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Centrin 2 Is Required for Mouse Olfactory Ciliary Trafficking
and Development of Ependymal Cilia Planar Polarity
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Centrins are ancient calmodulin-related Ca** -binding proteins associated with basal bodies. In lower eukaryotes, Centrin2 (CETN2) is
required for basal body replication and positioning, although its function in mammals is undefined. We generated a germline CETN2
knock-out (KO) mouse presenting with syndromic ciliopathy including dysosmia and hydrocephalus. Absence of CETN2 leads to olfac-
tory cilia loss, impaired ciliary trafficking of olfactory signaling proteins, adenylate cyclase III (ACIII), and cyclic nucleotide-gated (CNG)
channel, as well as disrupted basal body apical migration in postnatal olfactory sensory neurons (OSNs). In mutant OSNs, cilia base-
anchoring of intraflagellar transport components IFT88, the kinesin-II subunit KIF3A, and cytoplasmic dynein 2 appeared compro-
mised. Although the densities of mutant ependymal and respiratory cilia were largely normal, the planar polarity of mutant ependymal
cilia was disrupted, resulting in uncoordinated flow of CSF. Transgenic expression of GFP-CETN2 rescued the Cetn2-deficiency pheno-
type. These results indicate that mammalian basal body replication and ciliogenesis occur independently of CETN2; however, mouse

CETN2 regulates protein trafficking of olfactory cilia and participates in specifying planar polarity of ependymal cilia.
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Introduction

Cilia are organelles important for cellular sensation, motility, and
signaling. Olfactory cilia emanate from the dendritic knob of the
olfactory sensory neuron (OSN) and harbor signaling proteins
needed to convert odor stimuli into electrical signals. Photore-
ceptor outer segments are specialized light-sensing cilia housing
phototransduction proteins. Motile cilia of multiciliated cells,
e.g., ependymal cilia lining the brain ventricle wall, airway respi-
ratory cilia, and fallopian tube cilia, propel liquid or cell move-
ment along luminal surfaces. Cilia dysfunction causes a wide
range of human diseases collectively called ciliopathies. Disrup-
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tion of olfactory cilia causes anosmia (inability to perceive odors)
or dysosmia (reduced sensitivity to odors; Kulaga et al., 2004;
McEwen et al., 2007; Tadenev et al., 2011; McIntyre et al., 2012),
whereas ependymal cilia dysfunction leads to impaired CSF flow
and hydrocephalus (Lechtreck et al., 2008; Tissir et al., 2010;
Wilson et al., 2010).

Intraflagellar transport (IFT) is a highly conserved mecha-
nism that regulates the trafficking of axoneme building blocks,
tubulin, sensory receptors, and other transmembrane proteins
(Kozminski et al., 1995; Marshall et al., 2005; Qin et al., 2005;
Huang et al., 2007; Mukhopadhyay et al., 2010; Ocbina et al.,
2011). Motile cilia additionally require planar cell polarity (PCP)
for proper function, i.e., the cilia must be oriented uniformly
such that their coordinated beating can generate a directional
fluid flow. The basal body at the ciliary base appears to be critical
for both entry of the signaling protein and establishment of pla-
nar polarity (Marshall, 2008b). The basal body distal appendage,
or “transitional fiber”, together with the ciliary transition zone,
may compromise a “gate” for ciliary entry (Williams et al., 2011;
Weietal., 2013; Yeetal., 2014), whereas the subdistal appendage,
or “basal foot”, determines polarity, with its absence in mice
causing uncoordinated ciliary beating (Kunimoto et al., 2012).

Centrins, ~20 kDa Ca’"-binding proteins, are core basal
body/centriole proteins that are included among the several hun-
dred eukaryote “signature proteins” found in all eukaryotic cells
but not in archaea or bacteria (Hartman and Fedorov, 2002).
Centrins are required for basal body genesis and positioning in
lower eukaryotes, such as algae, ciliates, and yeast (spindle pole
body; Salisbury, 2007). Mammals have four centrin genes: Chla-
mydomonas centrin (vfl2)-related CETNI, 2, and 4, and yeast



6378 - J. Neurosci., April 30, 2014 - 34(18):6377— 6388

A Xhol hort Spel Sacll Kpnl Xbal i Clal
shortarm ' | " g m Longarm
Ly e ' S WT
SAS-F | SAS-R LAS-F LAS-R
> 2kb < > > B
2 i Targeted
--laxXP._ loxP
} H—l—F Deleted
B genotyping GAPDH Cetn2 Cetnl Cetn3 Cetn4

WT Mut WT Mut  WT Mut WT Mut

CETN2ICC

blot:  GFP CETN2

Ependyma Retina

E OE-WT

Lv oS

GFP-Cetn2

Ep

CETN2 staining

F 10% Odorants G

Amyl Acetate Dose
WT Mut

Voltage (mV)
O N H» O

1% 10%

Figure 1.  Generation of Cetn2® &% mice manifesting the phenotype of dysosmia and hy-
drocephalus. 4, Schematic of gene targeting strategy. B, PCR genotyping of Cetn2 * 52> mouse
(357 bp for WT, 593 bp for mutant) and RT-PCR examination of Cetn7—4 mRNA expression in
OE. GAPDH was used as an internal control. Red arrow marks the faint band of truncated
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centrin (CDC31)-related CETN3 (Friedberg, 2006; Bornens and
Azimzadeh, 2007) of largely undefined function. Germ line KO
of Cetnl in mouse leads to male infertility due to a centriole
rearrangement defect causing failure of spermiogenesis (Avasthi
etal.,, 2013). The physiological roles of mammalian CETN2-4 are
unknown.

Here, we show that Cetn2 KO mice develop a syndromic cili-
opathy comprised of dysosmia and hydrocephalus. The dysosmia
phenotype is caused by impaired ciliary transport of olfactory
signaling proteins, olfactory cilia loss, and defective postnatal
basal body positioning accompanied by compromised basal body
anchoring of IFT components. The hydrocephalus is caused by
impaired CSF flow attributed to disrupted ependymal cilia PCP
without cilia loss. These phenotypes can be rescued by transgenic
expression of a GFP-CETN2 fusion protein governed by a uni-
versal promoter.

