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Abstract.  A quantitative molecular description of the decomposition of protonated cysteine, 

H
+
Cys, is provided by studying the kinetic energy dependence of threshold collision-induced 

dissociation (CID) with Xe using a guided ion beam tandem mass spectrometer (GIBMS).  

Primary dissociation channels are deamidation (yielding both NH3 loss and NH4
+
 formation) and 

(H2O + CO) loss reactions, followed by an additional six subsequent decompositions.  Analysis 

of the kinetic energy-dependent CID cross sections provides the 0 K barriers for six different 

reactions after accounting for unimolecular decay rates, internal energy of reactant ions, multiple 

ion-molecule collisions, and competition among the decay channels.  To identify the mechanisms 

associated with these reactions, quantum chemical calculations performed at the B3LYP/6-

311+G(d,p) level were used to locate the transition states (TSs) and intermediates for these 

processes.  Single point energies of the reactants, products, and key optimized TSs and 

intermediates are calculated at B3LYP, B3P86, and MP2(full) levels using a 6-311+G(2d,2p) 

basis set.  The computational characterization of the elementary steps of these reactions 

including the structures of the final products is validated by quantitative agreement with the 

experimental energetics.  In agreement with previous work, deamidation is facilitated by 

anchimeric assistance of the thio group, which also leads to an interesting rearrangement of the 

intact amino acid identified computationally.   
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Introduction 

The use of mass spectrometric methods to sequence peptides and proteins is a powerful 

analytical tool.  Despite the success of such procedures, these methods often do not sequence 

entire proteins despite the fact that many peaks in the mass spectrum go unused, i.e., information 

is available that does not lead easily to sequence information.  Hence, more robust models and 

bioinformatic tools for utilizing such data are still needed and actively being pursued [1].  In 

terms of de novo methods, it would be useful to have molecular models incorporating detailed 

energetic and mechanistic information for how proteins and peptides fragment, including low 

energy pathways that are not simple peptide bond cleavages, such as the “pathways in 

competition” approach [2].  Although much progress has been made from the computational 

side, detailed experimental information concerning such fragmentations is still in its infancy, 

with notable contributions on protonated systems from Klassen and Kebarle [3], Williams and 

coworkers [4], Laskin, Denisov, and Futrell [5], and Siu and coworkers [6,7].  The lack of 

quantitative information suggests that detailed studies of small peptides and even single amino 

acids would be valuable, hence recent work from our group has examined protonated glycine [8], 

asparagine [9], and diglycine [10,11].   

In the present work, we comprehensively characterize the fragmentation reactions of 

H
+
Cys formed by electrospray ionization (ESI) using gas-phase threshold collision-induced 

dissociation (TCID) experiments carried out in a guided ion beam tandem mass spectrometer 

(GIBMS).  Our experimental results are compared to previous energy-resolved CID studies of 

Harrison and coworkers (ions formed by fast atom bombardment) [12], O’Hair, Styles, and Reid 

(OSR, ions formed by ESI) [13], and Rogalewicz, Hoppilliard, and Ohanessian (RHO, ions 

formed by ESI) [14], which are in  qualitative agreement with the present study with a few 

notable exceptions.  We complement our experimental work by examining the potential energy 

surfaces for all observed decompositions using theory at the B3LYP/6-311+G(d,p) level 

followed by single point calculations using B3LYP, B3P86, and MP2(full) levels with the 6-

311+G(2d,2p) basis set.  These computations build on similar work by OSR and RHO and yield 
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detailed step-by-step pathways for all decompositions.  For the two primary dissociation 

channels, deamidation and (CO + H2O) loss, our theoretical results generally match those of 

OSR at the MP2(FC)/6-31G*//HF/6-31G* level and RHO at the MP2(FC)/6-31G*//MP2(FC)/6-

31G* level, although a more comprehensive examination of parallel pathways is conducted here.  

Mechanisms for subsequent decompositions are also examined here for the first time and an 

interesting rearrangement of the intact amino acid is identified.  Importantly, quantitative 

agreement between the experimental and theoretical thermochemistry provides validation of the 

mechanisms and product structures.   

 

Experimental and Computational  

The Electronic Supplementary Material contains a detailed description of the experiment, 

analysis methods, and computational approach.  Briefly, experiments are conducted using a 

guided ion beam tandem mass spectrometer (GIBMS) that has been described in detail 

previously [15,16].  Protonated cysteine is formed using an electrospray ionization (ESI) source 

[17] under conditions similar to those described previously [8-11,17-20].  Because the ions 

undergo multiple collisions (>10
4
) with the ambient gas in the hexapole region of this source, 

they are assumed to have internal energies well described by a Maxwell-Boltzmann distribution 

of rovibrational states at 300 K, as verified in previous experiments [17-20].  Ions are extracted 

from the hexapole, mass selected using a magnetic momentum analyzer, decelerated to a well-

defined kinetic energy, and focused into a radio frequency (rf) octopole ion guide that traps the 

ions radially [21,22].  The octopole passes through a static gas cell containing xenon kept at 

sufficiently low pressures that single collision conditions prevail.  The reactant and product ions 

are mass analyzed using a quadrupole mass filter and are detected with a Daly detector [23].  Ion 

intensities as a function of collision energy are converted to absolute cross sections as described 

previously [15], with relative and absolute uncertainties of about ±5% and ±20%.  Ion kinetic 

energies in the laboratory frame are converted to energies in the center-of-mass (CM) frame 
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using ECM = Elab m/(m+M), where M and m are the masses of the ionic and neutral reactants, 

respectively. All energies herein are reported in the CM frame unless otherwise noted. 

Threshold regions of the CID reaction cross sections are modeled using procedures 

developed elsewhere [24-26].  The Electronic Supplementary Material contains details of the 

analysis procedure, which includes explicitly accounting for internal and translational energy 

distributions, the effects of multiple collisions, the lifetime of the dissociating ions, as well as 

competition among parallel reactions in a full statistical treatment [26].  Because our models 

only represent products formed as the result of a single collision event, we explicitly measure the 

cross sections as a function of Xe pressure and extrapolate to zero pressure (rigorously single-

collision conditions) [27].  In the present system, small but noticeable pressure effects were 

observed such that only data that had been extrapolated to zero pressure were analyzed.   

