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ABSTRACT
Present trends in high performance computing present formidable
challenges for applications code using multicore nodes possibly
with accelerators and/or co-processors and reduced memory while
still attaining scalability. Software frameworks that execute machine-
independent applications code using a runtime system that shields
users from architectural complexities offer a possible solution. The
Uintah framework for example, solves a broad class of large-scale
problems on structured adaptive grids using fluid-flow solvers cou-
pled with particle-based solids methods. Uintah executes directed
acyclic graphs of computational tasks with a scalable asynchronous
and dynamic runtime system for CPU cores and/or accelerators/co-
processors on a node. Uintah’s clear separation between appli-
cation and runtime code has led to scalability increases of 1000x
without significant changes to application code. This methodology
is tested on three leading Top500 machines; OLCF Titan, TACC
Stampede and ALCF Mira using three diverse and challenging ap-
plications problems. This investigation of scalability with regard
to the different processors and communications performance leads
to the overall conclusion that the adaptive DAG-based approach
provides a very powerful abstraction for solving challenging multi-
scale multi-physics engineering problems on some of the largest
and most powerful computers available today.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming; G.1.8 [Mathematics
of Computing]: Partial Differential Equations; G.4 [Mathematics
of Computing]: Mathematical Software; J.2 [Computer Applications]:
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1. INTRODUCTION
The trend towards larger and more diverse computer architec-

tures with or without co-processors and GPU accelerators and dif-
fering communications networks poses considerable challenges for
achieving both performance and scalability when using general pur-
pose parallel software for solving multi-scale and multi-physics ap-
plications. One approach that is suggested as a suitable candidate
for exascale problems is to use directed acyclic graph (DAG) based
codes, [3]. Such codes have the advantage that the tasks in the
task-graph may be executed in an adaptive manner and if enough
tasks are available, choosing an alternate task may avoid commu-
nications delays. At the same time if the applications software is
written in an abstract task-graph manner so as to be

executed by a runtime system that adaptively varies task-graph
execution, then it may be possible to combine a modest degree
of portability across a number of large-scale parallel architectures
with scalability at large core counts.

The aim in this paper is to illustrate that this combination of
portability and scalability can be demonstrated with the Uintah
software www.uintah.utah.edu on three of the seven fastest
computers as measured by the top 500 list of November 2012 [62],
DOE’s Titan and Mira and NSF’s Stampede, [15,43,60]. These ma-
chines make uses of three very different processors and networks.
Two of the machines, Titan and Stampede have GPU accelerators
and Intel Xeon Phi co-processors respectively. The approach used
here will be to take three representative and challenging Uintah ap-
plications codes and to examine their scalability and performance
on these very different machines. The three applications are:



• Fluid-structure interaction with adaptive mesh refinement in
an example used by [42] on the DOE Titan system;

• Radiation modeling through raytracing with significant amounts
of global communication as used by [25] on a variety of GPU
accelerators and CPUs; and

• Turbulent combustion on a fixed-mesh requiring large-scale
linear solves with the Hypre iterative solver [51] again used
on the DOE Titan system.

These three applications have very different communications re-
quirements and work patterns. The approach used here will be
to run these three applications at large scale on each of the tar-
get machines and to demonstrate how the Uintah runtime manages
to achieve scalability through adaptive execution of its task graph
and in the context of three different communications patterns for
each of the three applications. This scalability will be shown as
follows. In Section 2 the Uintah software will be outlined with the
main components of the runtime system. The salient features of
three target architectures and the porting of the Uintah code from
the Titan architecture to the other two architectures are described
in Section 3. Section 4 will describe the simulation components
of the Uintah used to solve problems and analysis of the compo-
nents’ example communications and task execution patterns on the
three machines. In Section 5, the scalability and performance re-
sults obtained will be given with an analysis of the different cases
to show how the task-graph execution pattern adaptively varies to
achieve scalability. Section 6 will describe related work on task-
graph based approaches and other frameworks. Overall we will
show that with these applications we are able to achieve good scal-
ability on machines like Mira and Stampede when coming from
our starting point of scalability on Titan [42]. Moreover such scal-
ability comes without significant porting effort. The paper con-
cludes with a discussion of how these results may be viewed as
representative and how they may or may not extend to future ar-
chitectures with even greater use of accelerators and co-processors.
Overall our conclusion is that the adaptive DAG-based approach
provides a very powerful abstraction for solving challenging multi-
scale multi-physics engineering problems on some of the largest
and most powerful computers available today.

2. UINTAH INFRASTRUCTURE
The Uintah software framework originated in the University of

Utah DOE Center for the Simulation of Accidental Fires and Explosions
(C-SAFE) [14] (9/97-3/08) which focused on providing software
for the numerical modeling and simulation of accidental fires and
explosions. The Uintah open-source (MIT License) software has
been used to solve many different challenging fluid, solid and fluid-
structure interaction problems. The present status of Uintah, in-
cluding applications, is described by [4].

Uintah’s parallel software components facilitate the solution of
partial differential equations (PDEs) on structured adaptive mesh
refinement (SAMR) grids. Uintah makes it possible to integrate
multiple simulation components, analyze the dependencies and com-
munication patterns between these components, and efficiently ex-
ecute the resulting multi-physics simulation. Uintah contains four
main simulation components: 1) the ICE [31,32] code for both low
and high-speed compressible flows; 2) the multi-material particle-
based code MPM [56] for structural mechanics; 3) the combined
fluid-structure interaction (FSI) algorithm MPM-ICE [21, 22]; and
4) the ARCHES turbulent reacting CFD component [27, 53] that
was designed for simulation of turbulent reacting flows with par-
ticipating media radiation. Uintah scales well on a variety of ma-
chines at small to medium scale (typically Intel or AMD proces-

sors with Infiniband interconnects) and on larger Cray machines
such as Kraken and Titan as is shown by [6, 35]. Uintah also
runs on many other NSF and DOE parallel computers (Stampede,
Keeneland, Mira, etc). Furthermore Uintah is also used by many
DOD, DOE and NSF research projects in areas such as angiogen-
esis, tissue engineering, green urban modeling, blast-wave simula-
tion, semi-conductor design and multi-scale materials research [4].

