
Automatic Addition of Reset in

Asynchronous Sequential Control Circuits
Vikas S. Vij, Kenneth S. Stevens

University of Utah

Abstract—Asynchronous finite state machines (AFSMs) usually
require initialization to place them in a desired starting state. This
normally occurs by toggling a reset signal upon power-up. This
paper presents an algorithm to automatically generate power-up
reset circuitry thus adding reset to an AFSM after technology
mapping. This approach is independent of design methodology
since it is applied to a gate netlist. The algorithm ensures
all combinational cycles and primary outputs in the circuit
are initialized. Options exist in reset generation to minimize
the power or performance impact on the AFSM. Results are
reported for applying this algorithm to designs of varying size
and complexity.

I. INTRODUCTION

The behavior of a sequential circuit cannot be determined

solely by its primary inputs (PIs). Sequential logic can behave

differently for identical input sequences based on the starting

state. Thus it is essential to initialize sequential logic to a

specific state to ensure correct behavior.

The state based behavior of sequential circuits is imple-

mented with state variables. State variables are created with

feedback cycles in the boolean logic descriptions of sequential

asynchronous finite state machines (AFSM). These feedback

cycles are explicitly maintained in the circuit realization

when the design is technology mapped to static logic gates.

Other logic families, such as dynamic logic, can be used

to implement AFSMs which change how state variables are

implemented. This work applies to designs mapped to static

libraries, since they are the most commonly used logic family.

Initialization is implemented with a reset signal that is

asserted upon power up. This is usually a one-time event,

but can also dynamically occur during operation to reset

a sequential circuit back to its starting state. This paper

addresses the former case of power-up reset.

Reset can have a significant impact on asynchronous logic

design in several ways. The implementation of the reset logic

has a direct influence on the power, performance, and area

of a sequential circuit. Hence optimizing reset for power or

performance can improve the design. Second, it is possible to

change the hazard properties of an AFSM through the addition

of reset. Additionally, if not fully automated, reset poses a

significant manual effort in the synthesis and characterization

of asynchronous circuits.

The addition of reset to an AFSM can be performed at

different stages of a design flow. Firstly, it can be added in the

specification of the design and implemented during synthesis.

Secondly, it can be added at the technology mapping phase

of synthesis. Lastly, the addition of the reset signal can be

performed post technology mapping phase. We have chosen

to perform reset at the latest stage in the design methodology

because it allows the reset logic generation to be independent

of the design or synthesis method used. Thus the method

and algorithms presented here can be employed for circuits

designed by hand, or from synthesis tools such as 3D, Petrify

or Minimalist [1], [2], [3], [4].

The major contributions of this paper are as follows. It gen-

erates an AFSM with reset logic resulting in an improvement

in power, area, and performance over the reset logic generated

by other algorithms. This is primarily achieved with a three

step heuristic based on logical effort [5] to optimize the circuit

either for performance or power. A relationship between reset

and topological cycles in a circuit is shown when a design is

exclusively implemented with static logic gates. The algorithm

is agnostic to how the circuit was implemented and technology

mapped, so it can be used with any of the synthesis engines

as well as with hand designed circuits. For the first time reset

can now become part of any AFSM design automation flow.

II. BACKGROUND

Two significant holes currently exist in the CAD tools

used for synthesis of sequential asynchronous circuit designs:

technology mapping and reset generation. Both of these are

interesting and related problems, as technology mapping can

introduce hazards [6], and reset is dependent on the technology

mapped circuit. Without automating these tasks, synthesis and

characterization of asynchronous circuits necessitates manual

intervention.

Many tools and algorithms exist for the synthesis of AFSMs.

The only one that includes integrated reset support is Petrify

[3]. In Petrify the reset logic is performed post synthesis

and is not technology mapped, requiring a final manual step

to create a circuit. This manual step is being addressed by

a tool named Petreset as an academic project. It analyzes

the synthesis results and the design specification. Through

simulation Petreset determines which gate modifications can

be performed to reset the design. The restriction of this tool

is that it only applies to designs which are synthesized with

Petrify; hence its not independent of design methodology. This

work has not yet been published.

Asynchronous finite state machine synthesis algorithms can

theoretically be modified to automatically generate reset be-

havior jointly with the synthesis. However, we are not aware of

any such work reported in the literature. We are also not aware

of any published work that presents an independent algorithm

to add reset for AFSMs to post technology mapped designs.

