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ABSTRACT

Lagrangian coherent structures are time-evolving surfaces that
highlight areas in flow fields where neighboring advected particles
diverge or converge. The detection and understanding of such struc-
tures is an important part of many applications such as in oceanog-
raphy where there is a need to predict the dispersion of oil and other
materials in the ocean. One of the most widely used tools for re-
vealing Lagrangian coherent structures has been to calculate the
finite-time Lyapunov exponents, whose maximal values appear as
ridgelines to reveal Lagrangian coherent structures. In this paper
we explore an alternative formulation of Lyapunov exponents for
computing Lagrangian coherent structures.

1 INTRODUCTION

Understanding transport and mixing in flow fields is a fundamental
task in many computational fluid dynamics (CFD) applications. For
instance, oceanographers wish to better understand tidal inlets and
their circulation patterns. One such feature of interest in this pur-
suit is Lagrangian coherent structures (LCS) [5]. In time-varying
systems, LCS are the boundaries between dynamically different
regions. These structures can be defined in terms of finite-time
Lyapunov exponents (FTLE) [9], whose maximal values appear as
ridgelines to reveal LCS. One of the benefits of calculating FTLE
is that they reveal geometry that can not be easily seen in the flow
field or via the trajectories that lie within the field, see for example
the work of Garth among others [3, 4].

Lyapunov exponents (LE) quantify the rate of separation of in-
finitesimally close trajectories over infinite time and are a measure
of the chaos in the system. While this quantity can reveal structures
not otherwise seen in the flow field understanding their origin can
be difficult because of the Lagrangian nature of the calculation. In
this short note we propose an alternative formulation that while it
has a Lagrangian basis can also be viewed using an Eulerian basis.
Having this duality we believe provides complementary informa-
tion in understanding the location of LCS. There are other forma-
tions of Lyapunov exponents such as the finite-size Lyapunov expo-
nents (FSLE) [1] and have been compared to finite-time Lyapunov
exponents (FTLE) [6]. Others have explored exponents based on
streaklines (as oposed to stream or path lines) [7] or used variance
analysis [8].

2 CALCULATING LCS VIA FTLE
For background we give a brief overview of calculating FTLE. For
more in-depth background the reader is referred to [5, 9]. For a
smooth vector field of the form:

ẋ = v(x, t),x ∈V ⊂ ℜn (1)

At a time t the path of a particle is defined to be x(t, t0,x0) ini-
tialized at x0 and time t0. We define the flow map to map the initial
particle location x0 to its location at time t:
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Ft
t0 : U �→U (2)

The flow map encodes the Lagrangian particle path, is continu-
ously differentiable, and can be deformed. The deformation gradi-
ent ∇Ft

t0 is defined to be the right Cauchy-Green strain tensor:

Ct
t0 = [∇Ft

t0 ]
T ∇Ft

t0 (3)

The FTLE associated with a particle is defined to be proportional
to the largest eigen value of this tensor:

Λt
t0 =

1

t
log

√
λmax[Ct

t0 ] (4)

The LCS are the locally maximizing surfaces or ridges in the
scalar field Λt

t0 . Repelling LCS are found by integrating forward in
time while attracting LCS can be found by integrating backward in
time.

In Figure 1 we show an example of an instaneous FTLE visual-
ization for a river inlet during slack tide. The image clearly shows
a strong coherent structure as a red ridge line, and is the instanteous
slack tide interface between the river and the ocean as well as other
weaker structures in yellow and green.

3 CALCULATING LCS VIA A EUCLIDEAN DISTANCE MEA-
SUREMENT

In oceanography, drifters are often used to understand the dynamics
of ocean-atmosphere interaction [2]. Drifters are placed in arrays
in the ocean and then tracked over time. Ocean currents can then
be determined by the GPS paths recorded from the drifters. One of
the key measurements is the distance traveled by the drifter from its
initial location. We use a similar distance measurement in our for-
mulation for finding LCS. That is we measure the distance between
the seed point and the end point of the streamline.

This distance measure is similar to the distance used in the FTLE
calculation, where one looks at the inter-particle divergence. How-
ever, instead of the inter-particle divergence we are looking at the
intra-particle divergence. That is the overall Euclidean distance the
particle has traveled.

Physically the distance traveled, when small can be an indication
of a particle being trapped in a eddy. However, it can also simply
mean a particle is moving very slowly from its initial location.

We define the distance map to map the Euclidean distance trav-
eled by a particle from its initial location x0 at time t0 to its location
at time t:

Lt
t0 : V �→V (5)

The distance map unlike the flow map does not encode the La-
grangian particle path. However, it is continuously differentiable
and can be deformed. The deformation gradient ∇Lt

t0 is a vector
and is similar in nature to the eigen values of the right Cauchy-
Green strain tensor:

Dt
t0 = ∇Lt

t0 (6)

The Lyapunov exponent associated with a particle is defined to
be proportional to the largest gradient value:
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Figure 1: A traditional FTLE image of an instaneous 3D flow field for
the New River Inlet, Onslow, North Carolina. The dominant ridgeline
demarcates the slack tide interface between the river and the ocean.

