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Abstract—In this letter, we present some theorems for the
exact inversion and the pth-order inversion of a wide class
of causal, discrete-time, nonlinear systems. The nonlinear sys-
tems we consider are described by the input–output relationship
y(n) = g[x(n)]h[x(n�1); y(n�1)]+f [x(n�1); y(n�1)], where
g[�], h[�; �], and f [�; �] are causal, discrete-time and nonlinear
operators and the inverse functiong�1[�] exists. The exact inverse
of such systems is given byz(n) = g�1[fu(n)�f [z(n�1); u(n�
1)]g=h[z(n� 1); u(n� 1)]]. Similarly, when h[�; �] = 1, the pth-
order inverse is given byz(n) = g�1p [u(n)�f [z(n�1); u(n�1)]]
where g�1p [�] is the pth-order inverse of g[�].

Index Terms—Inverse systems, nonlinear filters, nonlinear sys-
tems.

I. INTRODUCTION

T HIS letter presents some results for the exact inversion
of nonlinear systems described by the input–output rela-

tionship

(1)

where , , and are causal, discrete-time, and
nonlinear operators, and the inverse function exists. We
also present expressions for theth order inverses of systems
of the form

(2)

The second result is useful in situations where the exact inverse
system does not exist, or is not stable. Even when the exact
inverse does not exist, the class of filters in (2) admits efficient
realizations of their th order inverses.

II. THE INVERSE OFCERTAIN NONLINEAR SYSTEMS

In all of our discussions, we assume causal signals, i.e.,
all the signals are identically zero for time indices less than
zero. The following theorem shows how to evaluate the exact
inverse of (1).

Theorem 1: Let , and be causal nonlinear
discrete operators and let the inverse operator exist.
Then, the exact inverse of the system in (1) is described by
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the input–output relationship

(3)

where and are the input signal and output signal,
respectively, of the system.

Proof: We demonstrate first that the system in (3) is
the post-inverse of (1), i.e., a cascade interconnection of
the system in (1) followed by the system in (3) results in
an identity system. We proceed by mathematical induction.
Let and represent the input and output signals,
respectively, of the system in (1). To prove the theorem using
induction, we assume that

(4)

We must now show using (4) that

(5)

when for . Now we obtain (6), shown at the
bottom of the next page. By substituting
from (4) into (6), it follows in a straightforward manner that

. We can prove in a similar manner that the system
in (3) is also the pre-inverse of the system in (1), i.e., a cascade
interconnection of the system in (3) followed by the system in
(1) results in an identity system. This completes the proof.

Remark: The inverse of the system in (1) may not exist or
may not be stable. For example, if

(7)

at any time for some specific input signal, the inverse system
of (1) is unstable.

Example 1: We wish to find the inverse of the bilinear
system

(8)

Let us define , , and to be

(9)

(10)
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and

(11)

respectively. Then, we can utilize Theorem 1 to find the
inverse of the bilinear system to be shown in (12), at the
bottom of the page.

A simpler expression can be found for the inverse filter of
the system in (2). The following corollary can be immediately
derived from Theorem 1.

Corollary 1: Let and be causal nonlinear discrete
operators and let the inverse operator exist. Then, the
causal discrete nonlinear system described in (2) has the
inverse system whose input–output relationship is given by

(13)

Example 2: The inverse of the bilinear system

(14)

is the bilinear system

(15)

Note that the double summation in (14) is slightly differ-
ent from the double summation in (8), and this difference
contributes to the simpler inverse system in (15).

III. TH ORDER INVERSES

Not all nonlinear systems possess an inverse and many
nonlinear systems admit an inverse only for a certain subset
of input signals. For these reasons, Schetzen developed the
theory of the th-order inverse of a nonlinear system whose
input–output relation can be represented using a Volterra series
expansion [7], [8]. The th-order inverse of a nonlinear system

is defined in [7] and [8] as theth-order system which,
connected in cascade with, results in a system whose linear
kernel is the identity system and whose Volterra kernels from
the second up to theth-order are zero. Ath-order system is
one in which all the Volterra kernels of order greater than

are zero. The definition of theth-order inverse was relaxed
in [6] by allowing the inverse system to possess nonzero
Volterra operators of order greater than. These operators do
not affect the first Volterra operators of the cascade system.
This relaxed definition of theth-order inverse was employed
in [6] to derive simpler and computationally more efficient
expressions for the inverse system. However, because of the
presence of higher order components, the definition of the
th-order inverse in [6] does not result in a unique inverse

system.
The following theorem presents an efficient method of

computing a th order inverse of the system in (2). Note
that this system is a special case of the system in (1) when