III. ALGORITHM

An algorithm is described that automatically synthesizes re-

set logic for sequential AFSMs regardless of the specification

style or method used to generate the circuit. The inputs to the

algorithm include (a) the sequential circuit technology mapped

to single output static gates, (b) the boolean behavior of static

gates available in the cell library, (c) boolean logic levels for all

signals in the reset state. Two additional inputs may optionally

Proceedings of 2013 IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC)

374

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276278378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


E7
V7

E8

V8

V1

E1

E9

V9

V2

E2 E10
V10

E11

V11

V3

E3

E13
V13 V6

E6
V5

E5 E12
V12V4

E4

Fig. 1: A Cyclic Directed Graph Example

be included: a set of performance critical paths, and a list

of primary inputs that remain undefined upon application of

system reset. No design specification information is required.

The algorithm presented here is based on the observations

that: (a) State variables will be implemented in a circuit that

use static logic with feedback. (b) Feedback creates cycles

in the circuit. (c) Cycles and undefined inputs are the only

sources of undefined signals in a sequential circuit. (d) Any

gate in a cycle can be used to reset the entire cycle.

This algorithm focuses on identifying combinational cycles

in a circuit which need to be explicitly reset, and then selecting

an optimal location in the cycle to add reset. The cost of

each solution is based on heuristics that employ logical effort

to estimate performance and energy costs. The determination

of which cycles need to be reset is performed by simulating

the design and determining which nodes remain undefined.

Finding a reset configuration is not necessarily simple. Circuit

cycles may interact. By resetting one cycle, the other cycles

that it interacts with may automatically be reset.

The algorithm consists of two main sections. The first

section identifies and resets the cycles and the second one

does the same for paths. Multiple solutions are generated by

adding reset signal to each gate of a cycle (path). Each solution

is compared against the others to obtain the least cost solution

using optimization heuristics based on logical effort.

A. Generate cycles to reset when PI’s are defined
A circuit is represented as a directed graph G where G is the

pair (V,E). V is a finite set of vertices v, representing single

output combinational gates, primary inputs (PI), and primary

outputs (PO) of a circuit. E is a set of edges e mapping V ×V
where e is an ordered pair (vi,v j) where vi is the vertex output

and v j is an input to a vertex. P is a set of paths p where p∈ P
is defined as an ordered sequence of vertices < vi, ...,v j > were

∀vk ∈ p no vertex vk ∈ p is repeated, vk ∈V , and where there

is an edge ek ∈ E between each adjacent vertex in path p. We

also represent path p as Vi
p−→Vj. C is a set of cycles c where

c = pi ∈ P and there exists an edge e j that maps between the

first and last element of path pi.

Each path and cycle has two associated edge sets, internal

edges EInt and external edges EExt . EInt is the set of edges

between each vertex in a path or cycle, and EExt is the set of

edges ei : (vi,v j) where v j ∈ p∧ v j �∈ EInt . Note that external

edges include fan-in but not fan-out connectivity.

Fig. 1 shows an example cycle consisting of the path

< v1,v2,v3,v4,v5,v6 >. The internal edge set EInt equals

{e1,e2,e3,e4,e5,e6} and the external edge set EExt in the

example is {e7,e8,e9,e10,e11,e12,e13}.

A
1 Y

A
1 Y

A Y

A Y

Fig. 2: Gate conversion example for Lemma 1

Each vertex vi ∈ V is assigned a value in the set {0,1,x}.

The value of each edge ei is derived from the value of vertex

vi where ei : (vi,v j). We use the convention that a vertex (and

its associated fanout edges) is defined when it has a boolean

value of 0 or 1, otherwise it said to be is undefined, and is

assigned the value x. Since gates (vertices) are single output,

the state of all nets in the system are defined once all vertices

are defined. One required input to the algorithm is the boolean

logic level for all vertices in the reset state.

Definition 1: An input of a static single output gate is said
to have a controlling value if it uniquely determines the output
of the gate independent of other gate inputs.

If an input to a gate does not uniquely determine the output

of the gate, it is a non-controlling value. If all inputs are non-

controlling, then a subset of the inputs must be defined to

define the output.

Axiom 1: The output of a static combinational gate is
defined if all the gate inputs are defined

Lemma 1: For input set I, the output of a single output
static combinational gate will be uniquely controlled by input
ii ∈ I when all other gate inputs i j ∈ I are assigned to non-
controlling values and the output remains undefined.

