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ABSTRACT

As scientific applications target exascale, challenges related
to data and energy are becoming dominating concerns. For
example, coupled simulation workflows are increasingly adopt-
ing in-situ data processing and analysis techniques to ad-
dress costs and overheads due to data movement and I/O.
However it is also critical to understand these overheads and
associated trade-offs from an energy perspective. The goal
of this paper is exploring data-related energy/performance
trade-offs for end-to-end simulation workflows running at
scale on current high-end computing systems. Specifically,
this paper presents: (1) an analysis of the data-related be-
haviors of a combustion simulation workflow with an in-
situ data analytics pipeline, running on the Titan system
at ORNL; (2) a power model based on system power and
data exchange patterns, which is empirically validated; and
(3) the use of the model to characterize the energy behavior
of the workflow and to explore energy/performance trade-
offs on current as well as emerging systems.

1. INTRODUCTION
The path to exascale computing poses a number of signifi-

cant challenges as researchers and potential exascale vendors
attempt to deliver a hundred times performance improve-
ment relative to today’s fastest supercomputers. While sim-
ulations running at these extreme scales have the potential
for achieving unprecedented levels of accuracy and provid-
ing dramatic insights into complex phenomena, they are also
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presenting new challenges. Key among these are the chal-
lenges related to the large data volumes and data rates, and
the costs (power and latencies) associated with transporting,
managing, and processing this data.

For example, the anticipated changes in system architec-
tures and the anticipated tight power budgets are motivating
a shift in scientific simulation workflows, away from a post-
processing paradigm towards a framework in which simu-
lation output is analyzed concurrently as it is generated.
A variety of potential workflow options are being explored,
including in-situ processing, in which data is analyzed on
compute resources shared with the simulation, in-transit
processing, in which secondary compute resources on the
system are leveraged, and hybrid in-situ/in-transit process-
ing that combines the approaches. Recent efforts [8] have
explored trade-offs between these workflow options from a
latency and performance perspective for a variety of algo-
rithms on current architectures.

However, as we look to the future, it is imperative to
consider energy-performance behaviors and trade-offs, de-
termine how to optimize codes for future processor designs,
and provide computer architects with a clear understanding
of the characteristics, complexities, and power needs of the
applications that will be deployed on these systems.

The goal of this paper is exploring data-related energy/per-
formance trade-offs at extreme scales. Specifically, we ana-
lyze the behavior of a combustion simulation workflow with
an in-situ data analytics pipeline, running on a current high-
end computing platform (i.e., the Titan Cray-XK7 systems
at Oak Ridge National Laboratory) and use machine-inde-
pendent code characteristics (e.g., computational profiles,
data access and exchange patterns, messaging profiles, etc.)
to develop a power model, which is then empirically vali-
dated using an instrumented platform. We use this model to
explore energy/performance trade-offs on current systems,
to help answer system design questions, and to analyze the
power requirements for emerging architectures. Our key
contributions include the following:
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• a power model based on machine-independent algo-
rithm characteristics validated through empirical stud-
ies,

• a case study of the impacts of system architecture, al-
gorithm design choices, and deployment options (e.g.,
node mapping) on data exchange patterns and overall
energy-performance profiles, and

• a discussion of how our methodology can be extended
to help answer questions related to the design of future
architectures.

The rest of this paper is organized as follows. Section 2
presents related work. Section 3 presents background mate-
rial including the specific use cases, as well as the scientific
rationale for the paper. Section 4 presents our power model
and Section 5 presents a validation of this model. Section 6
uses our model to investigate power/performance behaviors
at scale, as explore power-related co-design issues. Section 7
concludes the paper and outlines directions for future work.

2. RELATED WORK

In-situ Analysis. Early in-situ analysis workflows focus
largely on visualization for monitoring purposes [30, 50,
58, 67, 69, 74]. More recent efforts allow for the coupling
of simulation codes with popular visualization and analysis
toolkits, such as VisIt [11] and ParaView [26], exposing a
broader suite of analytics tools to simulation scientists. As
we look ahead to exascale, performance design issues and
trade-offs associated with these workflows are becoming in-
creasingly important, leading to the investigation of latency
and run-time performance trade-offs between in-situ and in-
transit [2,3,20–22,70,75] workflows as discussed by Bennett
et al. [8]. In this paper we investigate the roles of system
architecture, algorithm design choices, and deployment op-
tions on overall energy performance profiles for a particular
system, and present a methodology that can be extended to
answer co-design questions for emerging architectures.

