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� Interictal infraslow activity (ISA) can provide additional information about the epileptogenic process.
� It can be assessed with conventional EEG systems.
� ISA activity is more widely distributed in localisation-related epilepsies than might be assumed.

a b s t r a c t

Objective: To evaluate if interictal infraslow activity (ISA), as obtained from a conventional EEG system,
can contribute information about the epileptogenic process.
Methods: The entire long-term intracranial monitoring sessions of 12 consecutive patients were evalu-
ated on an XLTEK system for ISA. Three additional patients had long-term scalp recordings.
Results: In intracranial as well as scalp recordings, the ISA background was consistently higher in the
waking state than during sleep. From this background emerged intermittently focal changes, which could
achieve in intracranial recordings millivolt amplitudes, while they remained in the microvolt range in
scalp recordings. Although they were mainly contiguous between adjacent channels, this was not neces-
sarily the case and intermittent build-up could be seen distant from the epileptogenic zone or radio-
graphic lesion.
Conclusions: Interictal ISA can be detected in routine intracranial and scalp recordings, without the need
for DC amplifiers, and can provide additional information.
Significance: Since ISA is a separate element of the electromagnetic spectrum, apparently non-neuronal in
origin, its assessment should be included not only in the pre-surgical evaluation of epilepsy patients but
also in patients with other neurologic disorders and normal volunteers.
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
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1. Introduction

The change from analogue to digital EEG systems and associ-
ated improvements in amplifier technology has opened new vistas
for the exploration of cerebral electrical activity. Frequencies above
the gamma band which previously required for visualisation of
films from cathode-ray oscillograph tracings or tape recordings
which manipulated data acquisition and playback speeds (Buch-
wald et al., 1966; Buchwald and Grover, 1970; Rodin et al.,
1971a,b, 1977; Rodin and Wasson, 1973; Rodin, 1972, 2005), can
now be readily observed in routine clinical recordings when high
sampling rates are employed. This frequency range is currently un-
der intense investigation and only some early as well as the latest
references will be listed (Allen et al., 1992; Fisher et al., 1992; Bra-
77

78

79

80

Q3
gin et al., 1999; Worrell et al., 2008; Jiruska and Bragin, 2011; Mod-
ur et al., 2011, 2012; Wang et al., 2013).

A similar situation pertains to the recording of <0.5 Hz activity.
These frequencies had previously required DC amplifiers for dis-
play but currently all commercial EEG systems have a lower fre-
quency limit of at least 0.1 Hz, while it is 0.05 Hz for the XLTEK
system and 0.016 for the Nihon-Kohden system. Since the signals
below these frequencies are not abolished but merely attenuated
in amplitude and wave duration, even slower activity is retrievable
from routinely obtained clinical data.

Early publications have shown that epileptic seizures can be
associated with slow baseline shifts, which can have localising sig-
nificance (Cohn, 1954; O’Leary and Goldring, 1959; Vanasupa et al.,
1959; Gumnit and Takahashi, 1965; Caspers and Simmich, 1966;
Chatrian et al., 1968; Gumnit et al., 1970). Inasmuch as these obser-
vations required DC amplifiers, they were referred to as ‘DC shifts’.
Yet Ikeda et al. demonstrated that these shifts were also observed,
in intracranial as well as scalp recordings, when conventional
0.1016/

http://dx.doi.org/10.1016/j.clinph.2013.10.014
mailto:e.rodin@utah.edu
mailto:ernstrodin@gmail.com
http://dx.doi.org/10.1016/j.clinph.2013.10.014
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph
http://dx.doi.org/10.1016/j.clinph.2013.10.014
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AC amplifiers with a long time constant were used (Ikeda et al.,
1996, 1999). The finding was subsequently verified by several
other investigators (Gross et al., 1999; Thordstein et al., 2005;
Bragin et al., 2005; Mader et al., 2005; Hughes et al., 2005; Rodin
et al., 2006, 2008, 2009; Rodin and Modur, 2008; Ren et al.,
2011; Shi et al., 2012; Rampp and Stefan, 2012; Constantino and
Rodin, 2012; Modur et al., 2012).