Materials and Methods

Generation of Cetn2 KO mouse. BAC clone RP23-307G22 (205.2KB) con-
taining the Cetn2 gene was purchased from Children’s Hospital Oakland
Research Institute. An 8.5 Kb Xhol/Clal fragment was subcloned into
plasmid vector pBS-SK+. We inserted a LoxP site into the first intron by
Nhel cloning, and a neomycin selection cassette flanked by two LoxP
sites into intron 3 by Xbal cloning. The target vector sequence was con-
firmed by complete sequencing of the insertion. Plasmid electroporation
of 129SV-derived embryonic stem cells, blastocyst injection, and gener-
ation of agouti and F1 heterozygous mice were performed by Ingenious
Targeting). PCR was used to screen correctly recombined ES cell clones
and F1 mice. PCR primers included: (1) random integration:
Cetn2VecScr.F: TGGCGTAATCATGGTCATAGC and Cetn2VecScr.R:
CACGACAGGTTTCCCGAC; (2) 5’ primer recombination arm:
Cetn2SAS.F: AGGAACAGAGTGTGAAGTTAGAC and Cetn2SAS.R:
AGACAGAATAAAACGCACGGG; (3) 5" LoxP: SpeLinkerChk.F:
AAACCAATGGGAAGCGGGC and SpeLinker Chk.R: CTGAAGGT
GACTTGGGCGAG; and (4) 3’ recombination arm: Cetn2LAS.F:
GAAGTAGCCGTTATTAGTGG and Cetn2LAS.R: TCTCTGGTACAG
TCATGC. Mice with the targeted allele are designated Cetn2 3LoxP, and
were crossed with an EITa-Cre driver to generate progeny with the exons
2- and 3-deleted allele (Cetn2”*>3). Ella-Cre-driven recombination
also removed a neomycin cassette, thus eliminated potential interfering
effect of neomycin on nearby gene expression. PCR genotyping primers
were as follows: first LOXP F: GAGTACGCCGTTGCCTTAAG; first
LoxP R: GTTTGACTGAGGCGGAAGTC; and third LoxP R: GGC
CCTGAGTCCTTGTAATG, which amplify fragments of 357 bp (WT)
and 593 bp (mutant).

Mice. C57BL/6 mice were obtained from Charles River Laboratories. Ella-Cre
and GFP-Cetn2 transgenic mice (Higginbotham et al., 2004) were obtained from
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Cetn2® 523 mRNA. €, Immunoblot detection of full-length (FL) GFP-CETN2 and truncated (Tc)
GFP-CETN2 (red dashed arrows, 48 and 37 kDa, respectively) overexpressed in HEK-293 cells.
Blots were probed with GFP antibody (left two lanes) and or CETN2 antibody (right two lanes).
D, Immunofluorescence of truncated GFP-CETN2 in transfected HEK-293 cells. Endogenous GFP
signal (green), with nuclear DAPI signal (blue) are shown; CETN2 antibody labeling, red (left,
bottom); and merged view (right). £, CETN2 immunofluorescence of WT and mutant OE (left
two panels), and expression of transgenic GFP-CETN2 in OE, ependyma, and retina photorecep-
tors (right three panels with insets). Den, Dendrite; LV, lateral ventricle; EP, ependyma; 0S,
outer segment; CC, connecting cilium; IS, inner segment; ONL, outer nuclear layer. Scale bar, 5
m. F, G, Representative EOG responses to various odors (F) and dose-dependent test of amyl
acetate (). MO, Mineral oil; 1, citral; 2, S-butanol; 3, acetophenone; 4, cineole; 5, R-carvone. H,
1, Quantification of EOG results showing reduced voltage responses to tested odors (H) and at
every amyl acetate concentration (/). Error bars indicate mean == SD (n = 7WT,n = 9 mutants,
two-way ANOVA, *p << 0.05, **p < 0.01, ***p < 0.001).J, Severe hydrocephalus of P30 Cetn2
mutant mouse, showing dome-shaped head and dilated lateral ventricle of brain. K, Mild hy-
drocephalus of Cetn2 mutant mouse, showing dilation of lateral ventricle (LV) but not of aque-
duct (Aq) or fourth ventricle (4th V).
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Figure 2.  Loss of olfactory (A—M), but not ependymal (N-Q) and respiratory (R, ), cilia in
(etn2 mutant mice. 4, B, Decrease and interruption of cilia marker, Ac-ae-tubulin, staining in
P14 mutant OE. C, D, SEMimages of P16 WT and mutant OF. Individual knobs (red arrowheads),
normal cilia (dashed arrows), and abnormal cilia (right, solid arrows) of the mutant are identi-
fied. E-J, OR256-17 labeling of cilia in P14 OE section (E, F) and P16 whole-mount (G-J)
preparations, showing greatly reduced density and abnormal cilium morphology in mutants.
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The Jackson Laboratory. All experiments were approved by the University of
Utah Institutional Animal Care and Use Committee.

RT-PCR. Olfactory epithelia (OE) from male WT and Cetn2 mutant mice
were dissected and total RNA was extracted using TRIzol reagent (Invitro-
gen). Reverse transcription was performed using SuperScript I reverse tran-
scriptase (with random primers). Centrin isoform primers and cycle
numbers are as follows: Cetnl (32 cycles, 390 bp), forward: GTCCAC
CTTCAGGAAGTCAAAC and reverse: TCATTGGCCACACGCTTGAG;
Cetn2 (27 cycles; 601 bp for WT, 313 bp for mutant) forward: GAGTACGC-
CGTTGCCTTAAC and reverse: GTCACATGTGCTTGCAGTAG; Cetn3
(24 cycles, 403 bp), forward: GCTCTGAGAGGTGAGCTTGTAG and re-
verse: CCTCATCGCTCATGTTCTCAG; Cetn4 (26 cycles, 216 bp), forward:
CCAGCCAGCGCATAACTTTAG and reverse: CCTTGTCGATTTCAGC-
GATCAG. GAPDH served as an internal control (18 cycles, 703 bp),
forward: GCCATCAACGACCCCTTCAT and reverse: ATGCCTGCTT-
CACCACCTTC. RT-PCR was repeated once.

Centrin expression. Full-length and truncated mouse Cetn2 were am-
plified by RT-PCR using Phusion enzyme (Finnzymes) and cloned into
pEGFP-C1 using EcoR I/BamH I cloning sites. The primers are as fol-
lows: Cetn2-full-length, forward: GCCGAATTCCGCCTCTAATTT
TAAGAAGACAAC and reverse: CTGGGATCCTGATCTTAATAGA
GGCTGGTC; Cetn2-truncated, forward: GCCGAATTCCTCTGA
GAAAGACACTAAAGAAG and same reverse primer. HEK-293 cells
(ATCC) were cultured in MEM supplemented with 10% FBS and
0.5X antibiotics (all from Invitrogen). Cells were transfected with
Lipofectamine 2000 (Invitrogen) following manufacturer’s protocol.
Transfected cells were lysed for Western blot analysis or fixed for immu-
nofluorescence detection.