Topological Analysis. Topology-based techniques have
proven useful in the analysis of a wide variety of simula-
tion data due to their efficient representation of the feature
space of scalar functions [7, 12, 33, 43, 52, 53]. One class of
algorithms, which includes Reeb graphs [62] and their vari-
ants, contour trees and merge trees [17], encode the level set
behavior of a function. These structures are ideally suited
for encoding threshold based feature definitions and have
been used successfully in a number of large scale science
applications including the analysis of extinction regions in
non-premixed turbulent combustions [52], a study of lean
pre-mixed hydrogen flames [12], and detection of bubbles
in turbulent mixing [43]. Current techniques for comput-
ing these structures for large-scale data fall into two cate-
gories: 1) streaming out-of-core computation [14,60] and 2)
divide-and-conquer parallel approaches [56, 59] that rely on
successive k-nary merging of regions of the domain.

Characterization Tools. The most common way to iden-
tify how an application is utilizing the underlying hardware
is to monitor hardware performance counters. The PAPI
library [15] abstracts hardware-specific counters into a con-
sistent set of named counters. Unfortunately, the set of
available counters are predefined and typically only a cer-
tain number may be active at any one time. Furthermore,
the details of the behaviors and features can differ across
processor generations and vendors and can also be incon-

sistent across runs of an application [71]. Static analysis
using source-to-source translation tools such as ROSE [61]
have the disadvantage that a substantial amount of appli-
cation behavior (e.g., iterations needed for convergence) is
not known at compile time. In addition, advanced compiler-
optimization techniques can significantly impact code char-
acteristics, and the details of code-generation for a specific
target architecture are typically difficult to capture. Binary-
code modification – patching an executable to include instru-
mentation code – as embodied in tools such as DynInst [16]
and Pin [36, 49] is too far removed from application source
code; it can be difficult to draw connections between the ap-
plication behavior as understood by the developer and the
architecture-specific behavior that such tools report. The
approach we take in this work is to instrument code at
compile time (using a view of the application close to the
developer’s) but gather data at run time (using run-time
knowledge of what actually gets executed). The implemen-
tation is via a custom LLVM [1, 44] compiler pass that op-
erates on the compiler’s intermediate representation of the
application. This enables us to maintain both programming
language and hardware-architecture independence, while si-
multaneously providing a wealth of information that char-
acterizes the application in a manner meaningful for energy
analysis.

Power and Energy Modeling. There exists a large body
of literature on power and energy modeling at different lev-
els, ranging from the microprocessor to entire systems. Our
models are built using a traditional coarse-grained system
level energy/power formulation [10,24,31,39,64,65,68]. These
models are simple, fast, have low overhead, and are accurate
enough to characterize energy at the system level. Power
models often rely on performance counters and power is
usually correlated with these events or estimated using ac-
curate linear power models [5,19,37,38,45,47,51,55]. In our
work, we estimate subsystem activity based on application-
centric metrics instead of hardware counters. Detailed sub-
system power models have also considered the use of local
events to represent power [32,34,35,40,46,63] as well as dy-
namic processor frequency scaling approaches [25,27,28,41]
and thermal considerations [6, 9, 66]. Our work focuses on
system-level power. Note that we do not use fine-grained
power metering data in our extrapolations to Titan as such
data is not typically available on leadership class comput-
ing facilities. However, our approach does provide us with a
framework to explore relative behaviors and costs and as-
sociated tradeoffs. Our recent work has also focused on
characterizing and quantifying energy/power behaviors of
data-centric scientific workflows [29], but this is not at scale
yet. Existing work by Shalf et al. [23] has also explored en-
ergy efficiency for extreme-scale scientific applications and
addressed software/architecture co-design by comparing dif-
ferent architectural alternatives such as multi-cores, GPUs
and many-cores [42]. However, there are still challenges on
this front and, to the best of our knowledge, the perfor-
mance/energy tradeoffs and co-design aspects that we ad-
dress in this paper (i.e., combining software, runtime and
architectural issues) have not been addressed at petascale
(i.e., on Titan) and beyond.

3. BACKGROUND
This section describes the specific use case chosen for our



study, the different degrees of freedom inherent in the par-
ticular algorithm, as well as the scientific rationale behind
it.

