
PERCEPTUALLY LOSSLESS IMAGE COMPRESSIONPeter J. Hahn and V. John MathewsDepartment of Electrical EngineeringUniversity of UtahSalt Lake City, Utah 84112, USAABSTRACTThis paper presents an algorithm for perceptually lossless image compression. A compressed imageis said to be perceptually lossless for a speci�ed viewing distance if the reconstructed image andthe original image appear identical to human observers when viewed from the speci�ed distance.Our approach utilizes properties of the human visual system in the form of a perceptual thresholdfunction model to determine the amount of distortion that can be introduced at each location of theimage. Constraining all quantization errors to be below the perceptual threshold function resultsin perceptually lossless image compression. The compression system employs a modi�ed form ofthe embedded zerotree wavelet coding algorithm to limit the quantization errors below the levelsspeci�ed by the model of the threshold function. Experimental results demonstrate perceptuallylossless compression of monochrome images at bit rates ranging from 0.4 to 1.2 bits per pixel ata viewing distance of six times the image height. These results were obtained using a simple,empirical model of the perceptual threshold function which included threshold elevations for thelocal brightness and local energy in neighboring frequency bands.1. INTRODUCTIONThe motivation behind the use of image compression is evident to most people. Storing the rapidlyexpanding amounts of digitally represented images requires some form of compression. Medicalimaging, satellite imaging, and television are just a few of the di�erent types of media that canor do use digital images. In many instances, human observers judge the quality of the compressedimages. In such situations, it is important to design image compression systems that attemptto reduce or eliminate subjective distortions in the coded images. Perceptually lossless imagecompression attempts to eliminate all subjective distortions from the coded images. Thus, thereconstructed image looks identical to the original image although there may be large numericaldi�erences between the pixel values of the original and reconstructed images. It is important torecognize that the perceptual quality of an image is a function of the viewing distance. For example,a distorted image may look identical to the original image when viewed from a su�cient distance,but the distortions may become visible when the observer moves closer. Consequently, the notionof perceptually lossless compression is also a function of the viewing distance.The objective of this paper is to present an algorithm for image compression that employs aperceptual threshold function model and produces coded images with distortions that are belowthe thresholds de�ned by the model at all locations in the image. Our approach employs a wavelettransform decomposition of the input images. Consequently, it requires a perceptual thresholdfunction model that makes use of the same image decomposition. The algorithm uses the embeddedzerotree wavelet (EZW) algorithm that has been modi�ed to permit the termination of the codingprocess for a wavelet transform coe�cient when the quantization error is below the perceptualthreshold for the particular coe�cient.The rest of this paper is organized as follows. The next section describes some known propertiesof the human visual system, some coders that use properties of the human visual system, and somemodels of the perceptual threshold function. The modi�ed embedded zerotree wavelet algorithmis described in Section 3. Several experimental results are presented in Section 4. Finally, theconcluding remarks are made in Section 5.



2. BACKGROUNDThe human visual system (HVS) is extremely complex and still not completely understood. Weprovide a brief review of some properties of the human visual system that are relevant to the workdescribed in this paper. The human visual system exhibits highly-varying responses to single-frequency sinusoidal stimuli. The modulation transfer function (MTF) [1, 2, 3] characterizes theresponse of the HVS to di�erent frequency components. The MTF at a given frequency is a scaledversion of the reciprocal of the minimum amplitude of a sinusoidal stimulus that is visible to thehuman visual system. One commonly used model of the MTF is [3]H(f) = a[b+ cf ] exp(�(cf)d); (1)where a, b, c, and d are constant parameters and f is the radial frequency given by f = qf2x + f2y ,measured in cycles per degree. The variables fx and fy represent the spatial frequency in the xand y coordinates, respectively.The sensitivity of the HVS to a stimulus depends on the average level of illumination of thescene. A simple characterization of this dependence is given by Weber's law [1, 2], although thiscondition does not hold for all levels of illumination. Weber's law states that the ratio of theminimum amount of visually detectable change �I in the light intensity in a uniform backgroundwith intensity I is a constant, i.e., �II = k; (2)where k is the constant of proportionality.The concept of the spatial masking of a stimulus by a complex background