EOG and ERG. Electro-olfactograms (EOGs) were performed on
male Cetn2 mutants (n = 9) and WT littermates (n = 7) at 4—6 weeks
of age. Dose—response curves were generated for amyl acetate and
2-heptanone (0, 0.1, 1, and 10% in mineral oil as vehicle). Additional
odorants were tested at 10% dilution and included S-butanol, aceto-
phenone, cineole, R-carvone, and citral. Mineral oil was used as
baseline control. Mice were killed by cervical dislocation, the heads
hemisectioned and olfactory turbinates were exposed. Mounted onto a
stereomicroscope stage, the olfactory turbinates were maintained under
humidified, filtered air stream at 35°C. Odorants (10 ul diluted stock
solutions) were applied to a sterile pipette filter and introduced into the
humidified air stream using a picospritzer. Recordings were made at
three locations (turbinates II, II", and III) with a glass electrode filled with
Ringer’s solution (140 mm NaCl, 5 mm KCl, 1 mm MgCl,, 2 mm CaCl,, 10
mwm HEPES, 10 mm glucose). The preparation was grounded by a silver
chloride wire inserted into a 3 M KCl agar bridge placed near the skull
bone. EOG responses were acquired at a sampling rate of 400 Hz and
filtered at 200 Hz using an Axoclamp 200B and Digidata 1340 interface
running Axoscope 7.2 software. Averaged peak amplitudes were used for
data analysis using two-way ANOVA with Bonferroni post-tests.

ERG was performed on 1-month-old male Cetn2 mutant and WT
littermates (n = 3 each) using an UTAS E-3000 universal electrophysio-
logical system (LKC Technologies) as described previously (Jiang et al.,
2011). Peak amplitudes for both a- and b-waves were used for analysis
using one-way ANOVA test.

Immunofluorescence and confocal microscopy. Except for CETN2 im-
munostaining, specimens (most were from male animals) were fixed by
immersion in ice-cold 4% paraformaldehyde for 3—8 h (olfactory tissue)
or 2 h (retina). Postnatal day (P)10 to adult olfactory tissues were decal-
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Labeled cilia (arrows) and dendritic knobs (arrowheads in section, dashed circles in whole-
mount) are indicated. K—M, Knob density (K), cilia density (L) and average ciliary length (M) are
decreased significantly in mutants. Data shown as mean == SD (n = 45 0SNs from 3 animals for
each group; one-way ANOVA, ***p < 0.001). N, 0, Ac-a-tubulinimmunolabeling of P21 brain
lateral ventricle whole-mount reveals that mutant ependymal cilium density is comparable
with WT, but the orientation of cilia is disrupted with disorganized tufts (0, arrows). D, Dorsal;
A, anterior. P, Q, SEM of P16 ependymal cilia showing disorganized ciliary orientation in mu-
tants (Q, arrows). R, S, TEM of P14 respiratory cilia in WT and mutant with cilium cross sections
(insets). Scale bars: A, B, E-H, N, 0,10 um; C, D, 1,J,5 um; P, Q, 20 wm; R, S, 1 um.
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Figure3. Mislocalization of ACIIl and C(NGA2 occurs before ciliary loss in Cetn2 mutant. A, B,
Ac-a-tubulinimmunolabeling of PO WT and mutant OE. (—H, Colabeling of IFT88 (C, D), KIF3A
(E, F),and DYNC2H1 (G, H; all red) with Ac-ce-tubulin (green) in P5 WT and mutant O, showing
comparable patterns. /L, 0R256-17 staining of P5 WT and mutant whole-mount OE at low- (/,
J) and high-magnification (K, L). M—0, No statistical difference of knob density (M), cilia per
knob (N), or average ciliary length (0) was observed. Data are mean == SD (one-way ANOVA, p > 0.8,
n =45 0SNs from 3 animals per group). P, Q, Colabeling of P5 turbinate | O. AClll (green) colocalizes
with o-tubulin (red) at the cilium layer of WT (P), but is partially mislocalized to the
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cified in 10% EDTA, pH 7.3, before cryoprotection in 30% sucrose;
embryonic and neonatal olfactory tissue/retinas were directly transferred
to sucrose after fixation. Specimens were embedded in Optimal Cutting
Temperature (OCT) compound and frozen. Sections (12 wm thick) were
cut using a micron cryostat and mounted on charged Superfrost Plus
slides (Fisher). Sections were washed in 0.1 M PBS, blocked using 10%
normal goat serum or 2% BSA with 0.1-0.3% Triton X-100 in PBS, and
incubated with primary antibodies at 4°C overnight. After PBS washes,
signals were detected using Cy3-conjugated or AlexaFluor 488-conjuated
goat anti-rabbit/mouse, or donkey anti-goat/rabbit secondary antibod-
ies, and counterstained with DAPI. For CETN2 staining, nasal turbinates
were isolated and immediately embedded in OCT. The cut sections were
fixed in methanol for 20 min at —20°C before proceeding to immuno-
staining. Primary antibodies were as follows: rabbit anti-CETN2 (1:200
dilution, Santa Cruz Biotechnology), adenylate cyclase III (ACIII;
1:1000, Santa Cruz Biotechnology), cyclic nucleotide-gated channel
(CNGA2; 1:300, Alomone Labs), Ger (1:200, Santa Cruz Biotechnol-
ogy), KIF3A (1:500 Sigma-Aldrich), and rod cGMP phosphodiesterase
(PDE6), ML- and S-opsin, rod transducin-c, rod arrestin (all 1:1000,
Cell Signaling Technology), DYNC2H1 (cytoplasmic dynein 2 heavy
chain 1; 1:500; Dr Vallee, Columbia University, New York, NY),
OR257-17 (1:500; Dr Breer, University of Hohenheim, Germany),
mouse anti-acetylated a-tubulin (1:1000, Sigma-Aldrich), y-tubulin (1:
500, Sigma-Aldrich), a-tubulin (1:1000, Sigma-Aldrich), CNGA1/A3 (1:
2000, NeuroMab), guanylate cyclase 1 (GC1) (1:2000, IS4) and
rhodopsin (1D4), ROM1, Peripherin 2 (1:1000, Dr Molday, University of
British Columbia); goat anti-CETN2 (1:400; Dr Wolfrum, Johannes
Gutenberg University, Mainz, Germany), and IFT88 (1:200; Dr Besharse,
Medical College of Wisconsin).

For whole-mount OR256-17 immunolabeling, essentially the same
procedure was used with antibody incubation occurring overnight.
Ependyma whole-mount AC-a-tubulin immunostaining was performed
as described previously (Mirzadeh et al., 2010). Cultured cells were fixed
in 4% PFA for 10 min at room temperature and permeabilized in 0.1%
Triton X-100 for 5 min followed by immunolabeling. Images were ac-
quired using an Olympus Fluoview 1000 confocal microscope and ad-
justed for brightness/contrast using Adobe Photoshop CS3.

Electron microscopy. For scanning electron microscopy, P16 male
Cetn2 mutantand WT control mice were killed. The heads were hemisec-
tioned; turbinates were exposed (1 = 3 each) and fixed overnight in 2.5%
glutaraldehyde, 1% paraformaldehyde in 0.1 M sodium cacodylate buffer,
pH7.4, at 4°C. After several washes, samples were dehydrated in an ascend-
ing ethanol solution series and dried in hexamethyldisilazane. Dried samples
were coated with gold particles and examined using the University of Utah
EM core facility scanning microscope (Hitachi S-2460N) at 20 KV.