Workflow. In this paper we consider an in-situ analy-
sis workflow integrated with S3D [18], a massively parallel
turbulent combustion code. S3D performs first-principles-
based direct numerical simulations of turbulent combustion
in which both turbulence and chemical kinetics associated
with burning gas-phase hydrocarbon fuels introduce spatial
and temporal scales spanning typically at least five decades.
S3D is used to glean insights into fundamental turbulence-
chemistry interactions and therefore, for production simu-
lations, the time steps taken to advance the solution are
smaller than the smallest time scales. In this paper we con-
sider two different S3D simulations. The first is a turbulent
auto-ignitive mixture of di-methyl-ether and air under typ-
ical homogeneous charge compression ignition (HCCI) con-
ditions [4]. This simulation is aimed at understanding the
ignition characteristics of typical bio-fuels for automotive
applications and has a domain size of over 175 million grid
points. The second simulation describes a lifted ethylene
jet flame [73], involved in a reduced chemical mechanism for
ethylene-air combustion, with a domain size of 1.3 billion
grid points.

Of interest to scientists is the behavior of small, inter-
mittent features within the simulations. Understanding the
structures’ shape and size distributions and tracking their
interactions over time provides key insights into complex
turbulence-chemistry interactions such as autoignition and
extinction. Examples of such features include structures de-
fined by the the scalar dissipation rate in the lifted ethylene
jet simulation and structures defined by the reaction rate of
OH in the HCCI simulation.

Topological analysis tools, such as merge trees have been
used to define these features of interest, provide statisti-
cal summaries of their characteristics, and track them over
time [7,13,14,54,72]. The advantages of using such topolog-
ical analysis tools are twofold. First, features of interest are
typically defined in terms a specific input parameter value
(e.g., threshold or isovalue), and topological techniques pro-
vide a multi-resolution representation that captures these
feature definitions over a range of input parameter values.
Moreover, the results are stored in a compact fashion, al-
lowing for dramatic data reductions while still maintaining
complete flexibility in representing the features of interest.

Post-processing analysis workflows are not adequate as
S3D currently saves only approximately every 500th timestep
of the simulation to disk to mitigate I/O costs. However,
due to their time scales, a frequency at least twice this is re-
quired to track such features of interest, motivating a shift to
in-situ topological techniques. The in-situ merge tree anal-
ysis code in this work comprises three main stages: 1) a
local compute stage in which families of features are identi-
fied locally on each processor and a local tree is generated
to capture feature interactions over the range of input pa-
rameter values; 2) a merge stage in which the local trees
from each processor are joined in a k-nary merge pattern to
capture global relationships; and 3) a correction phase, in
which the local features at each processor are updated to
reflect the global relationships uncovered during the various
merge stages. Figure 1 shows a corresponding flow graph
for four local processors using a binary merge.

Here we explore two degrees of freedom in setting up the

algorithm and study their impacts on the power profile of
the overall in-situ workflow. First, each node in the dia-
gram of Figure 1 represents an independent compute kernel
which could be placed on an arbitrary MPI rank/compute
core. In practice, both the local compute and the local cor-
rections need access to the original data. To avoid excessive
data movements these are therefore typically co-located with
their corresponding sub-domain. However, there are excep-
tions: For example, since node-internal memory access is
relatively fast and cheap one could gather the data of all
cores onto fewer or even a single core for processing. This
reduces the overall core count of the analysis code, which
enables it to run in a more scalable regime. In this case
the dataflow would gain an initial setup phase to collect the
local data. However, the merge computation would be less
dependent on data locality since all messages are typically
small. There exist different strategies for the placement of
the various compute kernels. For example, one can ensure
that either the early merge phases or the late merge phases
happen among cores on the same node, which would prevent
MPI traffic in the corresponding portion of the algorithm.

The second major aspect of the algorithm’s performance—
and a controllable input parameter—is the degree of fan-in
during the merge stage. Larger fan-ins produce a more shal-
low merging hierarchy with fewer dependencies and shorter
chains of messages. However, larger fan-ins also reduce the
number of active cores, which more quickly results in an
unbalanced load, potentially introducing performance prob-
lems. Moreover, the fan-in can have effects on the overall
amount of on- vs. off-node communication. For example,
choosing a fan-in larger than the available core count on
each node forces significantly more messages to travel on
the network which slows down the algorithm and increases
its power consumption. Below, we empirically investigate
the impact these factors can have on the amount of on- vs.
off-node communication required as well as their impact on
total overall power efficiency.
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Figure 1: High level flow diagram of the parallel
merge tree algorithm. First, local trees are com-
puted (red) and subsequently merged hierarchically
(green). Each merge results in a number of correc-
tions which are passed upward to the corresponding
leaves and used to iteratively integrate global cor-
rections into the local trees (blue).