Most of these studies also showed that ictal baseline shifts were
not unidirectional but consisted of a series of high-amplitude slow
waves of varying durations, involving at times a large number of
channels at different time points during the seizure and extending
into the post-ictal period. The latter aspect was most marked in the
immediate post-ictal state after a tonic–clonic seizure when the
conventional EEG frequencies showed attenuation. Figures 6 and
7 of the publication by Rodin and Modur (2008) provided a typical
example. When one keeps these observations in mind, two aspects
become apparent. One is that the terms ‘baseline shifts’ or ‘DC
shifts’ are inadequate to describe the phenomenon because one
is dealing with a marked increase of continually present infraslow
activity (ISA). The other aspect is that ISA follows different laws
and therefore must have different generators than the convention-
ally sampled frequency band.

As mentioned earlier, there are by now several studies which
deal with the ictal aspects of ISA, but a review of the literature
showed that there appeared to be no publications specifically de-
voted to the pre- and interictal state in epilepsy patients. Yet, this
information could potentially also be important especially with
regard to seizure prediction, which is still imprecise. We, therefore,
decided to study this problem in a systematic prospective manner.
A preliminary report was presented at a symposium on cerebral
electromagnetic ISA of the American Clinical Neurophysiology
Society and subsequently published (Rodin and Funke, 2012;
Constantino and Rodin, 2012). Since the patient number was small
and there were no data available on scalp recordings monitored
over the long term, the study was continued on a larger patient
population which also included scalp recordings.

The questions to be answered were: (a) Does interictal ISA
contain additional information which is not readily available from
the conventional frequency band? (b) If this were to be the case,
does it have potential clinical relevance with regard to the patient’s
seizure disorder? (c) Can interictal, and especially pre-ictal, ISA
contribute to the prediction of the occurrence of a seizure?

 
 
 
 
 
 

Table 1
Clinical profile of patients.

Patient Age/sex MRI Res

1 48/F Cerebellar atrophy and white matter changes L A
2 20/F Normal R A
3 33/M Previous L T lobectomy L ST
4 32/F L F encephalomalacia; multiple cav mal L in
5 29/M Small L hemisphere and hippocampus L A
6 54/M Multple cav mal; bifrontal encephalomalacia R in
7 49/M Normal R A
8 32/M R F encephalomalacia Par
9 23/F R F encephalomalacia R F

10 41/M Normal Non
11 32/F Normal R T
12 13/F L T dysplasia L T
13a 24/M Normal Non
14a 48/F L parahippocampal hemosiderin c/w trauma Non
15a 20/F L P tumor resected; additional mass L F and L T Non

All patients had temporal seizure semiology; R, right; L, left; F, frontal; P, parietal; T, Te
a Scalp EEG only.
b No surgery was performed in 10 due to discordant Wada, 13 was controlled with me

anatomically critical areas.

Please cite this article in press as: Rodin E et al. Interictal infraslow activity in p
j.clinph.2013.10.014
2. Materials and methods

The methodology was the same as in the previous report
(Constantino and Rodin, 2012) but seven additional patients with
intracranial and three with scalp recordings were added. Of these
12 patients with intracranial data, 11 also had scalp recordings at
our laboratory. However, these had been obtained earlier and
contained only samples rather than the complete monitored
sessions. The samples consisted, apart from seizures, of an initial
35-min epoch, subsequent 35-min samples of what the XLTEK
program regarded as an ‘‘event’’ and hourly 1-min epochs of inter-
ictal data. The three new patients with long-term scalp recording
sessions have not yet had further intracranial investigations. The
clinical characteristics of the patients are shown in Table 1. It
should be emphasised that the study was prospective and
contained all patients who had been recorded between August
2011 and February 2013.