For transmission electron microscopy, P14 male Cetn2 mutant and
WT control specimens (n = 3 each) were fixed 2 h in the (above) fixative
at 4°C, washed, and postfixed 2 h in 2% osmium tetroxide in 0.1 M
sodium cacodylate buffer, pH7.4, at 4°C. Washed specimens were dehy-
drated through an ascending series of ethanol, dried in propylene oxide
and infiltrated overnight with Epon resin mix/propylene oxide (1:1) mix-
ture, followed by 100% Epon resin for 2 d. Specimens were embedded in
plastic, and the plastic was cured by incubation in a 60°C oven for 2 d.
Blocks were trimmed, and 1-um-thick sections were cut and examined
until desired area was reached. Ultrathin sections were cut, stained with
uranyl acetate and lead citrate, and examined with an electron transmis-
sion microscope (FEI Tecnai 12) at the University of Utah EM core
facility.
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dendrite and cell body (arrows) in mutant (Q). Mutant olfactory cilia appear intact at this stage.
R-T, Double-immunofluorescence of ACIIl (green) and Ac-cx-tubulin (red) in P14 WT (R), Cetn2
mutant (S), and Cetn2 Mut;GFP-Cetn2 (T) OE. 0-Q, Double-staining of CNGA2 (green) and
Ac-a-tubulin (red) in P14 WT (U), Cetn2 mutants (V), and Cetn2 Mut;GFP-CETN2 (W) OE. X-Z,
Immunofluorescence of Gxolfin OE. Gevolf localizes in cilia layer of P14 WT (X), mutant (¥), and
Cetn2 Mut;GFP-Cetn2 (Z) OE. Please note the endogenous GFP-CETN2 signal was quenched in T,
W, Z by boiling in 10 mm sodium citrate, pH6.0, for 20 min before staining. Scale bars: A, B, 1, J,
P,Q,10 wm; K, L, 5 pm; R—Z,30 pum.
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Figure 4.  Basal-body apical migration defects in postnatal Cetn2 mutant OSNs. A, B, P14 WT and mutant OE ultrastructure,
turbinate Il. Olfactory cilia (arrows) are present in A and absent in B. Dendritic knobs (dashed lines) and mislocalized basal bodies
(arrowheads) beneath the mutant epithelial surface are shown. €, D, Magnified TEM views of WT and mutant olfactory cilia.
Swollen tips of remaining mutant cilia (D, arrowheads) and elongated basal bodies with abnormal electron-dense decoration
(arrows) are indicated. E, F, GFP-CETN2-labeled basal body distribution (E, white arrows) in P7 GFP-CETN2 transgenic mouse OE.
Boxed area in E was enlarged in F. Dashed arrows mark clustered basal bodies that might undergo apical migration within
dendrites. Arrow labels basal bodies within OSN cell bodies. G, OMP (red) immunostaining in P7 GFP-CETN2 transgenic mouse OE.
Afraction of GFP-CETN2 signal located in OMP-positive OSNs (arrows) with majority located in OMP-negative cells. H, Enlargement
of boxed area in G. Arrows mark two GFP-CETN2 spots in dendrites of OMP-positive neurons. Dashed arrow points to a large clump
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Co-IP and Western blot. Olfactory epithelia
from transgenic GFP-Cetn2 and WT mice
(both male and females) were dissected while
submerged in ice-cold PBS. Pooled tissues were
homogenized in lysis buffer (50 mwm Tris-Cl,
pH 7.6, 120 mm NaCl, 0.5% IGEPAL CA-630, 1
mM PMSF, 1X protease inhibitor mixture, 2
mwm NaF, 2 mm NasVO,, supplemented with
100 um CaCl,, and 100 pum MgCl, for Ca**-
containing buffer or 1 mM EDTA and 1 mm
EGTA for Ca®*-free buffer), centrifuged at
13,000 X g, 4°C for 20 min, and supernatants
were collected. Supernatants were precleared
by incubating with 50% protein G-sepharose
beads and normal rabbit IgG for 30 min. Pre-
cleared lysates were mixed with GFP primary
antibody for 2 h (Rockland 011-0102), fol-
lowed by protein G-sepharose beads for 45
min. Beads were collected by centrifugation at
3000 X g for I min, and washed eight times in
lysis buffer without protease inhibitors. After
final wash, 2X SDS buffer was added and the
samples were boiled for 3 min, centrifuged
briefly, and supernatant were collected. Trans-
fected HEK-293 cells were lysed in the same
Ca**-free buffer. Precipitated proteins and
HEK-293 cell lysates were separated by SDS-
PAGE and transferred to PVDF membrane. A
standard protocol using an ECL-plus kit
(Pierce) detected the immunoblot signal. Anti-
bodies used for Western blot were as follows:
rabbit anti-GFP (Rockland, 1:1000), goat
anti-CETN2 (1:500; Dr Wolfrum, Johannes
Gutenberg University), KIF3A (1:500 Sigma-
Aldrich), DYNC2H1, and DYNCI1HI1 (cyto-
plasmic dynein 1 heavy chain 1) (both 1:500;
Dr Vallee, Columbia University).

Ependymal cilia beating assay. P13 male WT
and Cetn2 mutant brain lateral ventricle walls
were isolated in L15 medium (Mirzadeh et al.,
2010). Red fluorescent microbeads (Sigma-
Aldrich; 2 um diameter) were added and bead
movement was recorded using a Nikon Ti-E
Widefield CCD microscope. Image] software
(NIH) with manual tracking plugin was used
to track individual particle movements and to
calculate speed.

Statistical analysis. Data are presented as
mean * SD where n represents the number of
mice or OSNs analyzed. Statistical compari-
sons (significant for p < 0.05) were performed
using two-way ANOVA with Bonferroni post-
test for EOG results, and one-way ANOVA for
all other experimental data.

Results

Generation of Cetn2 KO mice

The mouse X chromosome-located Cetn2
gene contains 5 exons. To generate a
CETN2 KO mouse, we inserted a loxP site

<«

of GFP-CETN2 signal in supranuclear region of an OMP-positive
OSN, probably an intermediate structure of de novo centriole
formation pathway. Arrowhead marks a knob from another
OSN that happened to be situated above the aforementioned
OSN dendrite tip because of cut angle. Scale bars: 4, B, 2 um;
C, D, 200 nm; E, 25 wm; F, H, 5 um; G, 20 om.
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into intron 1 and a neomycin selection
cassette flanked by two loxP sites into in-
tron 3 to create the conditional allele (Fig.
1A). By mating the floxed mouse with an
Ella-Cre driver, we generated an allele in
which the neo cassette was eliminated
and exons 2 and 3 were deleted in frame
(Cetn22 523 Fig. 1A,B). Truncated Cetn2
mRNA (encompassing exons 1, 4, and 5)
was detectable by RT/PCR but at very low
levels (5-10% of WT; Fig. 1B, red arrow).
In the absence of Cetn2, Cetnl, and Cetn3,
mRNA levels were normal with Cetn4 be-
ing slightly upregulated by RT-PCR anal-
ysis (Fig. 1B). A CETN2 antibody (goat
anti-full-length mouse CETN2) recognized
the truncated GFP-CETN2 overexpressed B
in HEK-293 cells by immunoblot (Fig. 1C)
and by immunostaining (Fig. 1D). The
truncated protein was undetectable in Cetn2
mutant olfactory epithelia (OE) by immuno-
staining, whereas in WT OE endogenous
CETN2 protein localized to the basal body/
centriole of OSN dendritic knob layer, (Fig.
1E, left), indicating that Cetn22P23 is a null
allele. In a GFP-Cetn2 transgenic mouse (Hig-
ginbotham et al., 2004), GFP-CETN?2 is simi-
larly concentrated in basal bodies of OSNS,
brain ependyma, and photoreceptors (also in
photoreceptor connecting cilia; Fig. 1E, right).
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Cetn2 mutant mice display dysosmia
and hydrocephalus