Profiling and Characterization. As detailed in Sec-
tion 4, our power model accounts for both on-node and
off-node communication characteristics of the analysis code.
One of the primary goals is to develop a methodology that
is not limited to the performance characteristics of a single
machine, but rather is flexible enough to map to potential
future architectures. Because envisioned exascale architec-
tures are not yet available, we cannot use hardware perfor-
mance counters or binary instrumentation techniques. Fur-
thermore, architecture simulators are prohibitively slow for



characterizing complete applications at scale. To address
this challenge, we use compiler-based application analysis
using Byfl [57] to identify key data-centric operations in an
architecture-independent way. These include counts of the
total number of memory accesses as well as the total num-
ber of operations performed. To capture communication
patterns, we have instrumented our code to generate trace
information that encodes the size as well as the rank IDs
of the source and destination of all messages sent during
application execution.

4. MODEL FORMULATION
This section describes our analytical model inspired by

traditional coarse-grain system level energy/power formu-
lations typically based on performance counters or linear
models. In contrast, we model energy/power based on ar-
chitectural characteristics and architecture-independent in-
formation provided by Byfl and MPI messages (see Sec-
tion 3) instead of architecture-dependent performance coun-
ters. Other analysis methods (e.g., using data staged on
disk) can also be studied using our framework, by modeling
the involved subsystems behavior and power cost. Note that
the goal of this formulation is to use global, coarse-grained,
machine-independent information so we can extrapolate per-
formance/energy behavior and trade-offs at scale (see Sec-
tion 6).

Energy modeling. Since system-level information pro-
vided by Byfl is global for the entire application execution
(i.e., can be averaged) and data communication is available
for each MPI message, we consider the system and data
communication energy consumption separately:

E = Esystem + Ecomm. (1)

Energy results from integrating power over time. We con-
sider both static (or idle) and dynamic power, i.e.,

Esystem = T · (P static
system + P

dynamic
system ). (2)

Static system power can be decomposed into the power
of each contributing subsystem at idle state, which are pro-
cessor (cpu), memory (mem), network interface (nic) and
other components such as control circuitry, power distribu-
tion, etc. (misc). We consider P idle

cpu , P idle
mem, P idle

nic and P idle
misc

as architecture constants that can be estimated using hard-
ware specifications or measured empirically. Thus,

P
static
system = (P idle

cpu + P
idle
mem + P

idle
nic + P

idle
misc). (3)

Dynamic power only includes processor and memory con-
tributions because the network interface’s dynamic power is
accounted for in Ecomm. Dynamic power can be determined
using dynamic power dissipation models. For example, pro-
cessor dynamic power can be formulated from its capaci-
tance (C), an activity factor or switching activity (α), and
the operational voltage (V ) and frequency (f), i.e.,

P
active
cpu ∼ C · V 2 · α · f. (4)

Analogous to α in Equation 4, we approximate dynamic
processor and memory power dissipation using an activity
factor extracted from the Byfl data:

P
dynamic
system = αcpu · P active

cpu + αmem · P active
mem . (5)

These activity factors are computed from the number of
operations per second (mips) and number of memory ac-

cesses per second (membw) as well as a normalization factor
that represents the maximum capacity.

αcpu =
mips

MAXmips

; αmem =
membw

MAXmembw

. (6)

The energy consumption from data communication de-
pends on the number of MPI messages (M). Each MPI
message is composed of source MPI rank (src), destination
MPI rank (dest) and data size of the message. Thus,

M = ({src1, dest1, data1}, . . . , {srcm, destm, datam}) (7)

Ecomm is defined in Equation 8 where smp(i) = smp(j)
indicates that the MPI ranks i and j are mapped to cores
that share memory. BWnet and BWmem are the network
and memory bandwidth, respectively. We do not model net-
work/memory contention since the driving application does
not exhibit any contention. Ptransfer depends on the net-
work characteristics. For example, Ptransfer depends mostly
of P active

nic in an InfiniBand network while it depends on the
number of hops that each message requires to reach the des-
tination MPI rank in a Gemini network (see Section 6.1).
Furthermore, we model the energy for data communication
within shared memory as processor and memory activity
during the communication, as an approximation.