The component-oriented approach that Uintah is based upon [45,
46] allows the application developer to only be concerned with
solving the partial differential equations on a local set of block-
structured adaptive meshes, without worrying about explicit mes-
sage passing calls in MPI, or indeed parallelization in general. This
is possible as the parallel execution of the tasks is handled by a run-
time system that is application-independent. This division of labor
between the application code and the runtime system allows the de-
velopers of the underlying parallel infrastructure to focus on scala-
bility concerns such as load balancing, task (component) schedul-
ing, communications, including accelerator or co-processor inter-
action. This component-oriented parallel programming approach
also makes it possible to leverage advances in the runtime system,
allowing improvements in scalability to be immediately applied to
applications without any additional work by the application devel-
oper. This type of programming model is ideally suited for a soft-
ware environment like Uintah and has contributed significantly to
its scaling success. Nevertheless, the applications developer must
still write code that does not use excessive communication in rela-
tion to computation and/or a large number of global communica-
tions operations. Should this unfortunate situation occur, Uintah’s
detailed monitoring system is often able to identify the source of
the inefficiency.

Uintah components are C++ classes that follow a simple inter-
face to establish connections with other components in the system.
Uintah utilizes a task-graph of parallel computation and communi-
cation to express data dependencies between multiple application
components. The task-graph is a directed acyclic graph (DAG)
in which each task reads inputs from the preceding task and pro-
duces outputs for the subsequent tasks. the same DAG per patch.
A Uintah patch is a hexahedral cube of grid cells and the smallest
data parallel unit. The task’s inputs and outputs are specified for a
generic patch in a structured SAMR grid, thus a DAG will be cre-
ated with tasks of only local patches. Each task has a C++ method
for the actual computation and each component specifies a list of
tasks to be performed and the data dependencies between them [5].

The methodological approach behind Uintah is described in de-
tail in [14, 45, 46] and builds upon the innovative original task-
graph design of Parker [45], but with a runtime system, data struc-
tures and load balancers that have been rewritten to ensure much-
improved scalability. The general task-graph approach of Uintah is
similar to that of Charm++ [28], but makes use of its own unique ar-
chitecture and algorithms. For example, Uintah uses a “data ware-
house” through which all data transfer takes place and which en-
sures that application codes are isolated from the MPI communica-
tions layer. This degree of separation between the runtime system
of Uintah and the applications codes written using a component-
oriented parallel programming model makes it possible to achieve
great increases in scalability through changes to the runtime sys-
tem that executes the taskgraph, without changes to the applica-
tions components themselves.Particular advances made in Uintah
are scalable adaptive mesh refinement [36–38] coupled to chal-
lenging multiphysics problems. [5, 35] and a load balancing data
assimilation and feedback approach [35], which out-performs tra-
ditional cost models. A key factor in improving performance is the
reduction in wait time through the dynamic and even out-of-order



execution of tasks [5,41] in the Uintah runtime system. The need to
reduce memory use in Uintah led to the adoption of a nodal shared
memory model in which there is only one MPI process per multi-
core node, one global memory per node and execution on individ-
ual cores is through threads bound to available cores on-node. This
has made it possible to reduce memory use by a factor of 10 and to
increase the scalability of Uintah to 256K cores on complex fluid-
structure interactions with adaptive mesh refinement [42] on DOE’s
Titan and up to 512K cores on DOE’s Mira. Uintah’s thread-based
runtime system as shown in Figure 1 uses:
(1) Decentralized execution [41] of the task-graph is implemented
by each CPU core requesting work itself. This eliminates having a
single controlling thread on a core and possible under use or con-
tention. (2) A Shared Memory Abstraction through Uintah’s data
warehouse hides message passing from the user but at the cost of
multiple cores accessing the warehouse. This shared memory [41]
approach is implemented by making use of atomic lock-free oper-
ations (supported by modern CPUs) that allow efficient access by
all cores to the shared data on a node. (3) Accelerator task execu-
tion [25] on a node uses a GPU Data Warehouse system that enables
tasks to be executed efficiently through preloading of data on multi-
ple accelerators per node, as on NSF’s Keeneland system [25]. The
key to the success of Uintah is the process of generating the task-
graph and then executing it in as efficient as possible a manner.

2.1 Task Graph Generation
Uintah uses a grid of hexahedral cells defined in the Uintah input

file. This Uintah grid can contain one or more levels with different
resolutions while each level is further divided into smaller hexahe-
dral patches. When running with SAMR, finer grid levels are cre-
ated by the Uintah Regridder [36]. Since finer grid levels may not
be continuous across the domain, Uintah uses a binary bounding
volume hierarchy (BVH) tree to save patches on a particular grid
level. After patches on each grid level are created, the Uintah load
balancer is used to partition and assigned patches to MPI nodes.
By profiling execution time on each patch, this load balancer can
use history data to predict the further work load [35]. Once each
multicore node has its patches assigned, tasks are then created on
patches. A Uintah task is defined by three major attributes: 1) the
"require" variables it needs to start computing with the number of
ghost cells; 2) the "compute" variables that it will calculate; and 3)
A serial call back function that can run on any patch. In this way,
the user only needs to write serial code on a generic patch. When
the call back happens, the actual patch is then fed into the task.