scene is importantfrom the perspective of coding. Spatial masking de�nes the e�ect where the visibility or detectabilityof a stimulus changes in the presence of another visual stimulus known as the masking stimulus [4].Since the masked stimulus can accept more quantization noise without visual distortions, knowledgeof the spatial masking property in an image is important for coding. These properties of the humanvisual system as well as others have formed the basis for the development of image compressionsystems that attempt to reduce or eliminate visual distortions during the coding process.We briey describe several approaches to perceptually-tuned image compression below. Oneclass of perceptually-tuned coders transforms the images into the \visual domain" using a HVSmodel. The transformed images are then compressed using a lossy compression scheme that min-imizes some quantitative distortion measure. During reconstruction the images are transformedback to the original domain [5]. Assuming the HVS model is accurate, it may be argued that thetransformed image is what the \eye sees." Therefore, by minimizing the quantitative distortionmeasure in the visual domain, one minimizes the perceptual distortions introduced by the coder.Another class of algorithms attempts to reduce the perceptual distortions by weighting di�erentcomponents in an image based on the response of the human visual system to such components[6, 7, 8]. One example of such a system is described in [6] in which the distortions of blockswith edge patterns are weighted di�erently from the distortions of blocks with shade patterns ormore uniform patterns. A second example weights the distortions in the signal components of thedi�erent bands of a subband or transform coder on the basis of the response of the HVS to di�erentfrequency components [7]. A third example weights the distortions in di�erent blocks of an imageon the basis of the activity in each block [8].The last class of perceptually-tuned coders discussed in this paper uses a model of the perceptualthreshold function (PTF) [9, 10, 11, 12, 13]. A perceptual threshold function predicts whether aparticular component of the image is visible. If this component is visible, the PTF further predictsthe amount of quantization noise that can be introduced to the component before the distortion is
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ArbitraryFigure 1: Block diagram of the coder with a perceptual threshold function.visible. These components can be pixels of the image or coe�cients of an appropriate transform ordecomposition that completely characterizes the image.An accurate model of the perceptual threshold function can be employed to guide perceptuallylossless image compression systems. A block diagram of such a system is shown in Figure 1. The keyis to constrain the quantization errors below the levels predicted by the model of the perceptualthreshold function. When the image compression system meets this constraint, the distortionsintroduced into the image will not be visible to the observer if the PTF model is accurate. Theperceptual threshold function model depends on the viewing distance, and thus the viewing distanceis an important parameter in the design of perceptually lossless image compression systems.A number of di�erent models of the perceptual threshold function are available in the literature[11, 12, 13]. Most models of the PTF perform a multichannel decomposition of the image andthen estimate a base perceptual threshold value for each channel. This threshold value predicts thedistortions that can be introduced into at areas of the input images with no local activity. Thebase perceptual threshold function is modi�ed using threshold elevation functions that depends onthe local brightness of the image, measures of the local activity in the image, and other spatialmasking e�ects. The particular perceptual threshold function model used in this work is based onthe work by Safranek and Johnston [12, 13]. In this model, the base perceptual threshold functionwas determined by empirical experiments. The model employed a subband decomposition of theimage. The base threshold value for the kth subband was measured by adding uniformly distributednoise to an area in the center of the kth subband. The corrupted image was reconstructed, andobservers seated at a preselected distance were asked to determine if the distortions were visible.The maximum distortion of the noise was adjusted until the distortion was just below the thresholdof visual detection. This amplitude was taken to be the base perceptual threshold for the subband.This process was repeated for each subband. The base perceptual threshold function was modi�edby multiplicative corrections for brightness and texture energy which is a measure of the localactivity in the image. The modi�cation for brightness was found empirically using experimentssimilar to the ones described above except that the mean level of the image was changed. Thetexture energy uses a measure of the variability in the image along with the modulation transferfunction to increase the threshold in the areas of high activity.