Ecomm =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

PM
i=1

datai

BWnet

· Ptransfer

if smp(srci) 6= smp(desti)

PM
i=1

datai

BWmem

· (P active
cpu + P active

mem )

if smp(srci) = smp(desti)
(8)

5. MODEL VALIDATION
In order to empirically validate our model, we have con-

ducted a set of experiments using a cluster platform at Rut-
gers (“Dell cluster”, hereafter). The cluster consists of two
Dell PowerEdge M1000E blade enclosures maximally con-
figured with sixteen PowerEdge M610 nodes (blades), each
node having two Intel Xeon E5504 Nehalem processors at
2.4 GHz. Each node also has 6GB RAM (6×1GB DIMM
Hynix DDR3-1333 ECC) and 73 GB of local disk storage.
The network infrastructure comprises an integrated 16-port
Mellanox M2401G InfiniBand switch within each blade chas-
sis (running at 50W, 36.8W dissipated + 1.65W per port),
each switch having eight uplink ports and linked via eight
InfiniBand lanes to the uplink ports on the switch in the
other chassis. All blades have Mellanox ConnectX MT26428
Quad-Data-Rate (QDR) InfiniBand interface cards. There
is also an integrated (redundant) 1 Gigabit Ethernet within
each chassis, with two pairs of 10 Gigabit uplink capabilities
in each chassis. Each blade enclosure also includes meter-
ing functionality that can be queried on runtime using the
Simple Network Management Protocol (SNMP).

Table 1 lists the system parameters that are used in our
model. Note that P static

system, BWnet and BWmem were ob-
tained empirically using standard benchmarking. The rest of
parameters are theoretical from the vendors’ specifications.
We separately validate our energy model and the associated
data communication (Ecomm; see Equation 8) because data
communication is an important aspect of our study.
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Figure 2: Results of ping-pong tests using 2 blade enclosures (32 nodes).
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Figure 3: Validation of the analysis code on the Dell cluster with 1 and 2 blade enclosures, i.e., 16 and 32
nodes, respectively. Note that x axis labels on subfigure (b) are not displayed for readability.

Parameter Value

P static
system 1,377W (enclosure)
Pcpu 80W (x2 per node)
Pmem ∼15W (node)
Pnic 9.69W

BWnet 1,183MB/s (empiric)
BWmem 7,950MB/s (empiric)

Table 1: Dell cluster specifications.

Data communication model validation. We ran a MPI
variant of ping-pong tests using 2, . . . , 32 nodes (i.e., by
pairs) five times. The experiments were run with the whole
cluster idle, and provided us with an empirical measurement
of the network bandwidth (BWnet in Table 1). Figure 2(a)
plots the average power dissipation of the system when run-
ning the ping-pong tests. We plot the average power and the
variability in the experiments since power is independent of
the data size. We also plot the power (Ptransfer) obtained
using our model (see Equation 8) for the Dell cluster, where
Pover is the power from processor and memory associated
with system overheads:

Ptransfer = P
active
nic + Pover (9)

Figure 2(b) shows the accuracy of our model. The figure
plots variability as well as the average value (99.43%).

Model validation at small scale. We ran the in-situ
topological analysis application using one and two blade
enclosures of the dell Cluster (i.e., 256 and 512 MPI pro-
cesses, respectively) with the HCCI and Lifted data sets
and fan-in={2, 4, 8, 16}. We instrumented the applica-
tion as described in Section 3 in order to collect data about
architecture-independent operations and MPI communica-
tions. However, we also ran the same set of experiments
ten times to measure real execution times and collect power
readings.

Figure 3(a) displays the energy consumption and variabil-
ity with the set of experiments described above, from em-
pirical measurements (observed) and from our model. The
error bars correspond to the standard deviation. Figure 3(b)
shows the accuracy of the model for the different experi-
ments, which is 98.59% on average.



6. EXPLORING POWER/PERFORMANCE

TRADE-OFFS AT SCALE
This section describes how we extrapolate our power model

to Titan, and presents result of experiments in which we
have used our model to explore the impacts of system archi-
tecture, algorithm design choices, and deployment options
on data exchange patterns and overall energy performance.