 Structures, vibrational frequencies, and energetics for all reactants, products, transition 

states, and intermediates were calculated using Gaussian 09 [28] at the 6-311+G(d,p) level 

[29,30].  Zero-point vibrational energy (ZPE) corrections scaled by 0.99 [31] were used to 

correct relative energies of various conformers determined from single point energy calculations 

carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set [29].  

For the reaction pathway calculations detailed here, TSs were generally determined by relaxed 

potential energy surface scans (in which a likely reaction coordinate was systematically varied 

while allowing all other degrees of freedom to freely optimize) and were confirmed by the 

character of the potential energy surface scans and examination of the imaginary frequency and 

intrinsic reaction coordinate (IRC) calculations when needed.  In previous work on protonated 

glycine and protonated diglycine [8,10,11], these levels of theory were found to provide accurate 

reproduction of several relevant experimental results.   

 

Nomenclature   

 The nomenclature used to identify the different structural isomers of H
+
Cys is based on 

that established previously for alkali cationized glycine [32-34]. Briefly, the conformations are 
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identified by their proton binding site in brackets, e.g., [N,CO,S] indicates that the proton is 

bound directly to the nitrogen and the NH3
+
 group forms hydrogen bonds to the carbonyl and 

sulfur groups.  (In our previous work [35], the interaction with the sulfur side-chain was omitted 

because it was not needed to differentiate the four lowest energy conformers considered.)  The 

binding site is then followed by a description of the cysteine orientation, named by the series of 

dihedral angles starting from the carboxylic acid hydrogen of the backbone and going to the 

terminal side-chain sulfur (HOCC, OCCC, CCCS, and CCSH, respectively). The 

dihedral angles are distinguished as cis (c, for angles between 0° - 50°), gauche (g, 50° - 130°), 

or trans (t, 130° - 180°).  The present definitions differ from the defining angles used previously 

[35] (45° and 135°) because they provide more distinctive names for similar conformations.  In 

some cases, gauche angles of the CCSH dihedral can have opposite signs leading to distinct 

conformations, in which case, a subscript + and ─ are used to distinguish them.  Our scheme for 

naming transition states along the calculated potential energy surfaces are specified below, but 

also remain a bit more complicated than simply numbering the various species.  We believe such 

nomenclature allows better visualization of the transformations involved and can potentially be 

systematically extended to longer chains as well.   

 

Results 

Collision-induced Dissociation of H
+
Cys 

 In our experiments, six main products are observed in the CID of H
+
Cys at m/z 18, 43, 

59, 76, 87, and 105, as shown in Figure 1.  According to the work of O’Hair, Styles, and Reid 

(OSR) [13], these masses can be identified according to reactions 1 – 6, in order of their 

appearance energies. 

  H
+
Cys  +  Xe  →  NH4

+
 (m/z 18) +  C3H4O2S    (1) 

→  C3H5O2S
+
 (m/z 105) +  NH3    (2) 

→  C2H6NS
+
 (m/z 76) +  H2O  +  CO     (3) 

→  C3H3OS
+
 (m/z 87) +  NH3  +  H2O   (4) 
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→  C2H3S
+
 (m/z 59) +  NH3  +  H2O  +  CO     (5) 

→  C2H5N
+
 (m/z 43) +  H2O  +  CO  +  HS      (6) 

The kinetic energy dependence shows that reactions 1 – 3 are primary reactions, whereas 

reactions 4 – 6 involve subsequent decompositions of the primary products.  OSR also performed 

MS/MS experiments to verify these subsequent decompositions.  Here, we note that the m/z 105 

product ion begins to decline near the onset of reaction 4, consistent with subsequent loss of 

water from the C3H5O2S
+
 product ion.  The subsequent nature of this decomposition is 

demonstrated nicely by the fact that the sum of these two cross sections behaves smoothly with 

increasing energy (green solid line in Figure 1).  Notably this summed cross section also declines 

at higher energies, which appears to be partly a consequence of the subsequent decomposition 

reaction 5 forming m/z 59.  Contributions to this product ion from the m/z 76 precursor are also 

evident as the sum of the m/z 59, 87, and 105 cross sections (red dashed line in Figure 1) does 

not change smoothly at the onset for m/z 59.  We note that OSR demonstrated both pathways for 

forming m/z 59 in their MS/MS studies.   

 At very high energies, we also observe three additional product ions with nominal masses 

of 26, 28, and 35, although these identifications could be off by as much as 1 amu as their small 

magnitudes made definitive assignments difficult in these low mass-resolution experiments.  It 

seems plausible that m/z 28 is HCNH
+
 formed by loss of thiol (CH3SH) from the m/z 76 product 

ion, with m/z 26 being CN
+
 or C2H2

+
.  The m/z 35 could be protonated hydrogen sulfide, H3S

+
, 

but all three assignments are tentative and not explored further in this work.   

 In early energy-resolved CID studies [12], Harrison and coworkers observed reaction 2 as 

the only process at their lowest relative collision energy of about 0.4 eV.  This is followed by 

reaction 3, then reaction 4, and then reaction 5 as the collision energy was increased.  This is 

consistent with the present work with the exceptions that no NH4
+
 was observed by Harrison, 

probably because the mass was too low for efficient collection in their apparatus, and their 

thresholds for the various product ions are almost 1 eV (center-of-mass) lower than the present 

work, an observation that indicates their ions are probably hot.  In the study of OSR [13], the 
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ammonium ion was observed along with m/z 105 and 76 as the primary product ions, all having 

apparent thresholds near 1.2 eV relative energy with equal intensities below ~ 2 eV, center of 

mass.  OSR studied both H
+
Cys and d2-H

+
Cys in order to more readily identify the various 

products.  (For comparison to the present data, it is worth noting that they inadvertently switched 

the labels of the m/z 89 and 107 d2 products in their Figure 1.)  The m/z 87 ion appears next in 

energy, followed by m/z 59, with m/z 43 having the highest appearance energy.  Except for the 

relative intensities of the three primary products and their identical thresholds, all these 

observations are in accord with the present data.  However, it is clear that the results of OSR are 

taken under multiple collision conditions as the precursor ion disappears completely at relative 

energies above about 3.5 eV, the m/z 76 ion is the dominant species present near 4 eV, and m/z 

59 becomes the dominant ion from 5 eV to the highest relative energy examined, 7.3 eV.  Note 

that the intensity of the three small products observed here, m/z 26, 28, and 35, would be too 

small to observe easily at this energy.  Finally, RHO [14] observed reactions 2 – 5 but not 

reaction 1, with apparent relative onsets that match the present results.  The ions in this study are 

clearly hot, as the absolute thresholds are well below those observed here (by > 1 eV in the 

center-of-mass frame).  Also their product intensities decline rapidly above a relative energy of 

about 5 eV (where 10 eV is the maximum relative energy studied), indicating multiple collision 

conditions are probably present.   