Scalp, as well as intracranial, recordings were obtained on an
XLTEK system. For scalp recordings, EMU40 amplifiers were used
(40 channels; low-frequency cut-off at 0.05 Hz–6 db/octave), while
the intracranial data were recorded with 128SF amplifiers (128
channels; low-frequency cut-off at 0.03 Hz–6 db/octave). After
de-identification, the data were transferred to an external drive
before they were sampled for storage purposes. For intracranial
recordings, the sampling rate was 512 Hz while it was 256 Hz for
scalp recordings. The intracranial strip and grid electrodes were
platinum (Ad-Tech Medical Instruments, Racine, WI, USA) and for
scalp recordings Ag/AgCl electrodes were used. For intracranial
recordings, the electrode coverage ranged from 20 to 88 electrodes
and, except for two cases, was unilateral in areas of suspected
seizure origin. The scalp electrodes were placed according to the
10/20 system but infraorbital and at times T1/T2 and/or sphenoidal
electrodes were added. For intracranial recordings, the reference
electrode was a needle electrode inserted into the temporalis
muscle.

For data analysis, the software package BESA� (BESA Research
version 6; BESA GmbH, Gräfelfing, Germany) was used. Initially,
the data were reviewed on the conventional frequency band
(0.5–70 Hz), and when muscle artefact contaminated the scalp
recordings, the low-pass filter was set to 15 Hz. The program al-
lowed for removal of eye blinks as well as lateral eye movements
and this module was used when indicated. For better visualisation
ection performed Latest operative result

T lobectomy with hippocampectomy Seizure free since surgery 9/2011
T lobectomy with hippocampectomy Seizure free since surgery 8/2011
G resection Seizure free since surgery 9/2011
sular cav mal lesionectomy Seizure free since surgery 10/2011
T lobectomy with hippocampectomy Seizure free since surgery 11/2011
sular cav mal lesionectomy Seizure free since surgery 01/2012
T lobectomy with hippocampectomy Seizure free since surgery 02/2012

tial R F lobe resection 1 seizure since surgery 5/2012
lobe resection Occasional seizures
eb N/A
lobectomy Died of SUDEP after surgery
lobectomy (Frontal focus not resected) Still having seizures
eb N/A
eb N/A
eb N/A

mporal; STG, superior temporal gyrus; Cav mal, cavernous mal formations.

dications, 14 had strong memory on the lesion side, and 15 had additional tumor in

atients with epilepsy. Clin Neurophysiol (2013), http://dx.doi.org/10.1016/
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of pre-ictal scalp activity, a variety of montages were used which
included bipolar, referential and average common reference. For
intracranial recordings, the reference electrode proved unsatisfac-
tory and the data were, therefore, transformed to an average com-
mon reference of artefact-free channels as well as, at times, a
bipolar montage of adjacent electrodes. After removal of the
high-pass filter, the data were subsequently downsampled to
10 Hz for an effective upper frequency of 3.3 Hz in order to assess
ISA. For its evaluation, the high-pass filter was left open and the
low-pass filter set to 0.1 Hz (forward, 6 db/octave). This yielded
pure ISA and it was viewed on windows ranging from 5 to
20 min, which is the current limit of the program. For evaluation
of possible pre-ictal changes in the data, the FFT module was used
on unfiltered raw data for varying epochs and different frequency
bands.

The monitoring sessions for archived scalp recordings lasted
from 2 to 6 days. For the three patients with continued scalp
recordings, they ranged from 2 to 7 days. The intracranial sessions
lasted from 2 to 8 days, with one outlier of 16 days. The sampled
scalp recordings contained 20 partial and four secondarily general-
ised seizures, while during the continuously monitored recordings,
four partial seizures had occurred and an additional one became
tonic–clonic after partial onset. Since the waking scalp recordings
were frequently contaminated by a variety of artefacts, only those
seizures which arose from sleep were evaluated for pre-ictal
Fig. 1. 10 min sample of intracranial interictal ISA background from patient 10. Top (A) s
bars delineate 10 s. The tracings are artefact free and the amplitude reduction during sl

Please cite this article in press as: Rodin E et al. Interictal infraslow activity in p
j.clinph.2013.10.014
changes. This reduced the number to three partial seizures and
one secondarily generalised one. For the intracranial recordings,
no selection was needed and the data contained 33 partial and
three secondarily generalised seizures. The clinical characteristics
of the patients are shown in Table 1.
3. Results