Proof: This holds due to Axiom 1. Since only one gate

input is undefined, once that signal becomes defined all gate

inputs are defined and the output must switch to a known value

of 0 or 1 based on the combinational function.

Lemma 1 allows any complex static gate to be represented

as a simple inverter or buffer based on the value of input ii
if, when all other gate inputs are defined, the output is still

undefined. Fig. 2 shows examples of this representation. The

NAND gate acts as a simple inverter when ii is signal A since

all other signals are at a high voltage. Similarly the AND gate

can be modeled as a buffer.

Lemma 2: If all edges in EExt of a path (cycle) are set to
logic 0 or 1, then the path (cycle) can be represented as a
path (ring) consisting of inverters or buffers.

Proof: Follows Lemma 1.

Theorem 3: If all the edges in EExt for a cycle are defined
then all the signals in EInt are either defined or undefined.

Proof: Assume that the set of external inputs EExt for

cycle c are set such that none of the vertices in c are defined. In

this case, all internal edges EInt of the cycle will be undefined.

Assume the case above where a single edge ei ∈ EExt is

modified such that ei = (vi,v j) is controlling or the value

of vertex v j becomes defined. This results in edge e j ∈ EInt
becoming defined. According to Axiom 1, this results in the

vertex (gate) vk becoming defined where e j = (v j,vk). This

continues around the ring until all vertices (gates) become

defined to a boolean value.

Theorem 4: If the set vertices in a cycle c0 is a proper
subset of the vertices in another cycle c1, then the cycle c0

375



contained in the bigger cycle c1 must be reset to reset both
the cycles.

Proof: Assume all edges in both the rings are undefined.

Let V0 and V1 be the set of vertices in cycles c0 and c1,

EInt0 ,EExt0 and EInt1 ,EExt1 the internal and external edges.

The smaller ring is the ring where Vi = V0 ∩V1. This results

in a condition where Theorem 3 does not hold since some

vertex vk will have ei = (vi,vk)∈EInt0 ,EExt1 and e j = (v j,vk)∈
EInt1 ,EExt0 which are both undefined. Assume c0 is the smaller

cycle, and e j is the undefined external input to vertex vk. If

we assume that e j is defined, cycle c0 can be reset, which

will result in edge ei becoming defined. This results in all

external edges in EExt1 becoming defined, so that Theorem 3

can hold on the larger cycle. Since c0 is a proper subset of

c1,∃el = (vi,vl) where vl ∈V1 ∧vl �∈V0, so the larger cycle c1

will automatically become reset from the smaller cycle.
Theorem 4 allows the number of vertices (gates) that require

reset to be smaller than the number of cycles in a sequential

circuits that are undefined without reset. Also note that sequen-

tial circuits may have many cycles that overlap each other

in various ways, not just as proper subsets. Theorem 4 may

also be extended to reset interacting cycles that are not non-

proper subsets. However, the code developed here only applies

optimization of multiple cycles according to this theorem, and

thus may not generate the solution with the fewest number of

reset vertices (gates). Such an extension is left for related work.

Further, due to Theorem 4, this algorithm generates reset logic

for cycles based on the smallest vector set cardinality first.

This ensures that larger concentric cycles will automatically

be reset by their smaller cycles.

B. Generate paths to reset when PIs are undefined
This section removes the initial condition which requires

all the PIs to be defined during cycle reset generation. This

was necessary to ensure that all signals in EExt are defined.

The netlist generated in the previous section is used, since it

guarantees all the cycles in the circuit are defined iff all the

PIs are defined. The reset problem now becomes a path based

rather than a cycle based problem.
Lemma 5: For output o and input set I of a single output

static combinational gate, if o is undefined then at least one
of the inputs in i ∈ I is undefined.

Proof: Applying transposition to Axiom 1.
Definition 2: An undefined path is a path were ∀ei ∈ EInt ,

the value of ei is undefined.
Lemma 6: Consider there are no undefined edges in a

circuit when all the PIs are defined. If a PI is marked
undefined, and this results in a set of POs of the circuit being
undefined, then there exists at least one undefined path from
the PI to each undefined POs.