Cetn2 mutants (Cetn2’~ females or
Cetn2~'Y males) were born in a Mende-
lian ratio as expected for an X-linked gene.
Cetn2 mutant appears normal at birth but
its body size becomes smaller with age rel-
ative to WT or heterozygous littermates
(~30% lower than WT at weaning),
consistent with a weight loss phenotype

Rhodopsin
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previously associated with olfaction-
deficiency (Weiss et al., 2011). A behav-
ioral test revealed that overnight-fasted
Cetn2 mutants took over seven times lon-
ger to locate food than WT controls (350
vs 45 s, data not shown), suggesting that
they are dysosmic. We found that EOG
amplitudes of Cetn2 KO mice were re-
duced by 48-69% with all tested odor-
ants: 58% reduction for citral, 48% for
S-butanol, 61% for acetophenone, 69%
for cineole, and 67% for R-carvone (Fig.
1F,H). Dose-dependent EOG recordings with amyl acetate
showed amplitude reduction at every tested concentration (Fig.
1G,D).

Cetn2 KO mice also presented with hydrocephalus of variable
severity. Approximately 30% of mutants develop a dome-shaped
head reflecting a dilated brain ventricle (Fig. 1]) and die within
1.5 months. The other 70% have a normal skull shape but with
brain ventricles dilated upon examination histologically (Fig. 1K;
ages 1-12 months), indicating later onset of hydrocephaly after
the sealing of cranial sutures. Dilation of lateral ventricle in mild

Figure 5.

Renal tubule: Ac-a-Tubulin

Brain Neurons: ACIII

Normal ciliary protein trafficking and translocation in Cetn2 mutant photoreceptors. A, Normal transport of photore-
ceptor outer segment proteins, including rhodopsin (red), ML-opsin (green), GC1 (red), and CNGA1/A3 (red) in retinas of 1-month-
old WT (top) and Cetn2 mutant (lower) mice. B, Electroretinography of 1-month-old WT and Cetn2 mutant mice. No difference of
scotopic ERG a-wave (top) or b-wave (lower) amplitude at multiple light intensities was observed. Data are shown as mean == SD
for both a- and b-wave amplitudes (n = 3, one-way ANOVA, p > 0.7). C~F, Normal rod transducin localization in dark- (C, D) or
light-adapted (E, F) WT (C, E) and Cetn2 mutant retinas (D, F). G, H, Ac-«-tubulin (green) immunostaining of renal tubule cilium
(arrowheads) in 14-month-old WT and mutant kidney. I, J, AClIl labeling (green) of neuronal primary cilium of P14 WT and mutant
brain neurons. Scale bars: A, (F, 50 uwm; G, H, 10 m; 1,J, 5 pm.

hydrocephalus is more obvious than that of midbrain aqueduct
or fourth ventricle (Fig. 1K).

We did not observe common primary cilium-related disease
phenotypes, such as retinal degeneration (see below), polycystic
kidney disease, polydactyly, or hedgehog signaling-related devel-
opmental defects in Cetn2 mutants.

Loss of olfactory cilia, but maintenance of ependymal cilia in
Cetn2 mutant mice

We investigated whether disruption of mutant olfactory or
ependymal cilia occurs among Cetn2 'Y males. Ac-a-tubulin
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Figure6. Mislocalized IFT componentsin P14 Cetn2 mutant OE. A, B, IFT88 (red) and Ac-c-tubulin (green) colabeling of WT (4)
and mutant (B) OE where [FT88 is localized in the ciliary layer (arrows) of the mutant. C, D, KIF3A (red) and Ac-ce-tubulin (green)
colabeling of WT (€) and mutant (D) OE. KIF3A signal (arrows) appears intermingled with that of Ac-a-tubulin (green) in the
mutant ciliary layer. E, F, KIF3A (red) and -y-tubulin (green) colabeling of WT (E) and mutant (F) OE. Note KIF3A localization
(arrows) above the most superficial y-tubulin signal in mutant. Arrowheads (F, mutant) indicate mislocalized basal bodies.
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(cilium marker) immunolabeling re-
vealed substantial decrease of ciliary layer
thickness with Ac-a-tubulin-negative
spotsin mutant OE at P14 (Fig. 2A, B) and
later (P21, P60, P180; data not shown). In
scanning electron microscopy (SEM) of
P16 OE tissues (turbinates ITand II"), WT
cilia formed a fine, dense meshwork (Fig.
2C), whereas Cetn2 mutant cilia were re-
duced in density and appeared short and
stubby with slightly enlarged tips (Fig. 2D,
arrows), and several dendritic knobs (ex-
ample at arrowhead) were enlarged. We
labeled a subset of olfactory cilia with anti-
OR256-17 (olfactory receptor 15) anti-
body which has been used to track mouse
olfactory ciliogenesis in an OSN subset
(Schwarzenbacher et al.,, 2005). Com-
pared with WT (Fig. 2E), numbers of
Cetn2 mutant OR256-17-positive cilia
were reduced dramatically in either coro-
nal sections (Fig. 2 E, F, arrows) or whole-
mounts, and remaining cilia were short
and varicose (Fig. 2G—J, arrows). Quanti-
fication of OR256-17 immunostaining
confirmed significant decrease of knob
density (170.5 vs 93, knobs per 0.1 mm?),
cilium density (17 vs 6, cilia number per
knob), and average ciliary length (22 wm
vs 7 um; Fig. 2K-M).