3.1. Intracranial data

Interictal ISA was characterised by background activity, which
differed in amplitude and frequencies over time within a given
channel as well as among the various sampled brain regions. Intra-
cranial recordings did not allow a differentiation of sleep stages
and the resting eyes-closed state, on the video recording, could
not be distinguished from sleep. Therefore, two active waking con-
ditions, e.g., during eating and/or some other activity, were com-
pared with two sleep epochs: around 2 a.m. and prior to
awakening in the morning. The maximal ISA background frequency
power values were: for the waking state 5640 lV2, for morning
sleep 4749 lV2 and for nocturnal sleep 2240 lV2. The lowest
values were consistently seen during nocturnal sleep. In the
patients in whom structural lesions were present, background
activity was usually highest in the vicinity of the lesion but these
hows the waking state, bottom (B) nocturnal sleep. Calibration bar 200 lV, vertical
eep is apparent. In all figures, an average common reference montage was used.

atients with epilepsy. Clin Neurophysiol (2013), http://dx.doi.org/10.1016/
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Table 2
Relationship of spike and seizure onset location to ISA and intracranial recordings.

Patient# Scalp Intracranial

Spikes Seizure onset ISA Spikes Seizure onset ISA

1 BiT L>R LT BiT L>R; LF LT; LF LT LT; LF
2 NA RT RT RT
3 BiT L>R LT BiT LT; LF LT LT
4 BiT L>R; LF T BiT LT; LF LT; LF LT; LF
5 LT LT BiT L>R; LF LT; LF LT LT; LF
6 BiT R>L RT? BiT RT RT RT; RF
7 BiF; RT RF BiFT RF; LT RF; LT? RF; LT
8 RT RT? BiT R>L; RF RF; LT RF; LT? RF; RT
9 RT; RF RT? BiT R>L; BiF RF; LT RF; LT? RF; RT

10 LT LT BiT L>R LT; RF LT; RF LT; RT; RF
11 RT; LF RT? BiT L>R, FPZ RT RT RT; RF
12 BiT L>R LT, LC BiT L>R; LF LT LT; LF LT; LF
13 LT; RF LT LF, RT NA
14 BiT L>R LT? LT, LF, RT NA
15 LT LCTP LT, RF, RT NA

Bi, bilateral; R, right; L, left; T, temporal; F, frontal.
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electrodes were not necessarily identical with those from which
seizure onset had been recorded.

A typical 10-min sample of raw data for the waking state and
during nocturnal sleep is shown in Fig. 1 from patient 10. In this
figure, as well as all others, a common average reference was used
and for ISA only downsampled data are shown. Initially, this
Fig. 2. 20 min example of increased focal temporal ISA from patient 1 (average common r
and 9–10 of a 2 � 5 strip. The calibration bar reflects 1 mV. Electrodes 1 and 2 of the strip
on the bottom of the figure.

Please cite this article in press as: Rodin E et al. Interictal infraslow activity in p
j.clinph.2013.10.014
patient had bilateral implants of subdural strips which recorded
from frontal and temporal areas (48 channels), but the implant
was subsequently revised to cover the left temporal area in greater
detail with 20 channels. The top portion of the figure (A) represents
the background activity while the patient was eating breakfast and
the lower portion (B) shows nocturnal sleep. In this, and all other
eference). The activity lasted four and a half hours and is contiguous for contacts 4–5
did not show activity and were omitted from the figure. The strip location is shown

atients with epilepsy. Clin Neurophysiol (2013), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.clinph.2013.10.014
http://dx.doi.org/10.1016/j.clinph.2013.10.014
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pictures which deal with ISA, the vertical bars reflect 10-s intervals,
while for data of 60 s or less they reflect 1-s intervals. Amplifica-
tions were held constant at 200 lV in order to demonstrate more
clearly the difference between these two states. The FFT values
for these segments will be shown later in conjunction with
scalp-recorded data.

An overview of the relationship of the location of spike
discharges, seizure onset and ISA is shown in Table 2, which also
includes the scalp-recorded data. In patients 2 and 3, only temporal
lobe structures were covered by electrode strips, while in the rest
of the patients, frontal strips and/or grids were also available. In
only two instances, patients 7 and 10, had the electrode strips been
placed bilaterally. Although the data showed good agreement
between spikes, seizure onset and ISA, this lobar assessment
masked differences within a given lobe for the individual
electrodes which were involved. The most prominent ISA was
usually in the vicinity of the area which displayed the most marked
activity on conventional frequencies but was not necessarily re-
corded from the same electrodes which had shown maximal spik-
ing and/or seizure onset.