Proof: The input netlist of this section considers that if

all the PIs are defined then all the wires in a circuit including

the POs are defined. Hence if a PI is undefined which results

in a subset of the POs being undefined, then there must be an

undefined path from the PI to each undefined PO.
The path may be represented as a set of inverters, and

resetting any vertex will result in all downstream vertices

Fig. 3: Example 1 circuit implementation before reset

becoming defined. This can be shown using a similar approach

as was done for cycles. Therefore, to reset a path, any vertex

in the path may be reset.

C. Gate Modifications for Reset Insertion
Each gate in a path (cycle) is a candidate for reset insertion.

Therefore every gate is evaluated for the cost and potential of

adding reset to that gate. The reset signal must be inserted as

a controlling value to the gate, and the resultant gate must be

a member of the static gate library employed in the design.

Three separate transformation cases are employed to insert

a reset signal into a cycle, but only the first two transformation

cases can be applied to paths. These are selected based on the

type of optimization being performed and the gate type.

Case1: If the gate is an inverter (buffer), it will be converted

into a NAND or NOR (AND or OR) gate depending on the

required value of the output of the gate after reset. The asserted

reset signal will become the controlling value for the gate.

Case2: This is a generalized condition for Case1 that will

add reset to any static single output gate. The input ei ∈ EInt
in the path (cycle) is identified. The behavior of the gate will

be represented in a sum-of-products format. If the output of

the gate is inverting, and the desired output is 1, then an active

low reset will be ANDed with edge (signal) ei. If the desired

output is 0, then an active high reset signal will be ORed with

the full gate function. A similar transformation is performed

for non-inverting gates. The new gate is used as a possible

solution if it is present in the cell library.

Case3: If the vertex (gate) vi is an inverter, and the inverter

drives an edge (gate) that is not an element of the path (cycle),

this transformation can be employed. This transformation

creates a duplicate inverter v j, disconnects vi from the cycle,

and applies the Case1 transformation to the new inverter v j.

This case is only applied to performance optimization of cycles

requiring reset as defined in Sec. III-A.

Fig. 4a and 4b illustrate these transformations on the circuit

in Fig. 3. The Case1 example can be seen where the inverters

U3 and U7 have been converted into NOR gates in Fig. 4a

using an active high reset because the desired output values

for these gates are 0. Case2 is not directly illustrated because

it results in an inferior solution according to logical effort.

However, assume U2 is being evaluated. This is an inverting

gate, and the desired output value of the gate is 1. Active

low reset will be ANDed with rr ∈ EInt , changing U2 from an

376



(a) Power Optimization (b) Performance Optimization (c) Petrify Implementation

Fig. 4: Example 1 circuit implementation with reset

AOI21 gate into an AOI31 gate. Since this gate was present

in our library, it is a valid transformation. However, because

this solution is of higher cost than a Case1 transformation on

gate U3 in this cycle, it will not be used in the final solution.

The Case3 transformation is illustrated with the new gate U11
added to the design in Fig. 4b when the performance path

lr
p−→ rr is provided. The new gate becoming a branching load

to the performance path, but adds more area to the design.

Since the structure of the circuit is modified, it is possible

this transformation adds a hazard to the circuit. Hence in our

design flow a formal verification step is performed to ensure

hazard fidelity of the design.

A special condition applies to all of these design cases when

the input edge in a cycle passes through an inverter that is

inside a gate. The Case2 transformation is applied as usual.

Additionally, the gate is split into two gates with the inverter

becoming an explicit external gate that is added to the cycle.

Case1 is then applied to the inverter, and Case2 is applied to

the second gate. This is illustrated with the design of Fig. 5a.

The inverter bubble has been split into a separate inverter in

Fig. 5b with the Case1 transformation applied.

D. Optimization Heuristics for selecting the Best Solution
Power and performance optimizations are based on heuris-

tics that use logical effort [5]. Logical effort theory provides a

first-order approximation of the sizes (power) of the gates and

the delay for a circuit path (performance). The optimization

uses a priority based approach with Delta Logical Effort hav-

ing the highest priority and Performance/Power Optimization

having the lowest priority. If a heuristic solution is better than

the previous best solution then no other solution costs are

compared.

1) Delta Logical Effort: Logical effort often favors simpler

gates over more complex gates due to their high cost. Hence

the first step of optimization looks at the relative increase in

logical effort of modifying any gate which we name as Delta

Logical Effort (ΔLE).