Uintah uses a process of checking the overlap of the input vari-
ables and the output variables for each task that makes it possible to
create a directed acyclic graph by connecting the input and output
of tasks. During the task graph compilation process, the correct-
ness of the task graph is checked. Errors such as missing or ambi-
tious dependencies (requires without computes, double computes)
or cyclic dependencies (i.e. two or more task depend on each other)
will be reported to simulation component developer. This report-
ing helps developers to write correct and consistent task inputs and
outputs. In the case when a dependency that connects two tasks
associated with patches on the same multicore node is found, it is
tagged as an internal dependency. Similarly in the case when a
dependency that connects two tasks associated with patches on dif-
ferent multicore nodes is found, an external dependency is created.
At the end of task graph compilation an MPI message tag is as-
signed to each external dependency. As Uintah only creates tasks
on local and neighbouring patches, task graph compilation can be
done in parallel without any communications between multicore
nodes. Once the task graph is compiled, it can be used for multiple

timesteps without being recompiled unless the grid changes such
as when new patches are created or deleted by the SAMR regridder
or when the load balancer moves patches from one node to another.

2.2 Task Graph Execution
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Figure 1: Uintah Multi-Queue Task Scheduling

Efficient execution of the Uintah Task Graph is achieved through
the Uintah runtime system which has three important features that
help to support task execution. These three features are: 1) vari-
able memory management though Uintah’s data warehouse; 2) task
management through a multi-queue scheduler; and 3) MPI and de-
vice communication management.

The Uintah data warehouse is a dictionary that maps a variable’s
name and patch ID to its memory location. Every Uintah task uses
the data warehouse to allocate variables, read variables and update
variables. This approach also enables the data warehouse to track
the life span of any variable. Variable pointers that existed on a pre-
vious timestep are stored in the read-only old data warehouse and
variables pointers that are computed or updated during the current
timestep are stored in a new data warehouse. At the end of each
timestep, the variables in the new data warehouse are then mapped
to the old data warehouse for the next timestep in the simulation
and a new data warehouse is initialized. When a variable is no
longer being used by any task, the data warehouse will automati-
cally delete this variable and free the corresponding memory. The
data warehouse uses lock-free data structures to allow tasks on mul-
tiple threads to correctly access the data at the same time without
being serialized [42].

The Uintah scheduler uses multiple queues to track the status of
each task. As shown in Figure 1, when all of a task’s internal depen-
dencies are satisfied this task will be placed into the internal ready
queue. When all of a task’s MPI messages are received, the task is
then moved to the external ready queue, and ultimately to a device
ready queue if this task is device (accelerator or co-processor) en-
abled. All of a device-enabled task’s data are then copied to that
device. This multi-stage queue design [42] allows multicores or
accelerators/co-processors to post MPI Isend/Irecieve, prepare data
to copy from/to a device, run CPU tasks or run device tasks all at
the same time dynamically. Finally, when a task is finished, the
next internal task is identified from the task graph and the process
is repeated. While this level of description provides the necessary
background it is also important to note that the task queues are pri-
ority queues and tasks may be executed out-of-order to improve
efficiency [41].

2.3 GPU and Co-Processor Task Management
Finally the nodal architecture of Uintah has been extended to

run tasks on one or more accelerators or co-processors [25,39]. As
shown in Figure 1, a key design feature of the Uintah task sched-
uler is its multi-stage queue architecture for efficient scheduling of
both CPU and accelerator/co-processor tasks. For efficient GPU
task execution we have significantly leveraged the NVIDIA CUDA



Asynchronous API [12] to best overlap PCIe transfers and MPI
communication with GPU and CPU computation. Using knowl-
edge of the task-graph and GPU task dependencies, the Uintah task
scheduler is able to pre-fetch data needed for simulation variables
prior to task execution [25]. When a GPU task has had its MPI
communications requirements met and is ready to run, data needed
for the task is resident in GPU main memory. The GPU task sim-
ply queries the GPU data warehouse for device pointers and in-
vokes the computational kernel. The complexities and details of
all device memory management and asynchronous operations are
handled automatically by the Uintah infrastructure.

GPU tasks are assigned in a round-robin fashion to an arbitrary
number of GPUs on-node once their asynchronous host-to-device
data copies have completed. This design has made it possible to
overlap MPI communication and asynchronous GPU data transfers
with CPU and GPU task execution, significantly reducing MPI wait
times [25]. Using the multiple copy engines available on NVIDIA
Fermi and Kepler GPUs, GPU tasks can simultaneously copy data
to-and-from the device as well as run multiple kernels. To facili-
tate this level of concurrency the Uintah task scheduler maintains
a set of queues for CUDA stream and event handles and assigns
them to each simulation variable to overlap with other host-to-
device memory copies as well as kernel execution. In the pres-
ence of multiple on-node GPUs (e.g. NSF’s Keeneland), the Uintah
task scheduler also manages a CUDA calling context for each de-
vice. The task scheduler has a novel mechanism for detecting com-
pletion of asynchronous operations by querying GPU tasks wait-
ing in the device work queues with CUDA API functions such as
cudaStreamQuery on each of a task’s recorded CUDA events.

This architecture has now also been used successfully in a proto-
type form with Intel Xeon Phi co-processors on NSF’s Stampede,
[40]. While the Uintah DAG-based approach performs well in
many situations, its dynamic and asynchronous manner makes it
difficult to analyze its performance as the necessary theoretical back-
ground is somewhat sparse [55]. The challenge that exists is then to
understand exactly how Uintah is able to achieve scalability by ex-
amining how it modifies execution of its tasks in the light of varying
processor and communications performance. It is the obtaining of
this understanding that is the main task of this paper. This requires
the different architectures and applications to be summarized as is
done in the following section.

3. TARGET ARCHITECTURES
The three machines considered here illustrate some of the archi-

tectural differences in processor and network performance that may
give rise to portability challenges. The main architectural features
of these machines are summarized in Table 1.

3.1 TITAN
Titan is currently the fastest machine of the Top 500 list from

November 2012 [62] with a theoretical peak of 27 petaflops and
ranked third on the Green 500 list for energy efficiency. Each
heterogeneous Cray XK7 node is equipped with a 16-core AMD
Opteron 6274 processor running at 2.2 GHz, 32 gigabytes of DDR3
memory and a single NVIDIA Tesla K20 GPU with 6 GB GDDR5
ECC memory. The entire machine offers 299,008 CPU cores and
18,688 GPUs (1 per node) and over 710 TB of RAM. Even though
the GPUs have a slower clock speed (732 MHz versus 2.2 GHz)
than the CPUs, each GPU contains 2,688 CUDA cores. The over-
all system design was to use the CPU cores to allocate tasks to the
GPUs rather than directly processing the data as in conventional
supercomputers. Titan’s Cray Gemini network is a 3D Torus with
a latency of about 1.4 µseconds, with a peak of over 20 GB/second

of injection bandwidth per node and a memory bandwidth of up to
52 GB/second per node.