From this background emerged intermittently higher-ampli-
tude discharges which could be limited to one electrode, covered
several electrodes of strips/grids or involved, at times, all sampled
Fig. 3. (A and B) Example of contiguity as well as dis-contiguity of ISA buildup in a pre
shows one min on conventional filter settings. Calibration bar reflects 500 lV for both seg
what is seen in conventional frequencies. Electrode 1 of the grid was removed because
contiguous, are far removed from the lesion location and distant from the other contiguou
and the bottom portion a coronal MRI view of the lesion. Additional strips in the Sylvian
were omitted from the diagram.

Please cite this article in press as: Rodin E et al. Interictal infraslow activity in p
j.clinph.2013.10.014
areas with different amplitudes at different locations. When only a
single electrode was involved, it usually represented a momentary
electrode artefact. However, this became unlikely when several
neighbouring electrodes of one strip were involved as shown in
Fig. 2 (patient 1). The maximum amplitude of this activity was
2.8 mV. It lasted for 4.5 h. Prolonged discharges of this type were
most commonly seen in the morning hours prior to awakening
and extended into next day’s file, which started around 7 a.m.

The amplitudes of prolonged interictal discharges ranged from
about 400 lV to several millivolts and could, at times, exceed those
which were seen during the ictal state of partial seizures. Further-
more, although contiguity between neighbouring electrodes was
clearly present in some instances, as shown in Fig. 2, in other in-
stances, neighbouring electrodes were skipped and the activity
was present at some distance from the patient’s lesion as shown
in Fig. 3A and B (patient 6). Fig. 3C shows the location of the grid
and a coronal MRI view of the lesion.

ISA increase did not only appear in the ictal onset zone, but also
in distant areas of a separate lobe and in the contralateral hemi-
sphere. Patients 8 and 9 are of special interest because they had
encephalomalacia in the frontal lobe. Intracranial seizure onset
was likewise observed in the frontal lobe but episodic ISA increase
was additionally seen in the temporal lobe.
frontal 8 � 4 grid from patient 6. Portion (A) shows 20 min of ISA buildup, and (B)
ments but the vertical bars in section B reflect 1 s intervals. ISA buildup differs from
of artefact. Please note also that electrode contacts 2 and 3 of the grid, although
s electrode activity at 22–24 and 28–32. (C) The top portion shows the grid location
area and the temporal lobe, which did not participate in this particular discharge,

atients with epilepsy. Clin Neurophysiol (2013), http://dx.doi.org/10.1016/
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Fig. 4. 10 min scalp recorded sample of interictal ISA background from patient 14. Calibration bar 50 lV, vertical bars delineate 10 s. Top (A) shows the waking state and the
bottom segment (B) nocturnal sleep. The tracings are artefact free and the ISA amplitude reduction during sleep is again apparent.
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3.2. Scalp recordings

Long-term scalp recordings have the advantage of covering a
larger number of brain areas and are useful in selecting the re-
gion(s) for implantation of intracranial electrodes. However, ISA
recordings from the scalp have the distinct disadvantage of being
subject to considerably more artefacts than intracranial data.
Although the BESA program has a module which can eliminate
most eye blinks and to some extent lateral eye movements, maps
of the corrected data still showed, on occasion, the typical pattern
associated with lateral eye movements. In addition, other-move-
ment artefact is a major problem. In the three patients who had
long-term recordings spanning from 2 to 7 days, it was noted that
the patients’ sleep only rarely reached stage IV for brief periods and
the V-wave, spindle, K-complex stages were frequently interrupted
by shifts in position of the patient with concomitant movement
artefact. A typical picture of an artefact-free 10-min waking and
sleep epoch is shown in Fig. 4 (patient 14). Similar to the
intracranial data in Fig. 1, the decrease in amplitude during sleep
is apparent.