 

Theoretical Results: Structures of H
+
Cys 

Although conformations of protonated cysteine have been examined previously 

[14,35,36], it does not appear that a comprehensive evaluation of the possible structures has been 

published, with only eight distinct conformers previously characterized.  Here, relative energies 

at 0 K including ZPE corrections for twenty-six conformers of H
+
Cys calculated at three 

different levels of theory (B3LYP, B3P86, and MP2(full)) can be found in Table S1 with fifteen 

of these species shown in Figure S1.  Table S1 includes a comparison to the six species 

previously found by Noguera et al. [36], which overlap with the likely precursor for the 
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fragmentation reactions located by OSR (which they called N) [13], and an additional conformer 

located by RHO [14].  Table S1 does not include oxygen protonated forms, some of which can 

be found in the potential energy surfaces below.  Table S2 of the Electronic Supplementary 

Material tabulates the energetics of the TSs connecting the species in Table S1.   

At all levels of theory, the lowest lying structures for H
+
Cys have a [N,CO,S] 

coordination, a structure in which the protonated amine group hydrogen bonds to both the 

carbonyl oxygen atom (NH···OC) and the sulfur atom of the amino acid side chain (NH···S).  A 

third hydrogen bond is also present between the hydroxyl group and the carbonyl oxygen atom. 

The four lowest energy structures having this bonding motif vary in the side-chain orientations: 

tcgg, tgtg, tcgg, and tgtt, with the latter three lying within 5 – 7 kJ/mol of the tcggconformer, 

the ground structure at all levels of theory.  The primary difference between tcgg and tcgg and 

between tgtg and tgtt is simply whether the SH bond points in the same direction as the 

carboxylic acid group (tcgg+ and tgtg) or the amino group (tcgg and tgtt), Figure S1.  On the 

basis of previously calculated 298 K free energies for these species [35], an equilibrium 

distribution of these [N,CO,S] conformers predicts that 82 – 86% of the population lies in the 

tcgg+ and tgtg– conformers with the remaining population in the tcgg– and tgtt conformers.  This 

is consistent with the IRMPD spectra obtained previously [35].   

Table S2 shows that the TS for the highest energy transformation among the various 

conformers of H
+
Cys lies only 62 kJ/mol above the ground structure, which is well below the 

energy required for dissociation of H
+
Cys.  Thus, conversion from the ground state conformer to 

any of the other conformers in Figure S1 is energetically feasible well before dissociation occurs.  

In addition, our calculations find that sulfur protonated forms are either not stable minima on the 

potential energy surface or can be reached only through fairly complicated, high-energy (98 – 

117 kJ/mol) TSs.  As RHO calculate that loss of H2S from such species lies at least 199 kJ/mol 

above ground H
+
Cys[N,CO,S], this decomposition channel is not observed because it cannot 

compete with the much lower energy pathways for deamidation and (H2O + CO) loss (see 

below).   
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Theoretical Results: Pathways for Elimination of NH4
+
 and NH3 

 Table S3 of the Electronic Supplementary Material details the results of our calculations 

for deamidation, with Table 1 listing key transition states and products.  This process involves 

four parallel pathways, AN - DN, two of which are shown in Figure 2.  As previously outlined by 

OSR [13], elimination of ammonium and ammonia from protonated cysteine is facilitated by a 

backside attack of the thio group leading to a three-membered thiirane carboxylic acid (Tica).  

Similar behavior has been detailed for decomposition of lithiated cysteine, again forming the 

Tica species [37,38].  This backside attack can only occur from intermediates in which the NH3
+
 

group does not interact with the thio group, i.e., from [N,CO] and [N,OH] structures.  In their 

work, OSR identified [N,OH]ttgg− (which they called N) as the key intermediate, but in 

principle, any of the seven [N,CO] or [N,OH] intermediates can have this backside attack 

because they all have the thio group on the side of the backbone away from the amine, Figure S1.  

In practice, the lowest energy pathways involve [N,OH]ttgg− (path AN) and its analogue, 

[N,CO]tcgg− (path BN), because these species are stabilized by hydrogen bonding interactions 

between the SH and the CO or OH groups, respectively, Figure 2.  Because the NH∙∙∙OH and 

NH∙∙∙OC hydrogen bonds are broken as the CN bond is broken, the TS for ammonia loss is 

preferentially stabilized by the SH∙∙∙OC bond available from the [N,OH]ttgg− precursor 

compared to the SH∙∙∙OH bond in the [N,CO]tcgg− precursor.  Thus, TS[N,OH]ttgg−{C~N} 

(called TSA by OSR and TS(M1-B3) by RHO), where ~ indicates the bond is being broken, lies 1 

– 10 kJ/mol below TS[N,CO]tcgg−{C~N}, and 112 – 125 kJ/mol (151 kJ/mol, OSR; 140 kJ/mol, 

RHO) above ground reactants, Tables 1 and S3.  Pathways for NH3 loss from [N,CO]tggg (path 

CN) and [N,OH]tggg (path DN), where the hydrogen on the sulfur points away from the carboxyl 

group, were also located, with {C~N} TSs lying only slightly higher in energy, 118 – 133 and 

123 – 137 kJ/mol, respectively, above ground reactants (1 – 13 kJ/mol above path AN).  The 

other three possible precursors, [N,CO]tcgg+, [N,OH]ttgg+, and [N,OH]tggt, were found to 

readily rearrange to one of the other variants before reaching the TS for CN bond cleavage, 