From a software development perspective, Titan offers perhaps
the greatest portability challenge for computational scientists to ef-
ficiently run on both host CPU and GPU. The Uintah Framework
has been extended to incorporate a new task scheduler which offers
three different ways of scheduling tasks to include MPI, threads
and GPUs. To harness the computational power of the GPU, a
new GPU kernel must be developed for each task. However, the
Uintah framework infrastructure provides a seamless way of using
the CPUs to allocate tasks and move data back and forth to the GPU
without explicit calls from the computational stack.

3.2 Stampede
The NSF Stampede machine is ranked seventh in the top 500

[62] and provides an interesting alternative to Titan as it contains
Intel’s new co-processor technology, the Xeon Phi. Each of the
6400 Stampede nodes has two eight core Xeon E5-2680 operating
at 2.7GHz with a 61 core Intel Xeon Phi co-processor with cores
operating at 1.0GHz. The system interconnect is via a fat-tree FDR
InfiniBand interconnect, [10], with a bandwidth of 56GB/second.

Stampede provides five programming models: Host-only, MIC
native, offload, reverse offload and symmetric. Uintah currently
only uses the host-only, native and symmetric models, as these were
the fastest and most portable options, as described in [40]. A Uintah
MIC offload model scheduler is under development.

In the host-only model, programs run only on host CPUs in the
system without any utilization of the Xeon Phi co-processors. Host
processors between multiple nodes can communicate though MPI.
This model is similar to running on most other CPU-only clusters.
For the symmetric model, programs can run on both the host CPU
and the Xeon Phi co-processor card natively. MPI messages can be
processed by host CPU and Xeon Phi directly. Minor modifications
were made to the Uintah Framework to incorporate the hyrid sched-
uler which can schedule tasks on Xeon Phi in the same manner as
for the host. The advantage of the Xeon Phi co-processor over the
Titan GPU is that computational tasks running on the Xeon Phi do
not have to be developed from scratch which is what is required for
tasks running on Titan’s GPUs.

3.3 MIRA
The Mira system is a new DOE open science 10-petaflop IBM

Blue Gene/Q system installed at Argonne National Laboratory. Mira
is designed to solve large-scale problems and has low power re-
quirements and was ranked the fourth fastest supercomputer in the
world as recorded by top500.org in November 2012 [62]. Each
Mira compute node is equipped with 16 PowerPC A2 core proces-
sors running at 1.6GHz and 16 GB of SDRAM-DDR3 memory.
The simple, low-power Blue Gene /Q cores support 4 hardware
threads per core. With in-order execution, there is no instruction-
level parallelism, so the key goal is to use multiple threads per core
to maximize instruction throughput. The challenge in using Mira is
that the lower floating point performance of the cores requires the
use of a larger core count which in turn has the potential to stress
a communications network that is very different from those of the
other two machines considered here. [16], the Argonne Leadership
Computing Facility’s test and development rack of Blue Gene/Q.
and are using gcc over gcc.legacy to utilize the fine-grained locking
in MPICH as Uintah relies on MPI_THREAD_MULTIPLE sup-
port. [16], the Argonne Leadership Computing Facility’s test and
development rack of Blue Gene/Q. With the Blue Gene/Q software
stack including standard runtime libraries for C, C++ and Fortran,
Uintah was able to run on Mira without modification. Only minor



SYSTEM Vendor / Type CPU Cores Accel / Co-proc Mem / node Interconnect

Titan Cray XK7 AMD Opteron 6200 @2.6GHz 299,008 Nvidia Tesla K20 32GB Gemini

Stampede Dell Zeus C8220z Intel Xeon E5-2680 @2.7GHz
Xeon Phi SE10P @1.1 GHz

102,400 (host)

390,400 (phi)
Intel Xeon Phi 32GB InfiniBand

Mira IBM Blue Gene/Q PowerPC A2 @1.6GHz 786,432 none 16GB 5D Torus

Table 1: System Specifications (compute nodes): Titan, Stampede and Mira

changes to the Uintah build system were necessary to recognize
Blue Gene/Q-specific installation locations for MPI and compiler
wrappers.

As Mira’s power PC cores run at only 1.6GHz with a much sim-
plified instruction set as compared to the Intel processors or AMD
processors as used in Titan or Stampede, there are substantial dif-
ferences in performance. The communications network on Mira
is an integrated 5D torus with hardware assistance for collective
and barrier functions and 2GB/sec bandwidth on all 10 links per
node. The latency of the network varies between 80 nanoseconds
and 3 microseconds at the farthest edges of the system. The inter-
processor bandwidth per flop is close to 0.2, which is higher than
many existing machines. This performance is offset by having only
1GB of memory per core, which can be problematic for certain ap-
plications, as we will see in Section 5.

Thus Mira has perhaps the best communications bandwidth per
node relative to its computational power, and Stampede perhaps the
(relatively) weakest of the three, while Titan is perhaps in between
unless substantial use is made of its GPU cards.

4. SIMULATION COMPONENTS
The three representative problems cover a broad range of typi-

cal Uintah applications ranging from fluid-structure interaction to
turbulent combustion. In order to add a deliberate contrast to these
cases we have also included the modeling of radiation using ray-
tracing. A massively parallel implementation of this last problem
involves severe challenges in that there is a substantial amount of
global communication.