ISA power was greater in waking than in sleep and greater
from implanted electrodes than from scalp recordings. Fig. 5
shows the FFT power values for patient 14 as well as subdural
Please cite this article in press as: Rodin E et al. Interictal infraslow activity in p
j.clinph.2013.10.014
electrodes from patient 10 whose raw data were presented in
Fig. 1. Longer duration build-up of ISA was seen in various re-
gions but was usually bilateral and since even sleep was dis-
rupted by movement artefact not all of the findings were
trustworthy. Nevertheless, occasionally a reliable focal build-up
was recorded which would have been missed had only the con-
ventional frequency band with a short time window of about
20 s been used as Fig. 6 demonstrates. Fig. 7 shows that when
one enlarges the viewing window to 3 min, which is about the
maximum before the data are too compressed for accurate
assessment, focal activity emerges.

This was not a unique event because a similar one from the
right frontotemporal region was observed in patient 15 as shown
in Fig. 8. This finding is especially noteworthy for two reasons.
One is that in contrast to patient 14 where the build-up occurred
on the side of seizure onset, although more posterior, in the tempo-
ral area, it appeared on the contralateral side in this case. The
second one is that the patient did have a left parietal partially
resected astrocytoma. Two partial seizures were observed during
the monitoring sessions and both originated in the left hemisphere,
the central area in one and the temporal area in the other. Patient
13 also showed intermittent build-up in the temporal regions but
for <20 min and in a bilaterally independent manner.
atients with epilepsy. Clin Neurophysiol (2013), http://dx.doi.org/10.1016/
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4. Discussion

The data presented here are in full agreement with our prelimin-
ary observations (Constantino and Rodin, 2012) and demonstrate
what can be expected when ISA is evaluated during long-term mon-
itoring sessions. In addition, the current study extends the informa-
tion to long-term scalp recordings. Although the current study has
some limitations, which will be discussed later, it does lend itself
to conclusions which are of value. The most important aspect is that
the study confirmed that ISA is a normal part of the cerebral electri-
cal spectrum, which can be accessed without recourse to DC ampli-
fiers. The statement by Vanhatalo et al. (2004) that, ‘‘These
oscillations (0.02–0.1 Hz) are not detectable in conventional electro-
encephalography because of its limited recording band width (typ-
ical lower limit 0.5 Hz)’’ and which was repeated, with similar
words, in 2005 (Vanhatalo et al., 2005) as well as 2010 (Vanhatalo
et al., 2010), is no longer tenable. It was based on analogue EEG sys-
tems but these have been replaced by digital equipment with lower-
frequency input filters as has been mentioned in Section 1.

It is also of interest to note that even when DC amplifiers were
used by the mentioned authors the data were subsequently filtered
to a range of 0.02–0.1 Hz. The resultant activity, as shown in Figs.
2A and 3A of the above-mentioned 2004 publication, as well as
Fig. 6 of the one of 2005 demonstrate that amplitudes and frequen-
cies are in accord with those which are presented here. Other
authors who have used DC amplifiers have also at times restricted
their ISA data analysis to the 0.02–0.1 frequency range (Monto et
al., 2008). While activity between 0.001 and 0.1 Hz can readily be
investigated with conventional EEG systems, the investigation of
waveforms lasting longer than about 17 min will require the use
of DC amplifiers.
Please cite this article in press as: Rodin E et al. Interictal infraslow activity in p
j.clinph.2013.10.014
The first two questions asked in Section 1 can now be answered
affirmatively. The most important one is that interictal ISA build-
up occurs regularly, which is not apparent when only the conven-
tional frequency band, with a short viewing window of 10 or 20 s,
is inspected. This fact can readily be observed when the high-pass
filter is removed and the viewing window opened to minutes in-
stead of seconds. Furthermore, interictal ISA provides additional
information, which may well be of clinical importance.

With regard to the third question raised in Section 1, seizure
prediction, the findings are less clear. The fact that ISA build-up
has a waxing and waning quality over a 24-h period, which is
not directly related to the time of seizure occurrence, may make
seizure prediction based on ISA more difficult. When FFTs were ob-
tained in 1-min increments over a 10-min period prior to a given
seizure, increase in power was, in general, variable and occasion-
ally even decreased immediately prior to and at the beginning of
the seizure. More commonly, however, the minute before the sei-
zure showed power increase, which was further enhanced with
seizure onset. An attempt to establish consistent relationships
would require statistical evaluations which were beyond the scope
of the present study.