Table S1.   
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 Similar to the calculations of OSR, our exploration of the potential energy surface for 

path AN finds that after passing through the {C~N} TSs, a complex of ammonia and Tica 

protonated on the sulfur is formed in which the ammonia binds to the alpha carbon (as indicated 

by the subscript), H
+
Tica[S](NH3,C) (called IA by OSR); however, at our level of theory, this 

collapses to H
+
Tica[S](NH3,C) via a TS that lies lower in energy than the C form (and the C 

form as well at the MP2 level) once zero point energies are included, Table S3.  There are four 

conformers of H
+
Tica[S](NH3,C) that are formed via the four pathways, Table S3.  From their IA 

intermediate, OSR indicated that ammonia or ammonium ion could be lost, identifying 

TS[N,OH]ttgg−{C~N} (TSA) as the rate-limiting TS for loss of the ammonium ion.  In contrast, 

we find that transfer of the ammonia to another more stable position on H
+
Tica costs additional 

energy, Figure 2.  Moving to the hydroxyl group over TS(H
+
Tica[S])(NH3,C) requires 10 – 

16 kJ/mol of energy above the {C~N} TSs along all four paths AN – DN, Table 1.  Thus, the rate-

limiting TSs for deamidation lie 122 – 151 kJ/mol above ground reactants, Table 1.  Once over 

these barriers, the system falls into a deep well with the most stable isomer being the (Tica-

cc)(NH4
+

CO) complex (where the HOCC and OCCS dihedral angles of Tica are specified) in 

which the hydroxyl proton has moved to the ammonia and the proton on the sulfur has 

transferred to the carbonyl, Figure 2.  This species lies 10 – 14 kJ/mol below the ground H
+
Cys 

reactant, Table 1.  Four alternative isomers of (Tica)(NH4
+
) and two of (H

+
Tica)(NH3) and two 

of were also located, Table S3.  Most of these species can lose NH4
+
 to yield the Tica products, 

with tg–, tg+, and cc conformers all being possible (with relative energies of 0, 1 – 2 and 4 – 7 

kJ/mol, respectively), Table 1 and Figure 2.  The energy of the NH4
+
 + Tica-tg– product 

asymptote (called T by OSR) is 100 – 108 kJ/mol (98 kJ/mol, OSR) above reactants and 19 – 25 

kJ/mol below the rate-limiting TS(H
+
Tica[S])(NH3,C).   

 Clearly, once the H
+
Tica(NH3) complexes are formed, loss of ammonia is feasible once 

enough energy is available, with H
+
Tica[CO,S]ttc being the ground conformer.  The 

H
+
Tica[S,CO]ttc conformer lies 5 – 12 kJ/mol higher in energy and was the product identified by 

OSR (called A) and RHO (called B3).  We also located three additional conformations of H
+
Tica, 
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Figure 2.  Overall, loss of ammonia is limited by the loose TS associated with the final products, 

H
+
Tica[CO,S] + NH3, 140 – 155 kJ/mol above reactants, 13 – 26 kJ/mol above the rate-limiting 

TS, and 38 – 51 kJ/mol above the NH4
+
 + Tica-tg– products, Table 1.   

 OSR and RHO also examined alternative isomers of the C3H5O2S
+
 (m/z 105) product, 

identifying two stable alternatives: protonated 3-thio-propenoic acid (H
+
Tpra, called F by OSR 

and B2 by RHO), H
+
(HSCHCHCOOH), 12 kJ/mol above and 10 kJ/mol below H

+
Tica, 

respectively, and a high energy (112 and 153 kJ/mol above H
+
Tica) structure containing a 3-

membered oxygen heterocycle (called C and B1, respectively), Table S3.  The latter structure is 

clearly too high in energy to consider further, but our own explorations of H
+
Tpra located seven 

conformers (OSR mention two).  In agreement with the MP2 calculations of OSR, we find 

H
+
Tpra[S]tttt lies 22 kJ/mol above H

+
Tica[CO,S] at the MP2 level (17 kJ/mol at B3P86), but is 

more stable by 2 kJ/mol at the B3LYP level.  Furthermore, the ground H
+
Tpra[S,CO]ttcc species 

is lower than H
+
Tica at all levels of theory by 7 – 26 kJ/mol, in agreement with the results of 

RHO.  Despite this lower energy, all H
+
Tpra structures require a hydrogen atom (or carboxylic 

acid) shift between carbon centers in order to be formed from cysteine.  Analogous processes 

calculated by RHO for H
+
Ser lie about 240 kJ/mol above reactants, or 85 – 100 kJ/mol above the 

rate-limiting TSs for formation of H
+
Tica.  Thus, H

+
Tpra is unlikely to be important in the 

decomposition of H
+
Cys, especially near threshold.   

 

Theoretical Results: Pathways for Rearrangement of H
+
Cys 

 The computational work conducted here also elucidated an interesting rearrangement 

mechanism that could compete with the fragmentation process, but ultimately cannot be 

observed mass spectrometrically.  After passing over the {C~N} TSs and forming the 

H
+
Tica[S](NH3,C) intermediates, a covalent C-N bond can form, which synchronously shifts 

the thio group to C.  The TSs for this shift relative to the H
+
Tica[S](NH3,C) intermediates are 

low in energy, 2 – 10 kJ/mol for the ttc conformer, 1 – 6 kJ/mol for tcc, 1 – 5 kJ/mol for tct, and 

-0.2 – 1.6 kJ/mol for the ttt conformer.  These TSs lie 0 – 10, 4 – 12, 7 – 14, and 11 – 16 kJ/mol 
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below the associated TS(H
+
Tica[S])(NH3,C) leading to dissociation, Table S3.  In all cases, 

formation of the C-N bond yields protonated 2-mercapto-beta alanine, H
+
MAla, in which the 

thio and amine groups have switched carbon positions from H
+
Cys.  Five conformers of 

H
+
MAla can be formed with relative energies spanning 0 – 33 kJ/mol, Table S3.  The lowest of 

these is shown in Figure 2 and lies 3 – 5 kJ/mol above ground H
+
Cys.   

 

Theoretical Results: Pathways for Elimination of NH3 + H2O 

 The H
+
Tica (m/z 105) product ion can undergo further decomposition by loss of water, as 

shown in Figure 3, with energies summarized in Table S4 and key species in Table 2.  More 

details of the rearrangements involved can be found in the Electronic Supplementary Material.  