.
Theorem 2: Let and be causal, discrete-time

nonlinear operators with convergent Volterra series expansions
with respect to all the arguments. Moreover, let theth order
inverse of the system exist. Then a th order inverse
of the causal, discrete-time nonlinear system described in (2)
is given by the following input–output relationship:

(16)

Proof: As was the case for the Theorem 1, we first show
that the system in (16) is theth-order post-inverse of the
system in (2). Using the same variables as in the derivation of
Theorem 1, we express as

(17)

We proceed by mathematical induction. We assume that, for
any greater than zero, the output differs from
only by , a term whose Volterra series expansion in

contains only kernels of order larger than, i.e.,

(18)

We have to prove that the Volterra series expansion of
have zero kernels of order up to. Since admits

a convergent Volterra series expansion, we have from (18)
that the Volterra series expansion of the difference

contains only kernels
of order greater than, i.e.,

(19)

(6)

(12)
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where the Volterra kernels of up to order are zero.
Substituting (19) in (17), we get

(20)

The th-order inverse of the operator derived in [7] is given
by a th-order truncated Volterra series whose kernels depend
only on the first kernels of the Volterra series expansion of

. The th-order inverse derived in [6] may have Volterra
kernels of order greater than. However, the inverse still has
a Volterra series expansion with finite order of nonlinearity,
and it depends only on the firstkernels of the Volterra series
expansion of . Consequently, it immediately follows from
(20) that

(21)

and that the system in (16) is theth-order post-inverse of the
system in (2). We can prove in a similar manner that it is also
a pre-inverse of the system in (2).

Remark: Due to the rational structure of the system in (3),
a similar expression for theth-order inverse of the system in
(1) does not exist.

Example 3: We wish to derive a th-order inverse for the
second-order Volterra filter given by the following expression:

(22)

Let

(23)

and

(24)

According to Theorem 2, ath-order inverse of (22), is

(25)

The th-order inverse can be computed iteratively as in
[6] and is given by

(26)

where is the inverse of the first Volterra operator of
(i.e., , in our case) and is the truncated Volterra series
expansion of the system that contains only the second-
through th-order Volterra kernels.

While it is possible to compute theth-order inverse of the
system of (22) as in [6], using the structure in [6] for inverting
a smaller subsystem and then using Theorem 2, as we have
done here, is a more efficient procedure in most situations.

The computational cost for the evaluation of (25) is
multiplications per time

instant. The corresponding computational cost for directly
computing the th-order inverse of (22) as in (26) is

multiplications per time instant.
Implementing (25) has a computational cost of
multiplications per time instant, while for the method in [6] the
computational cost is . The methodology suggested by
Theorem 2 is more efficient for evaluating theth order inverse
of a Volterra filter of order when is greater than . On the
other hand, when , only the first Volterra operators are
significant for the evaluation of theth-order inverse. In this
situation, both methods of inversion require almost the same
number of multiplications per sample.

IV. CONCLUDING REMARKS

This letter presented expressions for the exact inverse and
the th order inverse of a wide class of discrete-time non-
linear systems. This class includes most causal polynomial
systems with finite order as well as many nonlinear filters
with nonpolynomial input–output relationships. In particular,
Theorem 1 allows the inversion of all recursive polynomial
systems whose dependence on the input sample can
be characterized using an invertible component . The
computational cost of the exact inverse filter coincides with
the cost of implementing the direct system and the operator

. Theorem 2 applies to all recursive polynomial systems
with the same characteristic as described above, as well as
many other nonlinear systems. In this case also, the cost of
implementing the inverse filter is that of implementing the
direct system and theth-order inverse of . All the inverse
filters presented in this paper are recursive and, therefore, may
possess poor stability properties. Consequently, the stability of
such systems must be tested after the inversion of the filter.
Stability of recursive nonlinear systems is a topic of active
research. Some useful stability results for recursive polynomial
filters can be found in [1]–[5] and [9].
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