The current investigation confirmed that the lowest background
ISA occurs during nocturnal sleep, which seems counterintuitive
when only the conventional frequency band is considered. How-
ever, increase in the waking state and decrease during sleep was
also observed with intracranial high-frequency recordings in ani-
mals (Rodin and Wasson, 1973). Although stage IV sleep was only
achieved for brief periods and the findings shown in the figures
represent the spindle and K-complex stages, they are still valid.
Brief segments of stage IV sleep were present in patient 15 and
FFTs showed the same ISA reduction. It was noted furthermore that
atients with epilepsy. Clin Neurophysiol (2013), http://dx.doi.org/10.1016/
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Fig. 6. Example of focal temporal buildup during sleep in a scalp recording (patient 14). Top (A) shows 20 min of ISA with buildup at P7-O1 and later M1 as well as T7. It is
also reflected to some extent at C4, P4, O2 and is terminated by a shift in body position. The bottom section (B) demonstrates on a 20 s segment of conventional filter settings
just prior to the movement artefact that the focal activity cannot be seen because of normal sleep changes. Calibration bar 50 lV for both sections, vertical bars delineate 10 s
for A and 1 s for B.

Fig. 7. Same buildup on conventional filter settings but the window was enlarged to cover 3 min. Focal slowing can now be discerned at P7 and M1. Calibration bar 50 lV and
the vertical bars reflect 10 s intervals.
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when the data were examined separately for the delta band, de-
fined as 1–3 Hz, the values were clustered at the edge of the spec-
trum at 1 Hz. When the 1 Hz filter was removed and the unfiltered
data were examined, the frequencies ranged during the delta stage
from 0.07 to 0.7 Hz in different channels. The current delta-fre-
quency band definition with a low-frequency cut-off of either 0.5
or 1 Hz was based on analogue technology, which eliminated the
lower frequencies and, therefore, does not necessarily conform to
physiological parameters.

The interictal intracranial observations agreed with what had
had been previously reported for ictal data. ISA increase does not
necessarily appear in the channels which show maximal activity
in the conventional frequency band but in neighbouring ones (Ro-
din and Modur, 2008). A puzzling aspect is, however, that interictal
ISA build-up did not only appear in contiguous channels of a grid or
strip but also in distant ones, as shown in Fig. 3A, while the activity
is contiguous for conventional frequencies (Fig. 3B). This discrep-
ancy suggests that different electrophysiological processes are
responsible for these different frequencies.

The study also raised an additional question: can some of the ob-
served ISA build-up, when it occurs in the waking state, be associ-
ated with clinical symptoms? In one instance (patient 2) the
patient pushed the event button, but as the EEG did not show abnor-
malities it was regarded as an ‘accidental button push’. Yet, ISA had
definitely increased for a 5-min period. In another instance (patient
10), the patient’s wife reported that his speech did not make sense.
High-amplitude 25-min ISA build-up was present at that time but
there was no counterpart in the conventional frequencies. Inasmuch
as the patients were not constantly observed, by nursing personnel
Please cite this article in press as: Rodin E et al. Interictal infraslow activity in p
j.clinph.2013.10.014
or family, one cannot know to what extent a relationship of this type
might have existed in other instances of ISA build-up.

A further aspect needs to be mentioned. In intracranial as well
as scalp recordings, one could, at times, see prolonged extremely
rhythmic activity at 0.2 or 0.3 Hz at a single electrode. This usually
occurred after that electrode had previously shown momentary
artefact (typical ‘electrode pop’) and probably registered respira-
tion rather than cerebral electrical activity as shown in a previous
publication (Rodin and Funke, 2006).