The ground conformer of this product, H
+
Tica[CO,S]ttc, must first rearrange to H

+
Tica[S,CO]ttc, 

from which the carboxylic acid group can then rotate (in either direction) to form 

H
+
Tica[S,OH]tcc, lying 19 – 27 kJ/mol above the ground conformer of this product.  Now the 

proton on the sulfur is transferred to the hydroxyl group, which induces cleavage of the C-OH 

bond and forms a c-C3H3OS
+
(H2O) complex, Figure 3.  Loss of water from c-C3H3OS

+
(H2O) 

complex requires 43 – 52 kJ/mol and forms the c-C3H3OS
+
 cation, a thiirane carbonyl, Figure 3.  

Alternative isomers of the C3H3OS
+
 species were also located, Table S4. Overall, the loss of 

water from the H
+
Tica product costs 105 – 142 kJ/mol, with the overall energy of the c-C3H3OS

+
 

+ H2O + NH3 products being rate limiting and lying 256 – 289 kJ/mol above the H
+
Cys ground 

conformer, Table 2.   

 

Theoretical Results: Pathways for Elimination of H2O + CO 

The [N,OH]ttgg− structure was also identified by OSR (called N) as the critical 

intermediate needed for elimination of water and CO.  The key requirement here is that a proton 

on the amine group be positioned to transfer to the hydroxyl group, hence, any of the [N,OH,S] 

or [N,OH] conformers of H
+
Cys should be suitable.  Indeed, we find that there are six parallel 

pathways for water elimination, all with very similar energetics (paths AO - FO), Tables 3 and S5 
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and Figure S2 of the Electronic Supplementary Material, with path BO being representative, 

Figure 4.  The path identified by OSR, path DO here, has a TS for water loss, TS[N-OH,OH-

N]ttgg−{C~OH} (which OSR call TSB, 168 kJ/mol), lying at 150 – 173 kJ/mol.  (Here our 

nomenclature points out that the proton remains in a shared position between the N and OH 

groups but shifts from the nitrogen to the hydroxyl.  As this shift occurs, the C-OH bond 

weakens and begins to break.)  The lowest energy TS we found according to DFT, TS[N-

OH,OH-N]ttgg+{C~OH} (path AO), lies 148 – 170 kJ/mol above reactants, only 1 – 2 kJ/mol 

below the ttgg− variant.  At similar energies (lowest at the MP2 level), we also find TS[N-

OH,OH-N,S]ttgg+/−{C~OH} (paths BO and CO).  In addition, [N,OH,S]tgtg+/− intermediates lead 

to TS[N-OH,OH-N,S]tgtg+/−{C~OH}, which lie slightly higher in energy at 150 – 179 kJ/mol 

above ground reactants (paths EO and FO).  All six pathways have very similar energetics 

differing by only 3 – 9 kJ/mol, Tables 3 and S5 and Figure S2, and should provide viable 

pathways to loss of water.   

Once over the {C~OH} TSs, the molecules generally form acylium ions stabilized by the 

presence of the water and can potentially be viewed as the oxygen protonated forms of H
+
Cys.  

From the C3H6ONS
+
(H2O) complexes, the C-CO bond can then be cleaved at {C~CO} transition 

states to form (CO)C2H6NS
+
(H2O) lying 20 – 87 kJ/mol above the ground reactants.  Because so 

much energy is released after passing over the rate-limiting TSs, it seems likely that all six 

pathways can explore the most stable configurations available.  The most stable complex found, 

(OCHN)C2H6NS
+
(H2OHN), has the water and CO bound to the two hydrogens of the amine group.  

Because the energy of the final products, C2H6NS
+
 + H2O + CO, also lies below the rate-limiting 

TS, by 30 – 61 kJ/mol (13 kJ/mol according to the calculations of OSR), Figure 4 and Table 3, 

both the CO and water are rapidly eliminated and products associated with loss of only CO or 

only H2O are not observed.  The C2H6NS
+
 product ion in this case is the cysteine immonium ion 

having the 1-amino-2-mercapto-ethylium cation (AMEt
+
) structure, in agreement with OSR and 

RHO.  We found three stable conformers of AMEt
+
, cg (called A1 by RHO), gg+ (called B by 

OSR), and gg−.  The cg conformer is the lowest energy because it is stabilized by an NH···S 
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hydrogen bond, Figure 4. OSR and RHO also examined alternative isomers of this product ion 

finding the thio-substituted aziridine three-membered ring nitrogen heterocycle.  This species 

was calculated to lie 55 and 65 kJ/mol, respectively, above AMEt
+
, and hence was not pursued 

theoretically in the present work.  This agrees with previous theoretical work by Barone et al. 

[39] on the simpler C2H6N
+
 species (without the thio group).  They examined seven possible 

isomers with the 1-amino-ethylium cation being the lowest by over 34 kJ/mol at several levels of 

theory.   

 

Theoretical Results: Pathways for Elimination of H2O + CO + HS 

 From AMEt
+
, loss of the HS radical occurs simply by breaking the C-S bond.  The 

calculated potential energy surface for this process finds no barrier in excess of the energy of the 

products, 233 – 284 kJ/mol above AMEt
+
-cg and 326 – 399 kJ/mol above the ground H

+
Cys 

reactants, Table 3.  The C2H5N
+
 radical ion formed has the vinyl amine structure, CH2CHNH2

+
, 

and is isoelectronic with the allyl radical.  Alternative isomers, CH3NCH2
+
, CH3CHNH

+
 (where 

the NH hydrogen can be cis and trans relative to the carbon backbone), and c-C2H4NH
+
, are all 

calculated to lie >116 kJ/mol higher in energy, Table S5.   

 

Theoretical Results: Pathways for Elimination of H2O + CO + NH3 

 The C2H3S
+
 (m/z 59) product can be formed via two routes.  Starting with the c-C3H3OS

+
 

(m/z 87) product formed by loss of NH3 and H2O, Figure 3, cleavage of the C-CO bond can 

occur, Table 2.  This TS{C~CO} is rate limiting at the B3LYP and MP2(full) levels, whereas 

B3P86 places the energy of the products slightly higher.  The isomer of C2H3S
+
 formed by this 

route is thiirene (c-C2H2S) protonated on a carbon, H
+
c-C2H2S[C], but protonated thio-ketene 

lies lower in energy, Table 2.  However, rearrangements between these structures (or of the 

analogous precursors) require hydrogen bond shifts that are expected to lie high in energy, e.g., 

the 1-2 hydrogen shift connecting H
+
c-C2H2S[C] with H

+
CH2CS[C] lies 125 – 171 kJ/mol above 
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the H
+
CH2CS[C] product ion (463 – 537 kJ/mol above reactants), Table S4.  Thus, the 

protonated ketene structures are unlikely to be important in this decomposition near threshold.   