6.1 Power Model Extrapolation

System power model. We extrapolate our system power
model to Titan based on its known power requirements and
hardware vendor specifications with the following reasoning.
Titan drains 8,209kW at full capacity (source: http://www.
top500.org), which results on 439W per node (from a total
of 18,668 nodes). Each node has one Opteron 6274 pro-
cessor (Pcpu), 32GB of RAM in four 8GB DIMMs (Pmem),
one NVIDIA K20x GPU (Pgpu ), and each two nodes share
a Cray Gemini interconnect ASIC (power information not
publicly available). Consequently, the remaining 89W of

power (i.e., P
dynamic
system − Pcpu − Pmem − Pgpu) comes from

the Gemini interconnect and other components (e.g., con-
trol circuitry). We have fixed the amount of power associ-
ated to the network interface to 95% of this remaining power
(i.e., Pnic = 85W) as a rough estimation. However, we ad-
dress this problem from a co-design perspective as discussed
in Section 6.2.

Parameter Value

P
dynamic
system 439W
Pcpu 115W
Pmem ∼10W (node)
Pgpu 225W

Table 2: Titan specification parameters.

Gemini interconnect model. Titan contains 9,344 Gem-
ini SoC ASIC controllers, each of them attached to two com-
pute nodes via its two NICs (see Figure 4). The Gemini con-
trollers are arranged following a 25×32×24 3D torus topol-
ogy with 6 links per controller to its 6 surrounding neighbors.
In contrast to switched networks such as InfiniBand, Gem-
ini is a direct network, which means that the processors are
integrated directly into the network fabric. As a result, the
energy required to transfer data depends on locality. Our
communication energy model (Ptransfer in Equation 8) there-
fore takes into account the number of Gemini controllers that
are traversed to send a message from a source MPI rank to
a destination MPI rank (i.e., number of hops).

We have implemented a simulator that, given a set of MPI
messages M (see Equation 7) and MPI rank-core mapping
policy, returns the number of hops required by each message
using the steps listed below:

1. Creates the given {NX , NY , NZ} 3D torus network
topology ({25×32×34} in our case),

2. Maps MPI ranks onto the 3D torus (e.g., onto consec-
utive cores to improve memory locality).

3. Finds the shortest path (in number of hops) from the
source to the destination MPI ranks for each message.

We obtain the shortest path between two MPI ranks by
dividing the three-dimensional space associated to the 3D
torus into three simpler uni-dimensional spaces. Specifically,

HyperTransport

links

CPU CPU

to other Gemini ASICs

Gemini ASIC

Figure 4: Block diagram of the Gemini network in-
terconnect.

to find the shortest path from a MPI rank mapped onto
{XS , YS, ZS} to a MPI rank mapped onto {XD, YD, ZD},
we follow two main steps as below.

1. Find shortest path for each dimension, individually:
• PX , i.e., from {XS , 0, 0} to {XD , 0, 0}
• PY , i.e., from {0, YS, 0} to {0, YD, 0}
• PZ , i.e., from {0, 0, ZS} to {0, 0, ZD}

2. Sum the distance of paths PX , PY and PZ .
Each dimension (X for example) contains NX nodes con-

nected linearly as a ring, (i.e, the first node is connected
with the second node, the second to the third, etc., and the
last (NX) node is connect to the first node). Consequently,
we need to consider the following two paths in order to find
the shortest distance (D).

D1,X = max(XS, XD) − min(XS , XD) (10)

D2,X = min(XS , XD) + NX − max(XS, XD) (11)

As a result, the shortest path DX will be the minimum of
Equations 10 and 11. The same reasoning can be applied to
the Y and Z dimensions.

6.2 Experimental Results
We performed a number of experiments using different

fan-in parameters, domain decompositions, and node lay-
outs, and the results of our analysis are captured in Table 3
and Figures 5, 6, and 7.