4.1 MPMICE
Fluid-structure-interaction problems represent an important and

computationally demanding class of problems that have been part
of the landscape for which Uintah was originally conceived. Broadly
speaking fluid-structure-interaction problems require the solution
of the general multi-material computational fluid dynamics (CFD)
formulation coupled to a solid mechanics computation. The MPMICE
component uses the algorithm [21] to solve the governing multi-
material formulation for the Navier-Stokes equations coupled to
the MPM Lagrangian particle method for discretizing the solid me-
chanics. Additional sub-components are implemented such as vari-
ous equations of state, constitutive models and solids→gas reaction
models.

In the CFD, multi-material formulation, each material whether it
is a fluid or a solid is defined at the continuum level over the entire
computational domain even in regions where no material is present.
The physical state of the system which includes mass, momentum
and energy along with the volume fraction of each material is de-
fined at every point in the computational grid. The volume fraction
of all materials must sum to unity in any grid cell [29–31].

A cell centered finite volume solution technique [30] is used to
solve for the discretized multi-material equations. The single con-
trol volume used for all materials simplifies the solution of the in-
tegral conservation equations of mass, momentum and energy and

the exchange of quantities between the various materials. This
method is fully compressible and has been extended to high speed
flows [63] which are important in simulations involving explosions
and in particular detonations which has been the subject of numer-
ous projects for which Uintah was originally conceived.

The multi-material equations include exchange terms for mass,
momentum, and heat. Mass exchange is based on solids→gas re-
action models. Momentum and heat exchange is modeled by a drag
law using the relative material velocities or temperatures.

The material point method (MPM) evolves the equations of mo-
tion of the solid and has been used in a variety of computational
solid mechanics simulations [2, 57]. The material points represent
the discretized solid volume and also represent the state of the sys-
tem including mass, volume, velocity and stress. The particle state
is interpolated to a background Cartesian grid which is the same
grid used by the ICE multi-material CFD component. During each
timestep, the state of the particles is mapped onto the computational
grid. The states of all materials including both solid and fluid are
computed. For the solid materials, changes in state computed on
the background grid are interpolated back to the particles.

The use of the MPM Lagrangian particles to represent solids and
the formulation of the CFD algorithm which does not explicitly
differentiate between solids and fluids lends itself to a more effi-
cient computational solution procedure where fluid-structure inter-
faces are not explicitly tracked nor are boundary conditions passed
through the interfaces [29, 30]. The MPM Lagrangian particles are
used to maintain the integrity of the fluid-solid interface while pro-
viding a method to track the deformation history of the solid(s).
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Figure 2: Send and Receive Volume Time Distribution
Measurement for AMR MPMICE

The challenges with the scalability of this problem arise with
the complex combination of solids, fluids and mesh refinement, see
[42] for a full description of the changes to the runtime system
needed in order to achieve scalability on this problem and others
like it. Given the difficulty of achieving scalability it is by no means
clear that it will be possible to achieve scalability on all three of the
target machines.
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Figure 3: Task Execution Order for Each Simulation Component on Three Supercomputers (as relative to designed static algorithm)

Figure 2 shows the send and receive volume time distribution
of communications for the case of three sample timesteps as three
separate lines. The top three sub-figures show the data volumes sent
over time by a Titan, Stampede and Mira node while the bottom
three sub-figures show the data received by a Titan, Stampede and
Mira node. In each timestep, the wall clock time is normalized and
divided into 30 equal intervals. The MPI message volume for each
interval is plotted as the y axis. The initial peak of data sent at the
left of the top three sub-figures shows the transmission of the data
that was computed at the end of the last timestep. For example, as
soon as current timestep starts, all the ghost cell data from old data
warehouse can be send out immediately. Most of this initial data
sent involves local communication and can be posted immediately.

However, due to the network latency and bandwidth limitations,
those messages continue to be received over several of the 30 time
intervals shown. The relative delay in receiving these initial sends
on Stampede is longer than on the other two machines. For Stampede,
the send and receives use the Sandy Bridge nodes via IB.The top
three sub-figures show several later peaks of data sent after the ini-
tial sends. All those later peaks are due to the requirement to send
ghost-cell data on newly computed variables by later tasks in the
same timestep. By observing the receive side, we can see the re-
ceiving delays for the later peaks vary both from machine to ma-
chine and from timestep to timestep. Those changes may be related
to many possible situations, e.g. network bandwidth usage of other
users in the same machine which is hard to predict by using tradi-
tional static analysis of DAG’s critical path. Uintah uses dynamic
task scheduling that can automatically pick ready tasks to overlap
those unpredictable communication delays.

This overlapping is done by the Uintah task scheduler moving
later tasks to execute earlier than would otherwise be the case.
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Figure 4: Send and Receive Volume Time Distribution
Measurement for ARCHES with Hypre

Figure 3 shows the real scheduling task order in the y direction
and its ordinal designed task order in the x direction. The solid
line represents how tasks will be executed when static scheduling
is used. The scatter points (x) show the task execution order when
the multi-queue scheduler is used. All tasks below the solid diago-
nal line are executed earlier than they would be if static execution
is used. All tasks above the solid diagonal line are executed later
than they would have been if static execution had been used.

The MPMICE scheduling results show that many tasks are moved
to a region close to x-axis. For example, some task originally de-
signed to be execute as in between the 1300th and 1400th tasks
are moved to approximately the first 100 tasks to be run. In this
way, the time that would be spent waiting for initial MPI sends to



arrive is hidden. We also see that for Stampede, more tasks are
moved to be executed earlier than on Titan and Mira, for example
see tasks numbered from 500 − 700 for static execution. This ob-
servation matches the comment that some messages are delayed in
Stampede, so the scheduler can move tasks to overlap this delay ac-
cordingly. Overall this shows how the task execution order depends
on a combination of the core clock speeds and the communications
performance.

4.2 ARCHES
The ARCHES component is a multi-physics Large Eddy Simulation

(LES) numerical algorithm used to solve for the reacting flow field
and heat transfer arising in a number of computationally demand-
ing simulations such as oxy-coal fired boiler simulations, oil re-
covery, and complicated pipe mixing. In addition to solving the
multi-material Navier-Stokes equations, sub-grid models are used
to describe the complicated turbulence of momentum and species
transport.