Alternatively, starting with the C2H6NS
+
 (m/z 76) product, AMEt

+
-gg–, formed by loss of 

H2O and CO, the hydrogen on sulfur can transfer to the nitrogen, Table S5.  This leads to amino-

thiirane protonated on the nitrogen, H
+
ATi[N].  This isomer of C2H6NS

+
 lies 33 – 62 kJ/mol 

above AMEt
+
-gg– (155 – 192 kJ/mol above ground H

+
Cys), Table S5.  Cleavage of the C-N 

bond in H
+
ATi[N] through a loose TS leads to the H

+
c-C2H2S[C] + NH3 products directly.  Thus, 

this route to formation of these products could dominate because the TS is slightly lower than the 

path above (by 0 – 10 kJ/mol) and the C2H6NS
+
 (m/z 76) precursor has a larger cross section than 

the C3H3OS
+
 (m/z 87) precursor.  This is consistent with the energy dependence shown in Figure 

1 and the results of OSR.   

 

Data Analysis: Independent Channel Models  

The analysis of the experimental data is challenging because of the competition among 

the various channels and the multiple pathways available to each product.  Initially, the six major 

products, m/z 18, 105, 76, 87, 59, and 43, and their total were all analyzed independently using 

Equation S1.  All analyses are collected in Table S6 of the Electronic Supplementary Material, 

which also contains a more detailed description of the analyses described briefly here, and Table 

S7 lists the key results.  Analysis of the total cross section provides accurate thermochemistry for 

the lowest energy channel as well as establishing the value of the parameter n in Equation S1, 

which controls the shape of the total cross section.  It was found that the four TSs along the AN - 

DN pathways lead to nearly identical results, Table S6.  Various assumptions concerning the 

rotational symmetries of products, reaction path degeneracies, and treatment of torsional modes 

as rotors were also considered, Table S6.  The result for fitting the total cross section listed in 

Table S7 is an average value for all these approaches.  Similar results are obtained when 

analyzing the cross section sum of all channels associated with deamidation, m/z 18, 105, and 87.  

For the cross section for ammonia loss, taken as the sum of m/z 105 and 87, loose, tight, and 
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switching TS models were tried, with the latter agreeing best with the theoretical results.  The 

results in Table S7 indicate that the results for this channel are sensitive to the assumptions made 

with variations in the threshold that match the different assumptions.  For the loss of H2O and 

CO, the m/z 76 product cross section was analyzed using several plausible assumptions for 

pathways AO - FO, and different rotational symmetries, reaction degeneracies, and torsion 

treatments.  The result for fitting this channel independently listed in Table S7 is an average of 

all these approaches.   

The three high energy channels (m/z 87, 59, and 43) are all limited by loose PSL TSs, 

however, they all involve losses of multiple neutrals, which cannot be accurately modeled using 

the CRUNCH software presently available.  To get a rough idea of the thresholds for these 

channels, the parameters for the loose TS leading to NH3 loss was utilized in all cases, with 

results shown in Table S7.  In these three cases, we believe these thresholds are reasonable 

choices for the true thermochemistry because these channels are limited by loose PSL TSs, 

which means that appreciable competitive shifts are minimized.   

 

Data Analysis: Competitive Models  

A more accurate determination of the threshold for the two primary channels is obtained 

by modeling the competition between them, which is handled naturally in Equation S1 by the 

kj/ktot term.  For a physically meaningful result, this required loosening the low-frequency modes 

in the H2O + CO loss TS.  Various assumptions regarding the relative reaction degeneracies and 

treatment of torsions were again made, Table S6, but make only small changes (less than 0.06 

eV) in the thresholds and the differences in the thresholds for the two channels remains at 0.20  

0.07 eV.  Our final experimental thresholds for these two channels in Table S5 are the average of 

these results, with an appropriately increased uncertainty, Tables S7 and 4.  Likewise, the 

branching between the formation of NH4
+
 (m/z 18) and loss of NH3 (m/z 105 + 87) can be added 

to the competitive model with results for simultaneously fitting all three channels shown in 

Figure 5.  Now, only the tight TS and switching TS models were able to accurately reproduce the 
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data.  As explained in the Electronic Supplementary Material, the experimental results indicate 

that the loose PSL TS for NH3 loss must lie above the tight TS limiting the threshold for NH4
+
 

production, in agreement with theory and consistent with a switching TS being the most 

appropriate model.  Our best experimental value for this channel, Tables S5 and 4, is an average 

of all statistical assumptions including an increased uncertainty, Table S6.  Finally, we also tried 

to analyze the lowest four energy product channels simultaneously by using a recently devised 

statistical model for sequential reactions [40], but as explained in the Electronic Supplementary 

Material, our best threshold for NH3 + H2O loss (m/z 87) is that obtained from independent 

analysis, Table S7 and 4.   

 

Discussion 

The experimental thresholds for six product channels are compared to the theoretical 

values in Table 4 and shown graphically in Figure 6.  Note that for both primary channels, the 

calculated asymptotic energies for NH4
+
 (m/z 18) and C2H6NS

+
 (m/z 76) are well below the 

experimental values (by 36 – 44  12 kJ/mol and 23 – 70  9 kJ/mol, respectively).  Thus, it is 

clear that both channels proceed over rate-limiting tight TSs.  For NH4
+
 production and (H2O + 

CO) loss, the theoretical values shown include the calculated range of values for paths AN – DN 

and AO – FO.  One can imagine that the best experimental number could either correspond to the 

lowest energy threshold or be more comparable to a weighted average of the various pathways.  

Indeed, good agreement at all three levels of theory is obtained when viewed as the latter 

perspective, with reasonable agreement for the former.  Because the range of TS energies is 

narrower for the H2O + CO loss channel, the comparison with experiment here is more 

discerning, with B3LYP being in closest agreement to the average, MP2 being slightly low, and 

B3P86 is slightly high.  However, for NH4
+
 formation (m/z 18) and NH3 loss (m/z 105), MP2 and 

B3P86 match well and B3LYP is low.  For the three high energy products, where the 

experimental values do not necessarily account for all variations associated with their sequential 

nature, MP2 reproduces the three experimental values well with B3LYP being low and B3P86 
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being high.  Overall the mean absolute deviation (MAD) between experiment and theory (using 

average tight TS values) is 23, 16, and 8 kJ/mol for B3LYP, B3P86, and MP2, with variations in 

the values commensurate with the experimental uncertainties of about 10 – 20 kJ/mol.  The 

MADs increase by 1 – 2 kJ/mol if the lowest tight TS values are used for comparison instead.   