Figure 5 summarizes the macro communication behavior
of the topological analysis of the lifted ethylene jet data
set. The information was obtained through a collection
of experiments performed using algorithmic variations, in-
cluding total number of cores, domain decomposition, and
merge fan-in, as well as varying the node-mapping strate-
gies. Each column in the graphic corresponds to a different
node-mapping configuration, while each row in the graphic
corresponds to variations in fan-in merge values. Each col-
umn of each subfigure displays a histogram of the number
of hops that MPI messages require to reach the destina-
tion rank from the source rank. The x axis of each sub-
figure corresponds to the number of cores involved in the
run, which in turn determined the domain decomposition
used. The default mapping algorithm maps MPI ranks con-
secutively across allocated cores, while the three subfigures
in the rightmost column use a random mapping algorithm
(within a partition of the torus). The thickness of each point
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Figure 5: This graphic summarizes the macro communication behavior of the topological analysis of the
lifted ethylene jet data set. The information was obtained through a collection of experiments performed
using algorithmic variations (including total number of cores, domain decomposition, and merge fan-in) and
node-mapping strategies. Each column in the graphic corresponds to a different node-mapping configuration,
while each row in the graphic corresponds to variations in fan-in merge values. Each column of each subfigure
displays a histogram of the number of hops that MPI messages require to reach the destination rank from the
source rank. The x axis of each subfigure corresponds to the number of cores involved in the run, which in turn
determined the domain decomposition used. The default mapping algorithm maps MPI ranks consecutively
across allocated cores, while the three subfigures in the rightmost column use a random mapping algorithm
(within a partition of the torus). The thickness of each point represents the number of messages that required
the corresponding number of hops to be transferred, and the color of the point represents the relative number
of messages with respect to the maximum number of messages for the set of experiments.
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Figure 6: Percentage of local (“on chip”) data communication.

represents the number of messages that required the corre-
sponding number of hops to be transferred, and the color of
the point represents the relative number of messages with
respect to the maximum number of messages for the set of
experiments.

Algorithmic effects. Figures 5 and 6 show the amount of
local communication, which gives an estimation of the num-
ber of MPI messages (i.e., network data communication) for

each configuration. On examination of the figures, we see
several clear trends. First, total overall network data com-
munication increases as the fan-in increases. Second, the
total number of messages increases as the number of cores
increases but the impact on the number of hops is not sig-
nificant unless the random mapping algorithm is used. This
suggests that the algorithm is highly scalable in terms of
network communications, which is expected as data com-



# Fan Time Energy MIPS MEMbw MPI

cores in (s) (KJ) (x103) (GB/s) MSGs

320
8 55.9 214.4 142 484 3,716
16 57.7 221.3 138 473 4,752
32 59.3 227.4 139 478 5,946

960
8 18.8 225.5 423 1,440 10,917
16 19.0 228.7 420 1,434 11,116
32 25.3 300.6 334 1,151 16,815

1,920
8 11.3 284.5 735 2,517 19,548
16 12.4 310.0 700 2,417 24,958
32 12.0 301.6 710 2,446 24,644

3,840
8 8.3 447.7 1183 4,135 57,424
16 12.7 652.0 864 3,070 73,367
32 8.2 440.5 1,172 4,085 50,902

11,520
8 6.9 1,227.1 1,869 6,717 194,043
16 6.7 903.2 N/A N/A 170,912
32 9.9 1,668.2 1,526 5,593 194,596

23,040
8 15.7 5,095.2 1,215 4,508 417,360
16 7.5 2,861.9 2,457 9,106 360,422
32 18.0 6,060.9 1,477 5,641 508,704

30,000
8 8.0 4,104.4 2,777 10,399 600,072
16 8.7 4,357.4 2,497 9,360 535,693
32 12.3 5,828.7 2,047 7,778 556,098

Table 3: This table summarizes the results obtained from different variations (including total number of cores
and merge fan-in) of the topological analysis of the lifted ethylene jet execution on Titan. The results include
execution time, energy consumption, millions of integer operations per second, memory accesses per second
and number of MPI messages. Note that the energy consumption is an estimation using our model.

munication is structured as a tree. The mapping algorithm
can significantly impact the amount of local (“on-chip”) com-
munication, and therefore choosing the optimal fan-in will
depend mainly of the number of MPI ranks that can be al-
located per node and, consequently, the number of available
cores. This has implications on architecture co-design as
discussed at the end of this section.