Cost = ΔLE = New LE - Old LE (1)

2) Relative load on a gate: Logical effort can be used

to estimate the necessary drive strength (also referred to as

size) of a gate by calculating the gate’s output load. The load

estimate is calculated by computing the sum of the logical

effort of a gate and the logical effort of the inputs of all the

successor gate to which the wire goes. This heuristic penalizes

the modification of a gate which drives a big load and thus

prefers simpler gates with small output load.

Cost = LE of gate + LE load on gate output (2)

3) Performance or Power Optimization: The solution for

this step is selected based on the optimization selected by the

user. The heuristics to calculate the cost of the solution for

each optimization is described as follows.

Performance Optimization - All three reset transformation

cases are applied for performance optimization. However,

Case3 is only applied on performance critical paths such as

lr
p−→ rr that are optionally supplied by the user.

The quality of the solution for each cycle (path) requiring

reset is the delay for each input to output path in the design.

The total cost of solution is the sum of the delay of all

the performance critical paths in the design. Hence the final

solution is selected based on the least overhead cost which is

calculated by the following heuristic.

Performance cost = ∑
all paths

N ∗F1/N +P (3)

where Delay of N-stage path = N ∗ F1/N + P and F =
G ∗B ∗H [5]. This heuristic assumes electrical effort H for

each path to be 1. This can result in sub optimal results if the

fanout load of the circuit output is big.

Power Optimization - Power consumption of a design

depends on the total capacitance of the circuit that needs to

be switched. We approximate the capacitance with the logical

effort G of each gate, where a higher logical effort implies

a larger input capacitance. Thus the total solution for power

optimization is calculated as follows.

Power cost = ∑
all paths

i−1

∑
0

Avg. input LE for gate Vi on a path

(4)
IV. EXAMPLES

A. Example 1

The initial circuit for this example is shown in Fig. 3.

For this example, lr, ra, U1, U3, U7 have a logic level 0

while U0, U2, U4, U5, U6 have a logic level 1 at reset

state. It consists of six cycles: < U0,U1 >, < U2,U3 >,

377



(a) Circuit without reset (b) Power/Performance Optimization (c) Petrify Implementation

Fig. 5: Example 2 Circuit Implementations with and without reset

< U6,U7 >, < U0,U1,U2,U3 >, < U0,U1,U6,U7 >, and <

U0,U1,U6,U7,U2,U3 >.

Cycle < U0,U1 > does not need to be reset because it is

defined by signals in the external signal set EExt = {lr, rr, csc0}.

Of the other five cycles, only two need to be reset due to

shared paths in the cycles. By reseting cycle < U2,U3 > and

< U6,U7 >, the (U2,U3) and (U6,U7) edges become defined,

resetting the remainder of the cycles.

Fig. 4a shows the result applying the power optimization

heuristic. The case1 optimization results in the best solution

for both <U2,U3> and <U6,U7>. This optimization modifies

U3 and U7 from inverters to a NOR gates.

Results of performance optimization for the same circuit is

shown in Fig. 4b. The path from lr
p−→ rr (< U6,U7,U2,U3 >

and < U0,U1,U2,U3 >) and lr
p−→ la (< U0,U1 >) are defined

as performance paths. Thus Both Cycle2 and Cycle3 are

candidates for Case3 optimizations, that can push the added

complexity of the reset gates off the critical path. Gates U3
and U7 are first duplicated to add U10 and U11 in the feedback

of both these cycles. These duplicate gates are then converted

to NOR gates that reset the cycles.

This example so far has assumed that the PIs are all

defined. Consider the power optimization case when input

lr is initially undefined. The algorithm then starts with the

circuit of Fig. 4a, marking lr as undefined. This results in the

output of U0 and U1 being undefined resulting in la output

being undefined. Applying the optimizations results in the

gate U1 being changed into a NOR gate with reset. If the

performance optimization solution is considered then the path

<U6,U7,U2,U3 > is also undefined resulting in gate U7 being

converted into a NOR gate with reset. Note that this results in

an inferior solution since there are 2 NOR gates performing the

same task. Hence the application of undefined input solution

is the best for power optimization, but can result in an inferior

solution for performance optimization in certain cases.

Petrify is used to apply reset to this sample circuit. Reset

is achieved by using generic AND and OR gates as shown

in Fig. 4c. U10, U11 and U12 are added to initialize Cycle1,

Cycle2, and Cycle3 respectively. Notice that gate U10 is not

required, resulting in an inferior solution in terms of power

and performance.