The quantitative agreement between experiment and theory confirms that the mechanistic 

pathways located for deamidation and H2O + CO loss, as well as the higher energy channels, are 

reasonable.  Further, this establishes the structure of the various products, namely deamidation 

forms thiirane carboxylic acid (Tica) and its protonated form (the products in Figure 2), whereas 

C2H6NS
+
 (m/z 76) has an 1-amino-2-mercapto-ethylium cation structure (AMEt

+
) (the products 

in Figure 4).  Subsequent loss of water from H
+
Tica (m/z 105) leads to a thiirane carbonyl, c-

C3H3OS
+
, Figure 3, which can go on to lose CO forming protonated thiirene, H

+
c-C2H2S.  

Likewise this same product is formed by ammonia loss from AMEt
+
 , which can also lose HS to 

yield the radical vinyl amine cation, CH2CHNH2
+
.   

 Thus, as originally suggested by Harrison and coworkers [12] and then explored more 

thoroughly by O’Hair, Styles, and Reid [13], deamidation of protonated cysteine is enabled by 

anchimeric assistance of the thio group.  Interestingly, this nucleophilic displacement can be 

viewed as a simple intramolecular analogue of the key steps involved in protein splicing by 

inteins, which often involve cysteine residues [41].  In addition, the formation of such a cyclic 

species appears to facilitate an interesting rearrangement of H
+
Cys, identified here 

computationally.  From the key intermediates formed by backside attack of the thio group at the 

protonated amine, formation of a C-N bond yields protonated 2-mercapto-beta alanine 

(H
+
MAla), in which the thio and amine groups have switched positions from H

+
Cys.  In a 

peptide, such an isomerization would lengthen the backbone and could lead to unusual 

decomposition pathways compared to the native peptide, potentially complicating the spectra 

observed in sequencing experiments.   
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Table 1. Relative energies (kJ/mol) of transition states (with imaginary frequencies in cm
-1

) and 

intermediates for NH3/NH4
+
 loss from H

+
Cys 

a
 

Structure
b
 path imag. freq B3LYP B3P86 MP2(full)

b
 

TS[N,OH]ttgg−{C~N}  

(TSA, TS(M1-B3)) 

AN 

 

49 

 

112.3 

 

124.5 

 

124.9  

(151, 140) 

TS[N,CO]tcgg−{C~N} BN 55 120.9 134.3 125.7 

TS[N,OH]tggg{C~N} CN 64 118.6 132.5 125.6 

TS[N,CO]tggg{C~N} DN 64 123.0 137.3 129.8 

TS(H
+
Tica[S]ttc)(NH3,C) AN 104 122.3 133.2 128.4 

TS(H
+
Tica[S]tcc)(NH3,C)

 
BN 116 132.5 145.7 139.0 

TS(H
+
Tica[S]ttt)(NH3,C) CN 97 134.3 148.3 143.1 

TS(H
+
Tica[S]tct)(NH3,C) DN 112 136.7 151.0 145.1 

Tica-tg– + NH4
+
    (T)   99.9 108.5 103.3 (98) 

Tica-tg+ + NH4
+
   101.9 110.4 104.9 

Tica-cc + NH4
+
   106.9 112.7 108.7 

H
+
Tica[CO,S]ttc + NH3   139.8 146.7 154.5 

H
+
Tica[S,CO]ttc + NH3  

(A, B3)   

146.2 

 

158.4 

 

160.0  

(189, 180) 

H
+
Tica[S]ttt + NH3   156.4 171.1 172.4 

H
+
Tica[S,OH]tcc + NH3   159.3 173.8 173.9 

H
+
Tica[S]tct + NH3   162.0 177.4 178.2 

a 
Calculations performed at the stated level of theory using a 6-311+G(2d,2p) basis set with 

geometries and vibrational frequencies calculated at B3LYP/6-311+G(d,p) level. Energies 

include ZPE corrections scaled by 0.99 and are relative to ground H
+
Cys[N,CO,S]tcgg+.  Entries 

in bold are product or rate-limiting TS species.  Transition states either correspond to bond 

cleavages (e.g., {C~N}) or migrations of the ammonia from the C site to the hydroxyl group.  

b
 Names and values in italics are from OSR [13] and RHO [14].   
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Table 2. Relative energies (kJ/mol) of transition states (with imaginary frequencies in cm
-1

) and 

intermediates for H2O and CO loss from H
+
Tica (m/z 105)

a
 

Structure  imag. freq B3LYP B3P86 MP2(full) 

H
+
Tica[CO,S]ttc   139.8 146.7 154.5 

c-C3H3OS
+
 + H2O  256.5 289.2 260.3 

TS(c-C3H3OS
+
{C~CO}) + H2O 256 345.8 392.5 363.3 

H
+
c-C2H2S

+
[C] + CO + H2O  337.3 396.6 353.4 

H
+
c-C2H2S

+
[S] + CO + H2O  366.3 425.8 388.1 

H
+
CH2CS

+
[C] + CO + H2O  214.6 283.3 216.8 

H
+
CH2CS

+
[S] + CO + H2O  306.3 376.6 353.9 

a 
Calculations performed at the stated level of theory using a 6-311+G(2d,2p) basis set with 

geometries and vibrational frequencies calculated at B3LYP/6-311+G(d,p) level. Energies 

include ZPE corrections scaled by 0.99, include NH3, and are relative to ground H
+
Cys[N,CO,S] 

tcgg+.  Entries in bold are product or rate-limiting TS species.  The transition state corresponds to 

a bond cleavage ({C~CO}).   
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Table 3. Relative energies (kJ/mol) of transition states (with imaginary frequencies in cm
-1