The ARCHES component solves the coupled Navier-Stokes equa-
tions for mass, momentum and energy conservation equations. The
algorithm uses a staggered finite-volume mesh for gas and solid
phase combustion applications [17, 47, 48]. The discretized equa-
tions are integrated in time using an explicit strong-stability pre-
serving third-order Runge-Kutta method [20]. Spatial discretiza-
tion is handled with central differencing where appropriate for en-
ergy conservation or flux limiters (eg, scalar mixture fractions) to
maintain realizability. In contrast to the explicit formulation of
ICE, ARCHES uses the low-mach, pressure formulation which re-
quires a solution of an implicit pressure projection at every timestep
using the Hypre linear solver package [18].

For momentum and species transport equations, a dynamic, large
eddy turbulence closure model is used to account for sub-grid ve-
locity and species fluctuations [49]. The gas phase chemistry for
coal combustion is represented using a chemical equilibrium model
parameterized by the coal gas and secondary oxidizer stream mix-
ture fractions [54]. The energy balance includes the effect of ra-
diative heat-loss/gains in the IR spectra by solving the radiative
intensity equation using a discrete-ordinance solver [33]. The so-
lution procedure solves the intensity equation over a discrete set
of ordinances which is formulated as a linear system similar to the
pressure projection equation and is solved using Hypre [18]. The
gas phase chemistry is parameterized by the two mixture fractions
and heat-loss terms and preprocessed in a tabular form for dynamic
table look-up during the course of the LES simulation.

The challenging nature of this problem lies in the complex physics
and variety of numerical techniques used. Good scalability has
been achieved with the Taylor Green Vortex Problem described
in [51]. This involved a careful use of both data structures and
options in the Hypre code so it is far from clear that the same scal-
ability will transfer from Titan to the other two machines.

Figure 4 also shows the send and receive volume time distribu-
tion as the similar way to that of MPMICE. Again the initial peak of
the data sent also distributes the data that is computed from the last
timestep and these messages can be send out immediately. Unlike
MPMICE, ARCHES is not continually receiving data. The reason
is that the ARCHES component calls Hypre to do a number of it-
erative linear solves. During those linear solution phases, the MPI
communicator is passed to the Hypre library. In particular, when
Hypre is running we can see there are several intervals when there
are no receives seen by ARCHES, as Uintah is not able trace any
communications conducted within the Hypre library. This effec-
tively means that data cannot be passed to a Uintah task unless all
processors have finished that specific Hypre task. MPI_Irecv for

all tasks after this Hypre solve (essentially a global synchroniza-
tion) can only be posted after Hypre has finished, thus resulting in
several peaks in the the data received.

Although Hypre now supports the use of a hybrid OpenMP/MPI
parallel approach, we have so far been unable to make use of this in
a way that is consistent with the Uintah multi-threaded approach on
a multicore node and so used our MPI only scheduler for this prob-
lem. Therefore, there are far less tasks per MPI node for ARCHES
as we can see from its task execution order plots in Figure 3. The
multiple global synchronization points further limited the task sched-
uler’s ability to migrate Uintah tasks, as the scheduler only allows
tasks to be moved before a global synchronization point, and not
after to avoid scheduling deadlock. However, we can still see that
some tasks are moved to be executed early to overlap the initial
sends.

4.3 Reverse Monte Carlo Ray Tracing (RMCRT)
Scalable modeling of radiation is important in a number of multi-

ple applications areas such as heat transfer in combustion [53], neu-
tron transport modeling [11] in nuclear reactors and astrophysics
modeling [65] and is currently one of the most challenging prob-
lems in present-day large-scale computational science and engi-
neering, due to the global nature of radiation. An approach using
Reverse Monte Carlo Ray Tracing (RMCRT) is used here for radi-
ation modeling in which rays are followed back from the source to
the various origins. While this is efficient in that it does not follow
rays that do not reach the source, the computational and communi-
cations complexity is still potentially prohibitive on a modern het-
erogenous machine even though rays may be traced independently
on a single GPU accelerator at high speed.

4-Level Data Onion

CFD Level

A B

RMCRT Comm Requirements

Patch-A

RMCRT Comm Requirements

Patch-B

Figure 5: RMCRT Mesh Coarsening Scheme

The solution often adopted and used here is that multiple length
scales are used to ensure that the amount of communication and
computation is reduced in a way that is consistent with achieving
accuracy. This may be illustrated by Figure 5. This figure shows a
dense computational fluids mesh and for two of the computational
fluids cells shows the radiation mesh. The radiation mesh may be
coarsened rapidly away from the particular cell that the (reverse)
rays originate in. The number of rays is kept constant per cell, as
are the heat fluxes that are calculated.

The approach used by [25, 26, 58, 59] is to store the entire ge-
ometry on each single multicore node and to calculate the partial
heat fluxes on the boundaries due to the radiation originating lo-
cally. Suppose that there are Ntotal fine mesh cells. The algorithm
then involves a broadcast of all the data associated with every cell
to every other cell on all the other processors. This involves a mul-
tiple of N2

total in terms of total communication. The volume of
communication in this case may overwhelm the system for large



problems in our experience. The alternative is to use coarser res-
olutions as shown in Figure 5 in which a fine mesh is only used
close to each point and a coarse mesh used further away. The use
of adaptive meshes in the context of radiation is well understood
with more traditional approaches [11, 50, 65], such as the Discrete
Ordinates (DO) method used in the ARCHES combustion compo-
nent of the Uintah code, [27]. However, the DO approach as used
in Section 4.2 with ARCHES is costly and may consume as much
as 60-70% of the calculation time. In applications where such high
accuracy is important, RMCRT can become more efficient than DO
approaches. In particular, RMCRT can potentially reduce the cost
on shared memory machines [24, 58, 59] and on distributed mem-
ory [25, 26], with GPU accelerators [39]. A simple analysis of the
two level scheme of [26] breaks the method down into the follow-
ing steps:

1. Replicate the geometry (once) and coarsen mesh solution
of temperature and absorption coefficients (every timestep)
on all the nodes using allgather; This has a complexity of
αlog(p) + β p−1

p
(N/r)3 for p cores with N3 elements per

mesh patch on a core are coarsened by a factor of r, where α
is the latency and β the transmission cost per element [61].