B. Example 2
The second example circuit is shown in Fig. 5a. For this

example, lr, ra, U1, U4 have a logic level 0 while U0, U2, U3

have a logic level 1 at reset state. It consists of 4 cycles <U0>,

< U4 >, < U3,U4 > and < U0,U3,U4 >. Assuming the PIs

are defined, only the <U4 > cycle needs to be reset, because

reset values for lr and rr define Gate U3. Fig. 5b and 5c

show the solution for this algorithm and Petrify respectively.

The optimized circuit generated by this reset algorithm is the

same for both power and performance optimizations since the

reset is not on a critical path. Petrify adds the OR gate U5.

This increases the latency on the ra
p−→ rr resulting in a 10%

increase in the backward latency and thus a 5% increase in

the cycle time.

V. RESULTS

The results of adding reset initialization with this algorithm

is compared against Petrify. Benchmark circuits for GCD,

PostOffice and PSCSI were employed as well as a set of

128 untimed four-cycle handshake controllers generated by

concurrency reduction [7]. Each design in the controller set

was tested as a four deep FIFO. All of these designs are

synthesized and technology mapped with Petrify with and

without reset addition. Our algorithm is applied to these

circuits without reset. Petrify adds generic gates for reset

addition, hence for comparison these gates are technology

mapped using a script. The technology mapping is applied

to the academic Artisan library for the IBM 65nm process.

This algorithm resulted in functionally correct circuits for

all designs to which power optimization was applied, while ap-

plication of performance optimization resulted in two circuits

that failed due to hazards that were introduced. Petrify failed

to generate a working circuit for one of the FIFO controllers

since it assumed all the inputs to be defined at logic level 0

upon reset.

Performance, power, and area comparisons are performed

by using timing driven optimization in commercial EDA tools.

The flow is structured and automated in a way that will

produce results that are as fair as possible. The flow uses

Design Compiler for sizing, SoC Encounter for place and

route, and Modelsim and Primetime for performance and

power evaluation using VCD and SPEF files.

The example set ranges in complexity from 4 to 71 gates,

and up to 77 cycles. The maximum runtime for the algorithm

was less than three seconds for the gcd example, which

contains 11 inputs, 9 outputs, 71 gates, and 22 cycles. Critical

paths from lr
p−→ rr and lr

p−→ la were provided for the 128

378



TABLE I: RESULTS COMPARISON FOR BENCHMARK CIRCUITS

Petrify Power Optimization Performance Optimization Power Benefits Performance Benefits

Benchmark Area Energy/ SimTime Area Energy/ SimTime Area Energy/ SimTime Area Energy/ SimTime Area Energy/ SimTime

Circuit (um2) token (pJ) (ns) (um2) token (pJ) (ns) (um2) token (pJ) (ns) (um2) token (pJ) (ns) (um2) token (pJ) (ns)

gcd 298.3 0.50 303.76 287.2 0.50 297.56 285.4 0.46 298.33 1.04 1.00 1.02 1.05 1.08 1.02

postoffice-rcv-setup 36.0 0.02 87.14 27.4 0.02 85.70 31.7 0.03 84.98 1.31 1.20 1.02 1.14 0.89 1.03

postoffice-sbuf-send-ctl 132.0 0.38 317.85 100.3 0.30 315.62 109.7 0.32 319.69 1.32 1.28 1.01 1.20 1.19 0.99

pscsi-isend 185.2 0.36 244.45 172.3 0.35 276.23 198.0 0.43 256.25 1.07 1.03 0.88 0.94 0.84 0.95

pscsi-trcv-bm 114.0 0.19 143.07 99.5 0.15 136.08 98.6 0.15 135.37 1.15 1.24 1.05 1.16 1.29 1.06

pscsi-tsend-bm 140.6 0.28 202.83 134.6 0.25 213.86 139.7 0.26 208.73 1.04 1.11 0.95 1.01 1.10 0.97

pscsi-tsend 147.5 0.24 203.12 145.7 0.25 191.28 145.7 0.25 191.28 1.01 0.99 1.06 1.01 0.99 1.06

Average Benefit 1.14 1.12 1.00 1.07 1.05 1.01

TABLE II: CONTROLLER CIRCUIT COMPARISON

Average Case Best Case Worst Case

Optimization Power Performance Power Performance Power Performance

Forward Latency 1.00× 1.08× 2.33× 2.33× 0.63× 0.69×
Backward Latency 1.05× 1.12× 1.47× 1.72× 0.61× 0.71×
Cycle Time 1.03× 1.06× 1.39× 1.69× 0.54× 0.54×
Area 1.21× 1.12× 1.91× 1.66× 0.70× 0.69×
Energy/token 1.24× 1.12× 2.19× 1.84× 0.64× 0.64×

FIFO controllers.

