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ABSTRACT
Stencil computations are a common class of operations that
appear in many computational scientific and engineering ap-
plications. Stencil computations often benefit from compile-
time analysis, exploiting data-locality, and parallelism. Post-
processing of discontinuous Galerkin (dG) simulation solu-
tions with B-spline kernels is an example of a numerical
method which requires evaluating computationally intensive
stencil operations over a mesh. Previous work on stencil
computations has focused on structured meshes, while giving
little attention to unstructured meshes. Performing stencil
operations over an unstructured mesh requires sampling of
heterogeneous elements which often leads to inefficient mem-
ory access patterns and limits data locality/reuse. In this
paper, we present an efficient method for performing sten-
cil computations over unstructured meshes which increases
data-locality and cache efficiency, and a scalable approach
for stencil tiling and concurrent execution. We provide ex-
perimental results in the context of post-processing of dG so-
lutions that demonstrate the effectiveness of our approach.

1. INTRODUCTION
Stencil computations are common operations performed

by many numerical methods in the context of scientific and
engineering applications. A stencil is a geometric pattern
which performs computations on a multi-dimensional grid
using information from a localized region. Traditionally,
computational methods have employed structured or block-
structured techniques to compute solutions over regularly
spaced grids of points in 2D and 3D. However, the need for
accurately discretizing complex geometries has led to a rise
in the use of unstructured grid techniques [15]. The terms
stencil, grid, and mesh are often used in the HPC literature.
In the context of this paper we are using specific definitions
for these terms. A mesh is a convex polygon surface formed
from collection of vertices, edges, and faces. A grid is a set
of points defined over a mesh, which are not necessarily col-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC ’13, November 17 - 21 2013, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503214

located with the vertices of the mesh. A stencil is a fixed
geometric pattern which defines a localized sampling region
centered around some point. This definition does require
that stencils have a fixed memory access pattern as is the
case in many other works.

Numerical methods such as the Finite Volume Method
(FVM) and the Finite Element Method (FEM) are defined
to operate over a mesh. Solutions are often evaluated at a
set of points extracted from the mesh which form a multi-
dimensional grid. Meshes are classified as either structured
or unstructured, with each having their own set of advan-
tages and disadvantages. Structured meshes are easier to
sample, allow for easy parallelization, and generally require
no spatial data structure to manage. However, there is great
difficulty in meshing some complex geometries with fully
structured meshes. Unstructured meshes offer the advan-
tage of easier discretization of complex geometries, but they
are harder to sample, often requiring additional overhead in
the form of some spatial data structure, and are generally
more difficult to parallelize.

In context of dG post-processing, a grid of points is defined
over the mesh which correspond to the numerical quadrature
points for each polygon element in the mesh. The geome-
try of this grid depends upon the mesh’s geometric struc-
ture. Structured meshes will lead to regular grid patterns,
while unstructured grids will lead to irregular grid patterns.
The regular access pattern used by structured grids gen-
erally leads to contiguous memory accesses, good memory
layout patterns, and high cache efficiency. Efficient com-
putation of stencil operations over structured meshes has
been widely studied, and great gains have been made by ex-
ploiting parallelism and data locality. Stencil computations
performed over unstructured grids is generally much harder
than those performed over structure grids, and they often
exhibit non-contiguous memory access patterns and lower
cache efficiency.

One of the biggest challenges in computing stencil oper-
ations over unstructured meshes is efficiently sampling the
underlying mesh in the mesh/stencil intersection. DG post-
processing requires performing stencil operations that sam-
ple information from the neighborhood of mesh elements
within the intersection of the stencil and the mesh. In cases
such as this, the geometric nature of the mesh has a signifi-
cant impact on cache efficiency and data locality, especially
for many-core architectures.

Previous work on stencil computations has generally fo-
cused on optimizing for the case of structured meshes. Initial
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work has been conducted in the area of general methods for
parallel applications on unstructured meshes/grids [24, 25],
but there has been little research devoted to determining
efficient methods for evaluating stencil computations over
unstructured meshes. This paper contributes the following:

• An efficient method for evaluating stencil computa-
tions on unstructured meshes;

• A scalable approach for tiling and concurrent execution
of stencil computations over unstructured meshes; and

• An experimental evaluation of our technique on GPU
architecture over a variety of unstructured meshes.

The rest of the paper is organized as follows. Section 2
describes some of the related work dealing with stencil com-
putations. In addition, it provides background on the post-
processing of discontinuous Galerkin solutions, the motiva-
tion for this work, and describes the difficulties in efficiently
performing the computations. Section 3 illustrates two ma-
jor strategies for performing stencil computations over un-
structured grids. Section 4 provides implementation details
for the approach we used. Section 5 provides experimental
results for GPU implementations of each approach. Finally,
Section 6 concludes the paper and discusses future work and
applications.