Effects of runtime MPI rank mapping. As we can
see from Figure 5, the mapping algorithm clearly impacts
the number of hops required to send messages. Specifi-
cally, as the number of ranks per node increases, there is
a corresponding decrease in the total data communication
while the number of ranks per node is greater than the fan-
in merge parameter. When the number of ranks/node is
equal or larger than the fan-in merge parameter, most of
the communication is local. As can be observed by look-
ing at the diagonals of the graphic in Figure 5 from top-left
to bottom-right, the mapping algorithm and fan-in are ac-
tually highly correlated (hops ∼ fan-in

ranks per node
). Since the

communications are structured in a hierarchical merge pat-
tern, when the fan-in is twice the number of ranks/node,
this results in approximately half of the messages requiring
off-node communication. For example, if we map 8 ranks
per node, with a fan-in of 8, most of the communication
will be local. However, with fan-ins of 16 and 32, around
50% and 25% of the communications respectively will be re-
mote (see Figure 6). Moreover, as would be expected, the
consecutive mapping algorithm presents better data locality
than the random MPI mapping algorithm, regardless of the
number of ranks per node. Random allocation results in a
larger number of hops, which is not scalable from both a la-
tency and energy perspectives as can be observed in Figure 8

(note the changes in scale along the Y axis across the vari-
ous plots). This supports the argument that data locality is
essential for energy efficiency at scale. It is also interesting
to note that in Figure 5, it is clear that under a random
distribution of MPI rankings, communications require more
hops on average than with one MPI rank allocated per node,
in spite of the fact that under the random distribution there
are 16 ranks per node supported. However, upon exam-
ination of Figure 6, we note that the percentage of local
communication is similar for these two configurations.

System architecture effects. Detailed power informa-
tion is not always available for every component of the sys-
tem. For example, we have little information about the
power drawn by the Gemini NIC. Furthermore, it is of-
ten desirable to examine co-design questions such as, “What
would be the change in full-system power if a future genera-
tion NIC were to consume less power than current-generation
NICs?” Our power-modeling approach is robust to both
these types of missing information. Specifically, we can ex-
amine ranges of power consumption to bound the impact of
any component on the power consumed by the whole sys-
tem. Figure 7 presents an example of such a study. The
x axis represents the number of cores, and the y axis repre-
sents system power. Each curve represents a different value
of NIC power (from 0% to 100%) as a percentage of the
power remaining after subtracting the other subsystems’
power consumption, as discussed in Section 6.1. As Fig-
ure 7 shows, the model indicates, for example, that if NIC
power were reduced from 100% to 0%, the system power
when running the in-situ topological analysis at 30,000 cores
would drop by about 40%. This can be invaluable informa-
tion when co-designing a system because it helps examine
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power/performance trade-offs in a system- and application-
centric manner. Furthermore, we believe the current net-
work interface operational power region to be within the
dark shadowed area of Figure 7 (i.e., between 33% and 66%
of the remaining node power is used by the NIC).

Architectural solutions could also mitigate algorithm and
runtime rank mapping effects shown below. For example,
Figure 8(a) shows that the percentage of energy consumed
for data communication is high when the fan-in is larger than
the number of ranks mapped per node. An algorithmic so-
lution to this problem is to use a lower fan-in but would
incur the associated penalties in execution time and energy.
However, a potential architectural solution would be to con-
sider using two shared memory multi-processors instead of
four independent processors to mitigate the problem (see
Figure 8(b)), which would also result in a reduction of the
percentage of energy consumed for data communication.

7. CONCLUSION AND FUTURE WORK
As scientific applications target exascale, challenges re-

lated to data and energy are becoming dominating concerns.
In this paper we explored data-related energy/performance
trade-offs for end-to-end simulation workflows running at
scale on current high-end computing systems. Specifically,
we have 1) developed and validated a power model based
on machine-independent algorithm characteristics, 2) used
the model to explore the impacts of system architecture,
algorithm design choices and deployment options on data
exchange patterns and overall energy performance, and 3)
discussed how to extend our model to help answer design
questions for emerging architectures. For example, as Fig-
ure 7 demonstrates, it may be possible to utilize our model
to co-design applications and networks for power efficiency.
That is, given network power/performance trade-offs from a
network vendor, we can model the overall system power con-
sumption of in-situ topological analysis to jointly determine
how to maximize the ratio of code performance to power con-
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Figure 8: Percentage of energy accounted for com-
munication.

sumption. While our current model considers macro system
behaviors, we plan to extend it to account for deep-memory
hierarchies, and to compare and contrast the behaviors of a
larger set of use-case scenarios on potential architectures to
further study the impact of various co-design trade-offs. Our
ongoing work also includes the use of finer-grain modeling
and system-specific parameters when they are available.
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