), 

intermediates, and products for H2O + CO loss from H
+
Cys 

a
 

Structure
b
 path imag. freq B3LYP B3P86 MP2(full)

b
 

TS[N-OH,OH-N]ttgg+{C~OH} AO 77 153.9 170.5 147.7 

TS[N-OH,OH-N,S]ttgg+{C~OH} BO 65 154.2 174.9 145.8 

TS[N-OH,OH-N,S]ttgg−{C~OH} CO 66 154.5 175.6 144.4 

TS[N-OH,OH-N]ttgg−{C~OH} (TSB) DO 86 155.1 172.7 149.6 (168) 

TS[N-OH,OH-N,S]tgtg−{C~OH} EO 57 156.7 178.4 150.0 

TS[N-OH,OH-N,S]tgtg+{C~OH} FO 52 157.0 178.9 150.3 

TS(C3H6ONS
+
-tg–)(H2OC-HN)  EO 47 157.9 182.0 153.0 

TS(C3H6ONS
+
-tg–)(H2OHN){C~CO}  EO 24 155.4 179.5 154.1 

AMEt
+
-gg–(H2OHN

) + CO DO, FO  35.0 81.8 54.4 

AMEt
+
-gg+(H2OHN

) + CO EO  35.3 82.4 55.4 

(OC
HNt

)AMEt
+
-gg– + H2O    76.4 124.2 95.3 

(OC
HNc

)AMEt
+
-gg– + H2O    77.8 125.4 95.2 

(OC
HN

)AMEt
+
-gg+ + H2O    77.8 125.6 95.9 

AMEt
+
-cg + H2O + CO     (A1) CO  92.6 139.9 113.0 (145) 

AMEt
+
-gg+ + H2O + CO    (B) 

 

AO, BO 

EO, FO  

95.9 

 

144.7 

 

122.5 (165) 

 

AMEt
+
-gg– + H2O + CO DO  96.1 144.6 121.9 

H
+
c-C2H2S

+
[C] + NH3 + H2O + CO    337.3 396.6 353.4 

CH2CHNH2
+
 + H2O + CO + SH   326.1 398.8 396.7 

a 
Calculations performed at the stated level of theory using a 6-311+G(2d,2p) basis set with 

geometries and vibrational frequencies calculated at B3LYP/6-311+G(d,p) level.  Energies include 

ZPE corrections scaled by 0.99 and are relative to ground H
+
Cys[N,CO,S]tcgg+.  Entries in bold are 

product or rate-limiting TS species.  Transition states either correspond to bond cleavages (e.g., 

{C~OH}), or migrations of water as designated by the subscripts.  
b 
Names and values in italics are 

from OSR [13] and RHO [14].    
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Table 4. Experimental and theoretical reaction energies (kJ/mol) for decomposition of H
+
Cys

a
 

Products Exp limiting TS B3LYP B3P86 MP2(full) 

18(NH4
+
) + C3H4O2S 144 (12) TS(H

+
Tica)(NH3,C-HO) 122 – 137 133 – 151 128 – 145 

  products 100 108 103 

105 + NH3 160 (12) switch TS 140 147 155 

76 + H2O + CO 163 (9) TS{C~OH} 154 – 158 170 – 182 144 – 154 

  products 93 140 113 

87 + NH3 + H2O 263 (15) products 256 289 260 

59 + H2O + CO + NH3 363 (22) products 337 397 353 

43 + H2O + CO + HS 388 (24) products 326 399 397 

MAD
b
   23 (21) 16 (12) 8 (4) 

a 
Experimental values are best values from Table S7 with uncertainties in parentheses.  

Theoretical values, taken from Tables 1 – 3 (bolded entries), are performed at the stated level of 

theory using a 6-311+G(2d,2p) basis set with ZPE corrections scaled by 0.99 and geometries 

determined at the B3LYP/6-311+G(d,p) level.  
b 
Mean absolute deviation from experimental 

values.  Mean values for the TSs are used for comparison. 
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Figure Captions 

Figure 1.  Cross sections for collision-induced dissociation of H
+
Cys with Xe as a function of 

kinetic energy in the center-of-mass frame (lower x-axis) and the laboratory frame (upper x-axis).  

Primary channels are indicated by solid symbols with sequential decompositions shown by open 

symbols.  Lines indicate the sum of product cross sections: m/z 105 + 87, green solid line; m/z 

105 + 87 + 59, red dashed line;  

 

Figure 2.  Reaction coordinate surface for deamidation from H
+
Cys showing two of four 

possible pathways, paths AN (full line) and BN (dashed line), along with several variants of the 

products for NH4
+
 formation (m/z 18) and NH3 loss (m/z 105). Geometry optimizations and 

single point energies of each elementary step are determined at the B3LYP/6-311+G(d,p) level 

of theory and corrected for ZPE.   

 

Figure 3.  Reaction coordinate surface for subsequent loss of water from the NH3 loss product, 

H
+
Tica (m/z 105). Geometry optimizations and single point energies of each elementary step are 

determined at the B3LYP/6-311+G(d,p) level of theory and corrected for ZPE.  Short dashed 

lines indicate bonds that are breaking or forming for transition states.   

 

Figure 4.  Reaction coordinate surface for loss of water and CO from H
+
Cys to form C2H6NS

+
 

(m/z 76) showing one of six possible pathways (path BO). Geometry optimizations and single 

point energies of each elementary step are determined at the B3LYP/6-311+G(d,p) level of 

theory and corrected for ZPE.   
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Figure 5.  Symbols show data for the indicated process as a function of collision energy between 

H
+
Cys and Xe in the center-of-mass frame (lower x-axis) and the laboratory frame (upper x-

axis).  Solid lines show the best fit to the data using the model of Equation 1 convoluted over the 

neutral and ion kinetic and internal energy distributions. Dashed lines show the model cross 

sections in the absence of experimental kinetic energy broadening for reactions with an internal 

energy of 0 K.  Model shown is for H2O + CO loss (m/z 76) over the tight transition state of path 

BO competing with deamidation over the tight transition state of path AN followed by formation 

of NH4
+
 (m/z 18) or loss of NH3 (m/z 105+87) where the latter is treated using a switching 

transition state.   

 

Figure 6.  Comparison of experimental threshold energies with B3LYP (blue triangles), B3P86 

(green inverted triangles), and MP2 (red circles) single point energies.  All values taken from 

Table 4.  Minimum and maximum computed values for the NH4
+
 and H2O + CO loss channels 

are included.  Note the break in scale.  Diagonal line shows perfect agreement.   
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