8

−6

−4

−2

0

2

4

6

8

(c) Moderate

−4 −2 0 2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

2

4

6

8

(d) High

−10 −5 0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e) Very High

Figure 16. Five Gaussians with varying variance

reducing dimensionality to compute the affinity scores and

for point out the correct sample complexity for ε-samples.

REFERENCES

[1] R. Xu and D. Wunsch, Clustering. Wiley-IEEE Press, 2009.
[2] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering

validation techniques,” J. Intell. Inf. Syst., vol. 17, no. 2-3, pp.
107–145, 2001.

[3] M. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek,
“Can shared-neighbor distances defeat the curse of dimension-
ality?” in SSDBM. Springer, 2010, pp. 482–500.

[4] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu, “Understanding
of internal clustering validation measures,” in Proceedings of
the 2010 IEEE International Conference on Data Mining, ser.
ICDM ’10, 2010, pp. 911–916.

[5] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis,” J. Comput. Appl. Math.,
vol. 20, no. 1, pp. 53–65, Nov. 1987.

[6] C. A. Sugar and G. M. James, “Finding the number of clusters
in a dataset: An information-theoretic approach,” Journal of
the American Statistical Association, vol. 98, no. 463, pp. pp.
750–763, 2003.

[7] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the
number of clusters in a data set via the gap statistic,”
Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 63, no. 2, pp. 411–423, 2001.

[8] B. Settles, “Active learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 6, no. 1, pp. 1–114,
2012.

[9] T. Hofmann and J. M. Buhmann, “Active data clustering,”
Advances in Neural Information Processing Systems, pp. 528–
534, 1998.

[10] B. Eriksson, G. Dasarathy, A. Singh, and R. Nowak, “Ac-
tive clustering: Robust and efficient hierarchical cluster-
ing using adaptively selected similarities,” arXiv preprint
arXiv:1102.3887, 2011.

[11] S. Ben-David, U. von Luxburg, and D. Pál, “A sober look at
clustering stability,” in COLT, 2006, pp. 5–19.

[12] A. Ben-Hur, A. Elisseeff, and I. Guyon, “A stability based
method for discovering structure in clustered data,” in Pacific
Symposium on Biocomputing, 2002, pp. 6–17.

[13] J. Bezdek and N. Pal, “Some new indexes of cluster validity,”
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 28, no. 3, pp. 301 –315, jun 1998.

[14] A. Elisseeff, T. Evgeniou, and M. Pontil, “Stability of
randomized learning algorithms,” Journal of Machine Learning
Research, vol. 6, no. 1, p. 55, 2006.

[15] U. Von Luxburg, Clustering Stability. Now Publishers Inc,
2010, vol. 3, no. 3.

[16] M. De Berg, O. Cheong, M. Van Kreveld, and M. Over-
mars, Computational geometry: algorithms and applications.
Springer, 2008.

[17] F. Aurenhammer, “Power diagrams: properties, algorithms and
applications,” SIAM Journal on Computing, vol. 16, no. 1, pp.
78–96, 1987.

[18] R. Sibson, A Brief Description of Natural Neighbour Interpo-
lation. John Wiley & Sons, 1981, vol. 21, pp. 21–36.

[19] L. M. Bregman, “The relaxation method of finding the
common point of convex sets and its application to the solution
of problems in convex programming,” USSR computational
mathematics and mathematical physics, vol. 7, no. 3, pp. 200–
217, 1967.

[20] B. Scholkopf and A. J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, 2001.

[21] G. T. Toussaint, “A simple linear algorithm for intersecting
convex polygons,” The visual computer, vol. 1, no. 2, pp.
118–123, 1985.

[22] B. Chazelle, “An optimal algorithm for intersecting three-
dimensional convex polyhedra,” SIAM Journal on Computing,
vol. 21, no. 4, pp. 671–696, 1992.

[23] N. J. Lennes, “Theorems on the simple finite polygon and
polyhedron,” American Journal of Mathematics, vol. 33, no.
1/4, pp. 37–62, 1911.

[24] S. Har-Peled, Geometric approximation algorithms. Amer
Mathematical Society, 2011, vol. 173.

[25] M. Dyer, A. Frieze, and R. Kannan, “A random polynomial-
time algorithm for approximating the volume of convex
bodies,” J. ACM, vol. 38, no. 1, pp. 1–17, Jan. 1991. [Online].
Available: http://doi.acm.org/10.1145/102782.102783

[26] R. L. Smith, “Efficient monte carlo procedures for generating
points uniformly distributed over bounded regions,” Operations
Research, vol. 32, no. 6, pp. 1296–1308, 1984.

[27] L. Lovász, “Hit-and-run mixes fast,” Mathematical Program-
ming, vol. 86, no. 3, pp. 443–461, 1999.

[28] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of
careful seeding,” in ACM-SIAM Symp. Discrete Algorithms,
2007, pp. 1027–1035.

[29] P. Raman, J. M. Phillips, and S. Venkatasubramanian,
“Spatially-aware comparison and consensus for clusterings,” in
SDM. SIAM / Omnipress, 2011, pp. 307–318.

[30] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases
with noise,” in KDD, 1996, pp. 226–231.

[31] S. Petrovic, “A comparison between the silhouette index and
the davies-bouldin index in labelling ids clusters.”

626