Surprisingly, the density of lateral ven-
tricle ependymal cilia in P21 Cetn2 mu-
tants with early onset hydrocephalus is
comparable with WT as determined by
whole-mount Ac-a-tubulin labeling (Fig.
2 N, O). However, the uniform anterior-
pointing orientation of cilia appears to be
disrupted among Cetn2 mutants (Fig. 20,
arrows). In SEM, P16 WT ependymal cil-
iary tufts show regular spacing and cilia
within a tuft, or between tufts, show con-
sistently uniform orientation (Fig. 2P),
whereas mutant ependymal cilia within a
tuft, or among adjacent tufts, frequently
revealed cilia of variable orientation (Fig.
2Q, arrows). In addition, mutant respira-
tory cilia appear to be normal in density

<«

G, H, DYNC2H1 (red) and Ac-cx-tubulin (green) colabeling of
WT (G) and mutant (H) OE. DYNC2H1 labels WT knob layer, and
is reduced dramatically in the mutant (arrows). Note that
DYNC2H1 labeling of mutant dendrite and soma layer is unal-
tered. Insets in A—H are single channel images of each label-
ing.1,J,KIF17 (red) and Ac-ce-tubulin (green) colabeling of WT
(1) and mutant (J) OE, showing KIF17 localization in cilia layer
of both. K, L, KIF3A (red) and Ac--tubulin (green) colabeling
of P14 nasal respiratory epithelium. KIF3A appears concen-
trated at the ciliary bases of both WT (K) and mutant (). M, N,
DYNC2H1 (red) and Ac--tubulin (green) colabeling of P14
nasal respiratory epithelium, showing cytoplasmic dynein 2
concentration at iliary bases of both WT (M) and mutant (N).
Scale bars: 4, B, 1,J,30 pum; (—H, 20 um; K-N, 50 pem.
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and axonemal ultrastructure (Fig. 2R,S,
and insets), as well as determined by Ac-
a-tubulin labeling, and with normal lo-
calizations of cytoplasmic dynein2 and
KIF3A at cilia bases (see Fig. 6K-N).

Olfactory cilia trafficking failure occurs
before cilia loss

Documenting the onset of olfactory cili-
ary loss, we found that cilium density at
early stages (PO, P5) is comparable be-
tween WT and mutant as determined by C

Ac-a-tubulin (Fig. 3A,B) and OR256-17 g 60 1
(Fig. 3I-L) immunolabeling. Further, the & 50 4
pattern of three IFT components, IFT88, 4

KIF3A (obligatory subunit of anterograde € 404
motor kinesin-II), and DYNC2H1 (IFT = 30 +
retrograde motor cytoplasmic dynein 2 >

heavy chain 1), is comparable between WT ‘G 20 1
and mutant with IFT88 and DYNC2HI 2 10-
concentrated at cilium layer and KIF3A >

concentrated at knob layer at these stages 0

(Fig. 3C-H). Quantification of P5 whole-
mount OR256-17 signal revealed no dif-
ference of dendritic knob density (170
WT vs 175 mutant, knobs per 0.1 mm?),
cilium density (19.2 WT vs 18.5 mutant,
cilia number per knob), or average cilium
length (8.2 wm WT vs 8.5 wm mutant; Fig.
3M-0). Collectively, these measures indicate that olfactory cilio-
genesis is initiated without CETN2. Interestingly, as early as P5,
many turbinate I mutant OSNs showed dendrite and soma mis-
localization of the olfactory signaling protein, ACIII (Fig. 3, com-
pare P,Q, green). As the olfactory ciliary axoneme is present in
these neurons, shown by a-tubulin staining (Fig. 3Q, red), loss of
CETN2 appears correlated with impaired membrane protein
transport.

With OE development, the ciliary trafficking defect can be
observed in all turbinates and septa. By P14 (and older), immu-
noreactivity for two major transmembrane signaling proteins,
ACIII and CNGA2, showed massive mislocalization to OSN den-
drites and cell bodies in mutants (Fig. 3S,V), in stark contrast to
localization exclusively in the WT cilia layer(Fig. 3R, U). Local-
ization of the olfactory G-protein, Gea, (a peripheral
membrane-associated protein), appeared normal (Fig. 3X,Y).

Figure 7.

Transgenic GFP-Cetn2 rescues olfactory mistrafficking and
other phenotypes

Overexpression of GFP-CETN2 rescues the centriole assembly
defect in CETN2-depleted mammalian cells (Yang et al., 2010).
Correspondingly, we produced Cetn2 '¥;GFP-Cetn2 mice by
mating Cetn2 ™'~ female mice with GFP-Cetn2 transgenic males
(Higginbotham et al., 2004) in an attempt to “rescue” the OSN
ciliary trafficking defect. As expected, ciliary localizations of
ACIII, CNGA2, and Gayr were normal in Cetn2 ~'¥; GFP-Cetn2
mice (Fig. 3N,Q,T). Further, the body weights of Cetn2 ™'
GFP-Cetn2 mice were indistinguishable from those of WT mice;
hydrocephalus were not detected (among >10 mutants).

Basal body mislocalization in postnatal Cetn2 mutant OSN

Olfactory ciliogenesis starts with de novo basal body formations
in the OSN soma followed by migration into dendritic knobs
(Jenkins et al., 2009a). Ultrastructure reveals that dendritic knobs

WT

Impaired CSF flow in Cetn2 mutant mouse. A, B, Traces of latex bead movement along lateral ventricle surface
(delimited by dashed white lines). Colored lines indicate the trajectory of several tracked particles, and circles mark the end of
tracking. D, Dorsal; A, anterior. C, Latex microbeads moved significantly slower in Cetn2 mutant mouse (8 m/s) than in WT (45
m/s). Data shown as mean = SD (>20 beads from 2 animals of each group, one-way ANOVA, ***p << 0.001). Scale bar, 20 um.
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and basal bodies are located exclusively in the OE mucous layer of
P14 WT mice (Fig. 4A), whereas in Cetn2 mutant littermates (Fig.
4B), many dendritic knobs and basal bodies were localized be-
neath the OE surface, indicating basal body apical migration/
docking defects. Short residual cilia with slightly swollen tips
were observed in mutant OSNs (Fig. 4C,D, arrowheads), along
with basal bodies having extra wall decoration (Fig. 4D, arrows).
Since early olfactory ciliogenesis (before P5) appears to be nor-
mal in Cetn2 mutants, the mislocalized basal bodies may result
from terminal migration and docking defects during postnatal
OE maturation. Indeed, we found that GFP-CETN2 labeled
centrioles are dispersed throughout OE in P7 GFP-CETN2
transgenic mice (Fig. 4E, arrows), and that at high-magnification GFP-
CETN2-postive dots could be seen at both OSN cell body and
dendrite with some in clusters (Fig. 4F, arrows). As OE matura-
tion is paralleled by the progressive increase of OSN numbers
expressing olfactory marker protein (OMP, a mature OSN mark-
er; Farbman and Margolis, 1980), we stained P7 sections with
OMP antibody and found that a small fraction of basal bodies is
located in OMP-positive OSN cell body and dendrite (Fig. 4G,H,
arrows), although the majority are located in OMP-negative im-
mature neurons (Fig. 4G, dashed arrows). These observations
indicate that basal body terminal migration/docking failure
could occur both in Cetn2 mutant immature and mature OSNS.