Scalp-recorded ISA data can be used only with considerable
caution because of unavoidable artefacts which may also include
electrodermal and ocular activity. These are more pronounced in
the waking state, with sleep recordings leading to more trustwor-
thy data. Since intracranial ISA build-up can reach millivolt levels,
scalp-recorded ISA build-up in hundreds of microvolts need not
necessarily be regarded as an artefact if eye movements can be
removed and contiguous channels are involved. The data also
showed that a build-up can occur not only on the side of the
epileptogenic process but also on the contralateral side, even when
a structural lesion is present. Its clinical significance is as yet
unknown. This aspect will require further study on a larger case
material where long-term operative results from excision of
epileptogenic tissue are available. The findings do, however, show
that even when conventional filter settings are used, the display
window should be opened to several minutes, rather than seconds,
because a build-up of activity may become apparent under these
circumstances. Opening the high-pass filter and decreasing the
low-pass filter will allow the discharges to become even clearer
and with downsampling, longer epochs can be studied.
atients with epilepsy. Clin Neurophysiol (2013), http://dx.doi.org/10.1016/
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At present, the clinical significance of the episodic interictal ISA
build-up is unknown. If it were indeed related to the epileptogenic
process, it might suggest that even in ‘localisation-related epilepsy’
the dysfunction may be more widespread than one would assume
from the conventional frequency band. If this were to be the case, it
might explain to some extent why the results from surgical exci-
sion of the epileptogenic zone tend to decay when long follow-
up periods are employed. This holds true even for temporal lobe
seizures, which have the best surgical prognosis (Wieser et al.,
2003; Yoon et al., 2003; De Tisi et al., 2011).

The major limitations of this study were twofold. For intracra-
nial data only a relatively small area of the brain was sampled
and usually unilaterally. This left wide gaps and since the ISA elec-
trical field is more limited than for the conventional frequencies
(Gumnit, 1961; Gumnit and Takahashi, 1965), important informa-
tion may have been missed. While this is, in part, unavoidable, a
more complete work-up of the previously scalp-recorded data,
which includes the use of additional software above and beyond
what the instrument manufacturer provides, might have been
helpful because it could have made the placement of strips or grids
more precise. In retrospect, some of the strips/grids might not have
been placed optimally because the scalp data assessment had re-
lied largely on the 10/20 system and the data were evaluated only
on a routine clinical basis with the instrument manufacturer’s soft-
ware. The second major limitation pertains to scalp recordings be-
cause, as mentioned, only the sleep portions were fully
trustworthy. However, even in sleep, the patients were quite rest-
less with frequent shifts of position, which created artefacts and
mainly the spindle and K-complex stages were recorded. To what
extent this is a common feature of epilepsy patients with uncon-
trolled seizures is at present not clear and it will require further
study. Furthermore, the scalp recordings had only limited elec-
trode coverage, which also leaves the higher amplitudes in the
infraorbital electrodes shown in Figs. 4 and 5 unexplained. They
may have reflected ocular or orbitofrontal activity and additional
electrodes would be needed to clarify this observation.

In conclusion, it can be stated that ISA is a normal part of the total
EEG spectrum, but its assessment in normal individuals is still lim-
ited (Vanhatalo et al., 2004; Monto et al., 2008; Hughes and Lörincz,
2011; Picchioni et al., 2011). Further studies are indicated not only in
epilepsy patients but also in those with other conditions. The phys-
iological processes which underlie ISA are speculative at this time
but astrocytic activity (Manning and Sontheimer, 1997; Parri et al.,
2001; Amzica and Massimini, 2002; Benaroch, 2005; Amzica,
2006; Tian et al., 2005; Hughes and Lörincz, 2011), as well as blood
barrier changes, have been suggested (Vanhatalo et al., 2004, 2005).
Glial effects are of special interest because it has previously been
shown, in a kindling experiment, that astrocyte swelling preceded
neuronal changes (Rodin et al., 1979). Lehrmann et al. (2008) ob-
served a similar phenomenon in measles-virus-infected mice with
astrocytes and microglia showing the earliest changes. Inasmuch
as glial discharges have been recorded with frequencies ranging
from 0.003 to 0.1 Hz their contribution to ISA appears very likely
(Hughes and Lörincz, 2011). Since the results, which were reported
here readily, lend themselves to independent replication by other
laboratories, it is hoped that these studies will soon be performed
in order to shed further light on this important segment of the brain’s
electrical frequency spectrum.
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