2. Carry out the computationally very intensive ray-tracing op-
eration locally. Suppose that we have ra rays per cell then
each ray has to be followed through as many as λNG coarse
mesh cells, where NG ≈ Np/r, or a multiple of this if
there is reflection and where 0 ≤ λ ≤

√
3N . The total

work is thus the sum of the fine mesh on each node contri-
bution and the contribution from all the coarse mesh cells:
(λN4 + λN4

G)Wray , where Wray is the work per ray per
cell.

3. Distribute the resulting divergences of heat fluxes back to all
the other nodes, again this cost is αlog(p) + β p−1

p
(N/r)3.

The relative costs of computation vs. communication are then given:

λN4(1 + (p/r)4)Wrayra vs 2(αlog(p) + β
p− 1

p
(N/r)3)

Thus for enough rays ra with enough refinement by a factor of r
on the coarse radiation mesh, it looks likely that computation will
dominate. A key challenge is that storage of O(N3

G) will be re-
quired on a multicore node and so only coarse and AMR mesh rep-
resentations will be possible in a final production code at very large
core counts. Although preliminary, this analysis can be extended
to fully adaptive meshes, rather than the two level case considered
here.

The send and receive volume time distribution for RMCRT shown
in Figure 6, indicates that the volume of initial data sent dominates.
As we discussed above, RMCRT is a relatively simple algorithm
in that most of requisite data is only required from the last time-
tep and can be sent out once the current timestep starts. However,
unlike the AMR MPMICE component for which most messages
are local, RMCRT requires an all-to-all data transfer and the data
transfer time is limited by the global bandwidth. From the bottom
of Figure 6, it is seen that some MPI messages on Titan are de-
layed. We can also see large periods of time in which no data is
being read, as RMCRT is computationally expensive and has a rel-
atively simple variable exchange data pattern when compared to the
complexity and frequency of communications in the multi-physics
AMR MPMICE component.

Figure 3 shows that in order to overlap the huge initial send of
data, the scheduler moved tasks as much as possible to be executed
early (close to the x-axis). In other words some tasks that should
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Figure 6: Send and Receive Volume Time Distribution
Measurement for RMCRT

be statically scheduled for execution near the end of a timestep are
moved to the beginning of the timestep. Furthermore, the MPI mes-
sage delay on Titan is addressed by the scheduler moving tasks
more aggressively than for Mira and Stampede.

5. SCALING RESULTS
In this section, we will show the scalability results for AMR

MPMICE, ARCHES and RMCRT on the three target machines de-
scribed in Section 3; Titan, Stampede and Mira. We also include
preliminary GPU scaling results for RMCRT here. Co-processor
scaling results are covered in [40]. We define strong scaling as a
decrease in execution time when a fixed size problem is solved on
more cores, while weak scaling should result in constant execution
time when more cores are used to solve a correspondingly larger
problem.

5.1 Strong Scaling of MPMICE
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Figure 7: AMR MPMICE Strong Scaling

Perhaps the most satisfactory result from this study is shown in
Figure 7 which displays the strong scaling results from the AMR
MPMICE problem. This problem [42] exercises all of the main
features of AMR, ICE and MPM and also includes a model for
the deflagration of the explosive and the material damage model



ViscoSCRAM. The simulation grid utilized three refinement levels
with each level being a factor of four more refined than the previous
level. A total of 3.62 billion particles and 160 million cells are
created on three AMR levels. These tests were run on Titan and
Mira with up to 512K cores and with 16 threads per MPI node.
Stampede results for MIC Native and Symmetric modes are not
shown here but can be found in [40].The strong scaling efficiency is
68% on Titan 256K cores and 76% on Mira 512K core. Although
not shown in Figure 7 or 8, we were able to successfully run the
AMR MPMICE problem to completion at the full machine capacity
of Mira (768k cores), though not with the same configuration as in
Figure 7.

5.2 Weak Scaling of MPMICE and ARCHES
Figure 8 shows the weak scaling results from the AMR MPMICE

problem. This problem is the same type of problem with three re-
finement levels shown previously for strong scaling, but with dif-
ferent resolutions on each run. The average numbers of particles
and cells per node are set as close as possible. In the same num-
ber of cores group, from left to right are results from Mira, Titan
and Stampede, denoted by M, T and S respectively. The times for
task execution, message passing and packing are shown in different
colors. The weak scaling for all three machines for this example is
almost perfect with higher than 95% efficiency.
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Figure 8: AMR MPMICE Weak Scaling

The weak scalability of the ARCHES component is shown in
Figure 9 with each core group from left to right representing the re-
sults for Mira, Titan and Stampede, denoted by M, T and S respec-
tively. For Mira and Titan, core counts ranged from 2K to 128K,
and for Stampede, the core counts ranged from 2K to 64K. The
problem uses a fixed resolution (423 cells per patch) with a single
patch per core. Each timestep was broken down into linear solver
time (Hypre Time) and Uintah time. For each timestep, the solution
to a large (74,000 unknowns per core), sparse system of equations
(Pressure-Poisson equation) is solved. The Hypre solver parame-
ters used included the following: conjugate gradient method with
the PFMG multi-grid preconditioner and a red-black Gauss-Seidel
relaxer. The weak scaling efficiency is 88% on Mira at 128K cores,
79% on Titan at 128K cores and 56% on Stampede at 64K cores.
However we can see that in most cases, the Uintah scaling compo-
nent is better than Hypre component. The efficiency losses come
mostly from the Hypre solving phase which has a log(P) term,