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bitrateFigure 2: Block diagram of the EZW algorithm.3. THE PERCEPTUALLY-TUNED EZW ALGORITHMIn this work, the embedded zerotree wavelet (EZW) coder [14] is modi�ed to allow the codingprocess to be guided by a model of the perceptual threshold function. The modi�cations allowthe algorithm to stop coding when all quantization errors are below the levels suggested by theperceptual threshold function.The embedded zerotree wavelet algorithm compresses the input images using scalar quantizationof the wavelet transform coe�cients, but it does the coding such that the images at lower bit ratesare \embedded" in the bit stream. The algorithm �rst computes the wavelet transform of the inputimage. The coding of the coe�cients occurs next with the resulting symbols going to an adaptivearithmetic coder for further compression. The concept of a zerotree consists of a \tree" structure ofinsigni�cant wavelet coe�cients that are related to each other through their position in the originalimage. Figure 2 shows the block diagram of the original embedded zerotree wavelet algorithm.The coding of the wavelet coe�cients takes place in a number of iterations. Each iterationconsists of two \passes" for the coding of the wavelet transform coe�cients. The �rst or \dominant"pass tags the coe�cients that are currently signi�cant and quantizes these coe�cients. During aniteration, a working threshold is used to determine which coe�cients are signi�cant. The coe�cientswith magnitudes larger than the threshold are the ones tagged as signi�cant. In the dominant pass,the wavelet transform coe�cients can be coded as one of four symbols: pos, neg, zero, or zerotree.When the magnitude of the coe�cient is larger than the working threshold, the pos or neg symbolsare used depending on whether the coe�cient is positive or negative respectively. Otherwise, thezero or zerotree symbol is used. The zerotree constists of a tree structure where all waveletcoe�cients have magnitudes less than the working threshold. If the zerotree does not exist, thezero symbol is sent. The quantization levels of the tagged wavelet coe�cients are from the setfQ; 0;�Qg where Q = 32T where T is the working threshold. The initial threshold value is selectedto be slightly larger than half the maximum magnitude of all the wavelet coe�cients. At the endof an iteration the threshold is reduced by a factor of two. Once a coe�cient is tagged, it is ignoredin subsequent dominant passes.The second or \subordinate" pass continues the quantization process on all the coe�cientstagged in the dominant pass from this and all previous iterations. During the subordinate pass, anadditional bit is added to the quantization of all coe�cients that had previously been tagged. Thequantization levels are changed by an additive factor of Qs = �T4 depending on the quantizationerror. The entire sequence of symbols from both the dominant and subordinate passes are sentto the adaptive arithmetic coder. The coding process is stopped when a predetermined bit rate isachieved. The algorithm is described in more detail in [14].In order to use a perceptual threshold function with the EZW algorithm, several modi�cationsmust be made. First, all wavelet transform coe�cients that are below the quantization error levelssuggested by the perceptual detection threshold can be ignored. Second, all wavelet transform



coe�cients coded with a quantization error magnitude less than the perceptual threshold do notneed to be coded any further. The new algorithm stops coding when all the wavelet transformcoe�cients are either below the perceptual detection threshold function or have a quantization errorwith magnitude less than the perceptual threshold function. The following sequence of operationsdescribes the perceptually-tuned EZW algorithm. Note that this algorithm uses only one \pass"during each iteration.1. Compute the two-dimensional wavelet transform of the input image.2. Generate the perceptual threshold function using the transformed image and an appropriatemodel of the PTF.3. Place the transformed image in the workspace of the coder.4. Remove all wavelet coe�cients with magnitudes below the perceptual detection threshold byplacing zeros in the workspace for those coe�cients.5. Choose the initial working threshold T to be slightly larger than one-third of the maximummagnitude of the wavelet transform coe�cients.6. Using the working threshold, select the coe�cients with magnitudes larger than the thresholdand send the appropriate symbol pos, neg, zero, or zerotree for the coe�cient to the adaptivearithmetic coder. The quantization levels are from the set fQp; 0;�Qpg where Qp = 2T .7. Replace the wavelet coe�cient with the residual error in the workspace.8. If the magnitude of the wavelet coe�cient is smaller than the perceptual threshold function,replace the residual error with a zero in the workspace.9. Reduce the threshold by a factor of three.10. Repeat steps 6 through 9 until all workspace values are zero.4. EXPERIMENTAL RESULTSThe experimental results were obtained using a compression algorithm that employs a six-levelwavelet transform decomposition. The wavelet transform used �lter banks with the �lters of nineand seven coe�cients found in [15]. For the purpose of testing the algorithm, a simple, empiri-cally derived perceptual threshold function model was used. This perceptual threshold functionmodel used a base perceptual threshold value for each subband in the six-level wavelet transformdecomposition, a brightness correction for the average luminance in the local area, and a thresholdelevation due to the masking of one subband by the local energy in other subbands.The perceptual threshold function was estimated using psychophysical experiments with the\forced choice" paradigm. The observer is given a sequence of choices where a choice consists ofdisplaying two images on a monitor simultaneously and asking the observer to choose the better im-age. The image positions are randomly switched between choices. The objective of the experimentis to determine if the images are perceptually identical. If one image is chosen signi�cantly morefrequently, the images are considered visually di�erent, while if neither image is chosen signi�cantlymore frequently, the images are considered perceptually identical. The psychophysical experimentswere performed in a dimly lit room with the images displayed on a standard Sun SPARC 2 com-puter monitor. Reections on the monitor were minimized by illuminating the wall behind themonitor and by using black cloth draped over surfaces that reected light onto the monitor. Theobservers were trained and knew the objective of the experiment.