Photoreceptor ciliary trafficking proceeds normally in

Cetn2 mutants

All four centrin genes are expressed in murine photoreceptors
(Giessl et al., 2004). Deletion of CETN2 did not affect the subcel-
luar localizations of photoreceptor outer segment proteins, in-
cluding rod and cone visual pigments (rhodopsin, ML-opsin, and
S-opsin), cGMP-gated channel subunits (CNGA1/A3), guanylate
cyclase 1 (GC1), rod PDE6 and the structural proteins ROM1,
and peripherin-2 (Fig. 54, and data not shown). ERGs of
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1-month-old WT and Cefn2 mutant mice were indistinguishable
(Fig. 5B). It has been proposed that photoreceptor centrins may
regulate visual G-protein translocation (Trojan et al., 2008).
However, we found that neither the light-driven translocation
nor the dark-driven return of both rod transducin-« (Fig. 5C-F)
and arrestin (data not shown) are impaired in Cetn2 mutants.

Mutant renal tubule cilia appeared normal in morphology
and density as judged by Ac-a-tubulin immunostaining (Fig.
5G,H). Another type of primary cilium, the ACIII-positive neu-
ronal cilium of the brain, also appeared normal in density al-
though ACIII distribution along the cilia was not as smooth as in
WT (Fig. 5, compare I, ] ).

Mislocalization of IFT components in Cetn2 mutant OSNs

To test whether Cetn2 mutant OSN mislocalization of ACIII and
CNGA?2 involved altered IFT, we examined the distributions of
IFT88, KIF3A, and DYNC2HI1 in P14 animals. As reported (Mi-
yoshi et al., 2009), IFT-88 and KIF3A concentrate at dendritic
knob layer, beneath the Ac-a-tubulin-positive ciliary layer (Fig.
6A,C), and overlap with the y-tubulin signal (Fig. 6E). In mu-
tants, IFT88- and KIF3A-positive layers are uneven and portions
of each colocalize with Ac-a-tubulin (Fig. 6 B,D, arrows), sug-
gesting that IFT88 and KIF3A are trapped in olfactory cilia.
KIF3A and y-tubulin double-labeling confirmed partial KIF3A
localization above the superficial basal bodies (Fig. 6F). Interest-
ingly, homodimeric KIF17, another member of the kinesin-II
family required for sensory ciliogenesis in Caenorhabditis elegans
and olfactory CNG channel cilium transport in mammalian cells
(Snow et al., 2004; Jenkins et al., 2006), localized correctly in the
olfactory cilium layer of Cetn2 mutant mice (Fig. 71,J). Trapping
of IFT88 and KIF3A in the Cetn2 mutant ciliary layer suggests
abnormal retrograde IFT, mediated by cytoplasmic dynein 2
(Collet et al., 1998; Pazour et al., 1999). Although DYNC2H1
soma layer labeling appeared unaltered, we found that
DYNC2HI ciliary base localization was dramatically decreased in
Cetn2 mutant OE (Fig. 6G,H, insets, arrows). However, using
GFP-CETN2 transgenic OE lysate and GFP antibody as a bait, we
were unable to detect a direct interaction between CETN2 and
DYNC2H]1 or KIF3A (data not shown) in coimmunoprecipita-
tion assays. Colabeling of KIF3 or DYNC2H1 with Ac-a-tubulin
in Cetn2 mutant respiratory epithelia, however, revealed normal
basal body localization of these two motor proteins (Fig. 6K—N).

Uncoordinated fluid flow generated by Cetn2 mutant
ependymal cilia

The orientation of ependymal cilia (Fig. 2L-O) indicated an al-
tered CSF flow phenotype in the Cetn2 mutant. To test this pos-
sibility, we isolated and maintained P13 lateral ventricle walls in
culture. Fluorescent latex microbeads (2 wm diameter) were
added to the culture media and microbead movement was then
recorded. Beads move from posterior to anterior when incubated
with WT ependymal epithelia (Tissir et al., 2010; Fig. 7A; Movie
1), but with mutant ependymal epithelia, directional movement
is disrupted, slowed (WT 45 pwm/s vs mutant 8 wm/s; Fig. 7C),
and multidirectional (Fig. 7B; Movie 2). Impaired CSF direc-
tional flow coupled with ciliary misorientation of Cetn2 mutant
ependyma was interpreted to suggest improper development of
planar polarity.

Disrupted rotational planar polarity of ependymal cilia in
Cetn2 mutants

Because the basal foot direction determines ependymal cilia pla-
nar polarity and beating direction (Wallingford, 2010; Kishimoto
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Movie1.  Fluorescent microbead movement along WT lateral ventricle surface. Beads move
from posterior to anterior. Images were acquired at 25 frames/s and movie plays at 15 frames/s.

Movie2.  Movement of fluorescent microbeads along Cetn2 mutant lateral ventricle surface.
Beads move more slowly, and in random directions. Images were acquired at 25 frames/s and
movie plays at 15 frames/s.

and Sawamoto, 2012), we examined the basal foot direction via
ultrastructure of P13 mutant ependyma. Most WT basal feet
point anteriorly but Cetn2 mutant basal feet point randomly (Fig.
8 A, B, arrows), thus accounting for the random direction of cili-
ary beating detected by bead movement. We frequently observed
misaligned mutant ependymal cilia (Fig. 8C,D), with basal bodies
showing two or more electron-dense basal feet (Fig. 8B, dashed
arrows, F, arrows). As the ciliary 9 + 2 axoneme organization and
nine blade-like transitional fibers appeared normal in Cetn2 mu-
tants (Fig. 8 E, F), it seems unlikely that the impaired fluid flow
phenotype resulted from ciliary structural deficiency.