2K 4K 8K 16K 32K 64K 128K 256K
0

1

2

3

4

5

6

Processing Units (Cores)

M
e
a
n
 T

im
e
 P

e
r 

T
im

e
s
te

p
(s

e
c
o
n
d
)

 

 

M

T

S

M

T

S

M

T

S

M

T
S

M

T

S

M

T

S

M

T
T

Uintah Time

Hypre Time

Figure 9: ARCHES with Hypre Weak Scaling

where P is the number of cores [51]. The relatively slower Mira
cores (compared to Titan and Stampede) contributes to the signifi-
cantly slower mean time/timestep. However, the network topology
of Mira is well balanced and shows excellent weak scalability out
to 128K cores. In contrast to Mira, the faster cores of Stampede
and Titan magnify any slight timing variabilities as core counts
were increased. The variabilities for Stampede were especially pro-
nounced for 16K and 32K cores. The variability in timing may be
due in part to system loads and network traffic impacting the Uintah
simulation. We encountered issues with Mira when attempting to
scale beyond 128K cores with an out of memory condition, which
may be due to the limited memory per core.

5.3 Strong Scaling of RMCRT
Although solving the radiative transport equation using methods

such as the parallel Discrete Ordinates Method (DOM) has been
shown to scale [52] through the use of Hypre [18], the cost is sig-
nificant due to large number of systems of linear equations required
by this method. RMCRT has been shown to significantly reduce
this cost. However, as mentioned in Section 4, RMCRT is an all-
to-all method, where all geometry information and property model
information for the entire computational domain must be present
on each processor. This presently limits the size of the problem
that can be computed due to memory constraints.

For the RMCRT problem, a two level coarsening scheme with
a refinement ratio of 2 was used. The finer, CFD level used a
resolution of 2563 with one patch per core in each case and the
coarse, RMCRT level used a resolution of 643 with a single patch.
10 rays per cell were used in the RMCRT portion of the calcu-
lation and the mean time per timestep was was averaged over 10
timesteps. Figure 10 shows strong scaling results from the RMCRT
benchmark case detailed in Section 4 to 16k cores. These results
are significant in that other adaptive mesh codes using similar ap-
proaches in radiative shock hydrodynamics, astrophysics and cos-
mology, e.g. Crash and Enzo [64, 65] report scaling to a maximum
of near 1000 cores. The hybrid memory approach used by Uintah
has also contributed to our results, as only one copy of the geometry
is needed per multi-core node.

The results in Figure 10 also show that in this case Titan outper-
forms Stampede (host native mode) and Mira. In the case of the
AMR MPMICE problem, Stampede and Titan perform similarly.
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Figure 10: RMCRT Strong Scaling

The difference in these two cases would appear to be better net-
work performance of Titan for the very large amounts of all-to-all
communication required by the RMCRT problem.

Strong scaling results for a single-level, GPU-enabled RMCRT
problem are shown by [25] for a prototype Uintah testbed compo-
nent with a resolution of 1283 on the TitanDev system. In moving
to the full Titan system with its new NVIDIA K20 GPUs we found
scaling results consistent to those in [25]. The only significant dif-
ference was that the Kepler GPU’s were nearly three times faster
than their Fermi predecessor as is shown in Figure 11. Although
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Figure 11: Single Level GPU-enabled RMCRT Strong Scaling

we were able to run successfully on Titan beyond 256 nodes, uti-
lizing the on-node GPUs, the GPU implementation quickly runs out
of work and strong scaling begins breaking down. The all-to-all na-
ture of this problem severely limits the size of the problem that can
be computed, and hence does not scale well due to memory con-
straints involved with large highly resolved physical domains [25].
To address this scalability issue and as part of future work, we will
modify our RMCRT GPU implementation to leverage the multi-
level coarsening scheme discussed in Section 4.

6. RELATED WORK
There are a number of computational frameworks that solver

simlilar problems to Uintah. For example Flash [7, 50], p4est [9],
ENZO [44] CASTRO [1] and Cactus [19]. Many of these codes
tackle broad problem classes and achieve good computational re-
sults. Similarly, there are many codes that use a task-graph ap-
proach and significant corresponding analysis of this approach in
areas such as linear equations solvers and indeed many other ap-
plications see, for example, [13, 23, 34] and numerable other refer-
ences on this topic. What distinguishes Uintah from these efforts
is the use of very large scale parallelism and the use of these tech-
niques in a very general purpose computational PDEs framework
for challenging engineering applications. What is also distinctive
about the Uintah approach is that it combines a broad problems
class with the use of the applications/runtine system to achieve scal-
ability at very large core counts on challenging engineering prob-
lems. The approach that is perhaps closest to Uintah and indeed
predates it, is that of Charm++ [8,28] but as was remarked earlier
although the task-graph approaches are conceptually similar, the
architectures,implementations and problem classes solved are very
different.

7. CONCLUSIONS AND FUTURE WORK
We have shown that using directed acyclic graphs to represent

computational tasks combined with an asynchronous and dynamic
runtime system provides an effective way to achieve scalable sys-
tems on disparate heterogenous and homogenous high performance
computer systems. Porting Uintah to new heterogenous systems
only requires changes to the runtime system such as schedulers and
data warehouse, with little to no changes to infrastructure code.
Porting Uintah task code can vary depending on the nature of the
heterogeneous platform, however, the Uintah runtime system does
provide convenient mechanisms to port any subset of task code. We
have also shown that weak and strong scalability is achieved when
the runtime environment is allowed to flexibly schedule the exe-
cution order of computational tasks to overlap computation with
communication. It is the combination of the DAG representation
of tasks with a runtime environment that can schedule tasks based
on a pre-compiled dependency analysis in a preferred order that
yields scalability on a variety of problems with widely different
communication requirements, and on systems with very different
architectures. A major remaining challenge is to extend Uintah to
move beyond being able to use accelerators and co-processors to
achieve scalability across the whole of machines like Titan, Mira
and Stampede for very broad problem classes including compo-
nents such as radiation.
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