10. 10. 8.10. 8. 6. 5.8. 8.6. 6. 6.5. 5. 6.6. 7.6. 14.Figure 3: The base perceptual threshold values for a viewing distance of six times the image height.The base perceptual threshold values were estimated for each subband by comparing a at grayimage of value 127 with a corrupted image obtained by adding uniformly-distributed white noisein the range [��k; �k] in the subband under consideration. If the two images on the monitor weredetermined to be perceptually di�erent, the value of the parameter �k was reduced until the twooriginal and the corrupted images were visually identical. If the observer determined that the twoimages were visually identical, the value �k was increased until the di�erences between the twoimages was barely noticeable. The estimate of the base perceptual detection threshold value forthe subband of interest is this value of �k . The base perceptual threshold values were measured fora viewing distance of six times the image height. These values are shown in Figure 3 for each bandof the two-dimensional wavelet transform.For the brightness correction, similar experiments were performed for di�erent values of themean gray level of the images. These experiments were performed on the highest frequency subband.A threshold elevation curve was developed from these experiments for the perceptual thresholdfunction, and this threshold elevation curve is shown in Figure 4.The threshold elevation due to energy in one subband masking the coe�cients in another sub-band was also found using forced choice experiments. In this case, the original at image wascorrupted with uniformly-distributed white noise with a speci�ed variance level injected in themasking subband. The second image was generated by adding uniformly distributed noise in therange [��kl; �kl] to the masked subband. The experimental results showed that the threshold eleva-tion curves exhibited an exponential relationship between the multiplicative factor of the thresholdelevation and the energy in the masking subband. Figure 4 shows an example of the thresholdelevation due to the masking energy in one subband on the detection threshold of a stimulus inanother subband. It was also experimentally determined that the threshold elevation was greatestdue to the energy in the subbands in the surrounding levels of the wavelet transform decomposi-tion. Furthermore, it was found that elevation of the perceptual thresholds in a subband due to theenergy in other subbands was determined primarily by the subband that causes the most thresholdelevation individually.Combining all the results described above, the model of the perceptual threshold function forthe location (xs; ys) in the current subband sc is given by the equationpthresh(xs; ys) = base(sc)bright(xs; ys)maxs6=sc fenergycorr(xs; ys; s)g (3)where base(sc) represents the base perceptual threshold for the subband sc, bright(xs; ys) represents
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Figure 4: An example of the multiplicative threshold elevation due to the local average luminancein the input image.
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Figure 5: An example of the multiplicative threshold elevation due to energy in one subbandmasking another subband.



Figure 6: The original image.the threshold elevation due to the average luminance in the original image corresponding to the(xs; ys) location, and energycorr(xs; ys; s) represents the threshold elevation due to the energy atthe location corresponding to (xs; ys) in the subband s. The average luminance is estimated from a2�2 element block in the original image for the subbands in the �rst level of the wavelet transformdecomposition. This block size doubles for each increase in the level. The local energy is measuredas the variance on a 2� 2 element block in each subband.We now present the results of an experiment in compressing monochrome images. All the imagesused in the experiment contained 512� 512 pixels with eight bits per pixel gray scale resolution.The images were all corrected for the monitor nonlinearities before compression. The gamma of themonitor was 2.5. Figure 6 shows the original \Lena" image. Figure 7 shows the compressed imagefor a viewing distance of six times the image height. The compression ratio is 0.67 bits per pixel.Figure 8 shows the perceptual threshold function for the original image at a distance of six timesthe image height. The distortions that may still be visible in the printed images from the speci�edviewing distance are caused primarily by the errors introduced during the printing process.5. CONCLUSIONThis paper presented a perceptually lossless image compression system. The compression systemused a modi�cation of the embedded zerotree wavelet algorithm and a model of the perceptualthreshold function to guide the compression. The new compression system obtained compressedimages in which all quantization errors were constrained below levels suggested by model of theperceptual thershold function at each location of the image. Experimental results demonstrateperceptually lossless compression of monochrome images at bit rates ranging from 0.4 to 1.2 bitsper pixel at a viewing distance of six times the image height. These results were obtained using asimple, empirical model of the perceptual threshold function. The authors are presently workingon additional re�nements to the algorithm, including the development of a perceptual thresholdfunction model that is useful for all viewing distances and image decompositions.



Figure 7: The perceptually lossless compressed image for a viewing distance of six times the imageheight. The bit rate is 0.67 bits per pixel.

Figure 8: The perceptual threshold function model for the Lena image at a viewing distance of sixtimes the image height.
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