Tables I and II show the average benefits for both optimiza-

tions with respect to Petrify. Performance optimization results

in an improvement of 8%, 12% and 6% in forward latency,

backward latency and cycle time for the 128 FIFO circuits.

The benchmark circuits show only 1% improvement in per-

formance (reported as simulation time – SimTime). A 12%

reduction in area and energy/token for the FIFO controllers is

observed, as compared to a 7% and 5% reduction in area and

energy/token respectively for the benchmark circuits.

Power optimization results in no improvement in forward

latency, and minor improvements in backward latency and

cycle time for FIFO controllers as well no performance benefit

(SimTime) for the benchmark circuits. However, there is a

significant improvement in terms of area and energy. A 21%

and 24% reduction in area and energy/token respectively

are seen for the FIFO controllers, while a 14% and a 12%

reduction was seen for the benchmark circuits.

VI. CONCLUSIONS

Sequential circuits require a reset signal to initialize them

to their correct starting state. An algorithm was developed and

implemented in C++ to generate reset logic for asynchronous

finite state machines. The algorithm defines the relationship

between reset and topological cycles in a circuit. The new

algorithm also provides heuristics to optimize the reset logic

for power or performance. It requires that the design has been

technology mapped to the desired implementation library, and

that the library consists of single output static logic gates.

Inputs to the algorithm include the design netlist, the logic

level of all circuit nets, and the behavior of the gates in the

technology library. Optional inputs include a set of critical

paths for performance optimization, and a set of inputs that

may initially be undefined upon reset.

The algorithm is applied to a set of seven large benchmark

circuits and a set of 128 pipeline controllers that are configured

into linear FIFOs. The designs range in complexity of up to

71 gates and 77 cycles. Maximum runtime for the tool is less

than three seconds. Results are compared against Petrify. Per-

formance heuristics show just a 1% performance improvement

for the benchmark circuits. The FIFO designs show a 6%

performance improvement and a 12% and 8% improvement

for backward and forward latency. Power heuristics show an

average improvement of 14% and 12% in area and energy

per token for the benchmark circuits, and an average area and

energy per token improvement of 21% and 24% for the FIFO

controllers.

The algorithm is agnostic to how the circuit was imple-

mented and technology mapped, so it can be used with

any of the synthesis engines as well as with hand designed

circuits. For the first time reset can now become part of any

asynchronous finite state machine design automation flow.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Grant Number 1218012 and the

Semiconductor Research Corporation under Grant Number

2235.001.

REFERENCES

[1] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended Burst-Mode
Circuits: Part I (Specification and Hazard-Free Implementation),” IEEE
Transactions on Computer-Aided Design, vol. 18, no. 2, pp. 101–117,
Feb 1999.

[2] ——, “Automatic Synthesis of Extended Burst-Mode Circuits: Part II
(Automatic Synthesis),” IEEE Transactions on Computer-Aided Design,
vol. 18, no. 2, pp. 118–132, Feb 1999.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Transactions on Infor-
mation and Systems, vol. E80-D, no. 3, pp. 315–325, 1997.

[4] R. M. Fuhrer and S. M. Nowick, Sequential Optimization of Asynchronous
and Synchronous Fininte State Machines: Algorithms and Tools. Kluwer
Academic, 2001, minimalist reference.

[5] I. Sutherland, R. Sproull, and D. Harris, Logical effort: designing fast
CMOS circuits. Morgan Kaufmann, 1999.

[6] S. M. Burns, “General Conditions for the Decomposition of State Holding
Elements,” in Advanced Research in Asynchronous Circuits and Systems
(ASYNC-96), March 1996, pp. 48–57.

[7] S. Nagasai, K. S. Stevens, and G. Birtwistle, “Concurrency Reduction
of Untimed Latch Protocols – Theory and Practice,” in International
Symposium on Asynchronous Circuits and Systems. IEEE, May 2010,
pp. 26–37.

379