Γt
t0 =

1

t
log

√
γmax[Dt

t0 ] (7)

Like a traditional FTLE we also limit the advection based on the
integration time. While other limits are possible using the integra-
tion time allows a one-to-one comparison of the Euclidean distance
measure to FTLE. Thus the only difference in the systems is the
maximal value calculation.

In Figure 2 a visualization using an Euclidean distance measure
for the same river inlet as in Figure 1 is shown. The image clearly
shows the same the strong coherent structure as a red ridge line,
the slack tide interface between the river, as well as other weaker
structures in yellow and green. We will discuss further similarities
and differences in Section 6

4 GAINING INCITE INTO LCS
In a typical analysis exploration before a scientist creates a FTLE
image they often start by visualizing a series of streamlines (in the
instantaneous case) colored by their arc length, Figure 3. Though
such visualizations can show flow features such as eddies they can
be difficult to fully interpret due to flow field complexities.

At the same time it is possible to create a scalar image with the
seed points colored by the arc length of the streamlines that would
be used in the FTLE calculation, Figure 4. Such an image gives
an Eulerian view of the system and can give incite into the origin
of where particles travel the longest using an arc length measure
within a given time period. While such a scalar image gives incite
into the speed it is difficult to understand the origin of the coherent
structures such as those found in Figure 1.

In Figure 5 the same streamlines are visualization as in Figure
3 except the color map is based on the Euclidean distance traveled
by a particle. The first obvious difference is that the range of val-
ues is more evenly distributed compared to the arc lengths that are
dominated by a few values. The second difference are the coherent
regions where particles travel the least and furthest from their ini-
tial location. In the case of the latter one can clearly see the main
channel. For the former, there are two eddies just outside of the
river inlet where particles remain for a long time traveling very lit-
tle from their initial starting locations. Only one of the eddies has
similar structure when viewed using an arc length measure.

Figure 2: A FTLE like image of 3D flow field for the New River Inlet,
Onslow, North Carolina using a Euclidean distance measure. The
dominant ridgeline demarcates the slack tide interface between the
river and the ocean.

In Figure 6 the seed points are colored by the Euclidean distance
traveled by the particle originating at that location and gives an Eu-
lerian view of the system. These distances are also used for the
Lyapunov exponent calculations. This image differs greatly from
the one based on the arc length shown in Figure 4. For instance, the
location of the slack tide river-ocean interface is clearly seen and is
where the coherent structure is located as seen in Figure 2.

5 APPLICATION TO TIME VARYING FIELDS

We now apply our Euclidean distance measure to time varying
fields and construct similar images as for the instantaneous exam-
ple. In Figures 7 and 9 the seed points are colored based on the arc
length and Euclidean distance respectively. Remarkably the images
obtain are very similar with only slight differences. In Figures 8 and
10 we compute the associated Lyapunov exponents over the same
time period. Again remarkably similar ridgelines are obtained.

6 DISCUSSION

In Figures 1 and 2 we showed the traditional and Euclidean distance
based Lyonapuv exponents images. While the images reveal simi-
lar instantaneous structures we do not believe this to always be the
case. In fact, it should not be the case because the underlying basis
for the exponent is an inter- and intra-distance measure and are fun-
damentally different. The question that remains to be answered is
what does our Euclidean distance physically describe for a dynam-
ical system? In contrast, a traditional FTLE that has its roots well
established as the basis for describing the entropy and other mea-
sures in a dynamical system. As such, while promising we must
understand the exponent’s meaning.

At the same time the coloring of the seed locations based on the
arc length and distance traveled for the instantaneous field in Fig-
ures 4 and 6 respectively, provide complementary flow field infor-
mation. Though there are subtle differences in Figures 7 and 9, one
can not conclude the same technique provides additional informa-
tion for the time varying field. This result is perhaps not surprising
and requires further investigation to fully understand.

7 CONCLUSION

We have shown an alternative formulation of Lyapunov exponents
using an Euclidean distance measure. The resulting exponents form
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Figure 3: A series of 3D streamlines for the flow field from the New
River Inlet, Onslow, North Carolina. The streamlines are colored via
the arc length (blue: short distances, red: long distances) and show
a series of eddies. None of which are more dominant than another.

Figure 4: An image of the seed points colored by the arc length of
the streamline originating at the seed. The red regions represent par-
ticles that have travel the furthest over a finite time period. Whereas
the blue regions represent particles that have travel the least.

ridgelines that represent Lagrangian coherent structures like tradi-
tional FTLE images. We have demonstrated that in the instanta-
neous case that the underlying measurement, the Euclidean dis-
tance can reveal additional information about the location of co-
herent structures. Though we have compared our alternative for-
mulation to traditional FTLE we do not see being a replacement
but rather one that provides complementary information about the
flow dynamics.
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