Discussion

In vitro studies have yielded contradictory results regarding the
function of vertebrate centrin in basal body replication (Midden-
dorp et al., 2000; Salisbury et al., 2002; Kleylein-Sohn et al., 2007;
Yang et al., 2010; Dantas et al., 2011). Morpholino-induced de-
pletion of CETN2 in zebrafish causes cell-cycle delay due to chro-
mosome misalignment-induced mitotic defects. Here, we found
that Cetn2 mutant pups were born healthy and of normal size,
suggesting that CETN2 is nonessential for mouse centrosome
replication or mitotic cell division during embryonic stages.
Rather, Cetn2 mutants showed selective ciliopathies, i.e., dysos-
mia and hydrocephalus of variable degree. In view of ubiquitous
expression of CETN2 in mouse adult tissues (Hart et al., 2001), it
is puzzling that germline deletion of CETN2 affects predomi-
nantly olfactory and ependymal cilia. As OSNs and retinal pho-
toreceptor express all four centrin isoforms (Wolfrum and
Salisbury, 1998; Fig. 1b), it appears unlikely that isoform func-
tional redundancy accounts for the lack of retina phenotype in
Cetn2 mutant. Rather, Cetn2 deficiency results in a tissue-specific
phenotype reflecting the astonishing complexity and diversity of
ciliary structure and function (Marshall, 2008a).
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In vitro RNAi knockdown of Cetn2 in-
hibits primary ciliogenesis in several
mammalian cell lines (Graser et al., 2007;
Mikule et al., 2007). Morpholino-induced
depletion of zebrafish Cetn2 impairs em-
bryonic ciliogenesis, resulting in multiple
ciliopathies (including pronephric cyst
formation, hydrocephalus, and olfactory
organ ciliary defects; Delaval et al., 2011).
Such observations led to the hypothesis
that vertebrate centrin may be critical for
ciliogenesis (Dantas et al., 2012). How-
ever, we show that mouse CETN2 is not
required for ciliogenesis as the formations
of both primary cilia (renal tubule epithe-
lia and photoreceptors) and motile cilia
(multiciliated respiratory and ependymal
epithelia) occur normally in Cetn2 mu-
tants. Because olfactory cilium density
and morphology appear normal before
P5, we conclude that the massive ciliary
loss in P14 (and older) Cetn2 mutant OE
(Figs. 2—4) results from compromised
postnatal (>P5) basal-body apical migra-
tion/anchoring and ciliary maintenance.
Why is CETN2 nonessential for the initi-
ation of olfactory ciliogenesis, but re-
quired for later ciliary maintenance? In
mouse OE, olfactory ciliogenes is initiated
approximately at embryonic day (E)12
(Cuschieri and Bannister, 1975), but cili-
ary targeting of olfactory signaling pro-
teins occurs later (Menco, 1997; McEwen
etal., 2008). For example, the cilia target-
ing of receptor OR 256-17 occurs around
from E14 and OR37 enters the cilia from
~E15 (Schwarzenbacher et al., 2005). In
rats, mRNA expression of ACIII was first
detected ~E15, whereas G, and CNGA2
channel are detectable starting from E16 and
E19, respectively (Margalit and Lancet, 1993).
Thus, initial olfactory ciliogenesis and ax-
oneme assembly are independent of cili-
ary targeting of olfactory signaling proteins. How does CETN2
absence lead to olfactory loss? As sensory signaling pathways can
remodel the architecture and regulate ciliary length (Mukhopad-
hyay et al., 2008; Ou et al., 2009; Besschetnova et al., 2010), we
propose that signaling protein mistrafficking and altered IFT
cause failure of olfactory ciliary maintenance. That ACIII mislo-
calization occurs before cilia loss in postnatal CETN2 mutant
OSNs (Fig. 3) supports this explanation. Although no olfactory
cilia loss occurs in mouse knock-out of either ACIII (Wong et al.,
2000) or CNGA2 (Brunet etal., 1996), we suppose that combined
membrane protein trafficking defects of AIIl and CNGA2 (and
very likely other membrane proteins) are cumulative in causing
degeneration of olfactory cilia. Signaling and IFT are interrelated
because signaling pathway-dependent ciliary remodeling re-
quires IFT participation (Mukhopadhyay et al., 2008) and signal-
ing messengers like cAMP and Ca*" affect IFT in mammalian
cells (Besschetnova et al., 2010; Collingridge et al., 2013).

OSN-specific mechanisms controlling the cilium entry of ol-
factory signaling proteins have been proposed (McEwen et al.,
2008). Identified regulators include centrosomal protein CEP290/

Figure 8.
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Disrupted ependymal planar polarity in Cetn2 mutant mice. A, B, Electron micrograph of P13 ependymal tissue at
basal foot level, with basal foot direction (red arrows). Basal feet of mutant ependyma point in random directions (B), and basal
bodies may have two basal feet (yellow dashed arrows). €, D, Ultrastructure of P13 lateral ventricle ependyma, showing well
aligned WT cilia (€) but disoriented mutant cilia (D). E, F, TEM longitudinal view of basal bodies (left) and cross view of basal body
at transition fiber level (middle) and ciliary axoneme (right). Extra basal foot of mutant (F, arrows). Scale bars: A-D, 10 wm; E, F,

NPHP6 which controls G, cand Gy13 ciliary entry (McEwen et
al., 2007), and PACS-1 (phosphofurin acidic cluster-sorting pro-
tein 1) regulating CNG channel trafficking (Jenkins et al., 2009b).
Here we show that CETN2 is required for transport of ACIII and
CNGA2, but not cytoplasmic Ga,,; echoing a previous conclu-
sion that olfactory G-protein targeting is not coupled to ACIII or
CNG channels (McEwen et al., 2007). The abnormal basal body
recruitment of [IFT components (IFT88, KIF3A, and DYNC2H1)
suggests that compromised IFT may contribute toward the ciliary
mistrafficking phenotype of Cetn2 mutants. Noticeably, ACIII
could be targeted to the primary cilium of brain ACIII-positive
neurons in Cetn2 mutants although the protein distribution ap-
peared not smooth along the cilium (Fig. 5]), suggesting possible
cell type-specific regulation of ACIII ciliary targeting. Curiously,
Cetn2 mutants share significant phenotypic similarity with a
mouse pericentrin (Pctn, a core PCM component) hypomorphic
mutant (Pctn °¥°<%) displaying OE-specific olfactory ciliary loss,
ACIII mistrafficking, and defective basal body-anchoring of IFT
components (Miyoshi et al., 2009), suggesting a possible interac-
tion between PCTN and CETN2-mediated molecular pathways.
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Other mouse mutants, such as those of BBS and MKS proteins,
also manifest disrupted olfactory ciliary transport (including
ACIII and CNGA?2) and lead to ciliary structural anomalies at-
tributed to compromised IFT (Kulaga et al., 2004; Nishimura et
al., 2004; Pluznick et al., 2011; Tadenev et al., 2011).

In mouse ependyma and other multiciliated tissue, establish-
ment of ciliary polarity requires hydrodynamic force and its co-
ordination with PCP proteins (Mitchell et al., 2007; Guirao et al.,
2010). Deletion of core PCP protein, celsr 3 (Drosophila Fla-
mingo ortholog), also results in ependymal ciliary polarity defi-
ciency in mouse (Tissir et al., 2010). The mechanism by which
flow information is transduced, and PCP signal instructs ciliary
orientation is poorly understood. Elucidation of a mechanism is
complicated further by the fact that some PCP proteins are lo-
cated in both cilium and rootlet (Park et al., 2008; Guirao et al.,
2010). Instructional cues for ciliary orientation ultimately im-
pinge on the basal body. Here we show that a core basal body
protein, CETN2, is required for PCP development of mouse
ependymal cells. The role of CETN2 in specification of ependy-
mal polarity is currently unknown. The rootlet-associated subap-
ical actin network and basal foot-associated microtubule network
of frog embryo epidermal cilia regulate establishment of global
and local ciliary polarity, respectively (Werner et al., 2011). In
mouse airway epithelia, initial PCP signals induce polarization of
basal body-associated microtubules that secondarily orient the
basal body (Vladar et al., 2012). We propose that CETN2, down-
stream of core PCP proteins, participates in PCP signal-mediated
cytoskeletal rearrangement.
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