2. BACKGROUND
The interest in evaluating numerical methods over un-

structured meshes has risen in recent years, in part due to
the demand for ever more realistic meshes which conform to
highly complex geometries.

2.1 Related Work
Stencil computations have been extensively studied as they

have a wide range of applications in science and engineer-
ing. The research done in optimizing stencil computations
falls into one of two categories. The first is compiler-based
optimizations such as auto-tuning and domain-specific lan-
guages and compilers. The second is stencil-specific op-
timizations, which often provide greater performance in-
creases than compiler-based optimizations due to their abil-
ity to take advantage of specific knowledge related to the
computation. The complex nature of modern architectures
often requires meticulous tuning to achieve high performance.
There has been a large push towards auto-tuning architec-
ture specific code. A framework for generating and auto-
tuning architecture specific parallel stencil code was devel-
oped in [6]. Stencil-specific optimizations have included
tiling mechanisms which take into account the memory ac-
cess pattern of the stencil to improve load balance and con-
currency. A method for generating tiling hyperplanes which
allows for concurrent start without the need for pipe-lining
was described in [2]. This technique provides perfect load
balancing and increases parallelism.

Many-core architectures are very effective at exploiting
parallelism in regular computations. Numerical methods
performed over unstructured meshes are often classified as
irregular. Work has been done to develop ways of classify-
ing the amount of irregularity in a program [4]. Control-flow
irregularity and memory-access irregularity are the two ma-
jor types of irregularity that exist in programs. There has
also been work done on run-time techniques, such as in-
spector/executor methods, for evaluating parallel irregular

computations and reordering/reassigning the operations to
remove data dependence conflicts and increase load balance
[1]. The amount of static optimization that can be achieved
in irregular computations is often limited due to data de-
pendencies that can only be determined at run-time.

The use of streaming many-core architectures to compute
stencil operations has significantly increased in recent years.
This is due to a number of factors, such as the inherent
outer parallelism of stencil operations, the ability of many-
core architectures to exploit fine-grained parallelism, and
the high FLOP count often required by large scale calcu-
lations. Graphics Processing Units (GPUs) are massively-
threaded, many-core streaming architectures that use the
single program multiple data (SPMD) paradigm to increase
memory bandwidth efficiency and computational through-
put. Modern GPUs achieve peak single precision floating-
point throughput of over 1 TFLOP/s. GPUs contain hun-
dreds of cores arranged into compute grids, known as a
streaming multi-processors (SM), which operate in a single
instruction multiple data (SIMD) fashion. Logical threads
are grouped together into blocks which are then assigned to
a physical SM on the GPU. A single GPU can concurrently
manage thousands of logical threads at one time and dy-
namically handle scheduling of their execution and context
switching though hardware with little to no overhead [11].

Each SM has a limited amount of register space and shared
memory/cache for threads operating within a block. Threads
within a block can pass information through this shared
memory space, but threads between blocks must pass in-
formation through global memory. Global memory is device
memory which is shared between all SMs and can be ac-
cessed by any thread. Synchronization can be achieved be-
tween threads within a logical block, but, in general, there
is no way to synchronize threads across blocks. The low-
level architectural model of the GPU presents a challenge
in writing efficient programs. The Compute Unified De-
vice Architecture (CUDA) programming model [9, 19] and
the Open Computing Language (OpenCL) [12] have made
strides towards lowering the barrier of programming GPUs.

Significant work has been devoted to the goal of achiev-
ing high performance from stencil computations on stream-
ing SIMD architectures [10, 14, 20]. The SIMD architec-
ture of the GPU fits well with stencil computations due to
the inherent data level parallelism. Other researchers’ work
has shown promise for high performance of stencil compu-
tations on GPUs, using techniques such as auto-tuning and
auto-generation of code [29]. Techniques such as data layout
transformation and dynamic tiling at the thread level were
demonstrated in [5].

Previous work on stencil computations has relied on ex-
ploiting regular geometric memory access patterns on struc-
tured grids to achieve high performance and maximize par-
allelism. This can not be relied upon in the case of unstruc-
tured meshes/grids, where a given stencil will often have
different sampling patterns based on the point it is centered
around. Discontinuous Galerkin post-processing is an exam-
ple of a numerical method which requires performing sten-
cil computations over unstructured meshes. We chose dG
post-processing as a motivating example and demonstrator
for our technique, although our technique is not specifically
tailored to or limited to dG post-processing.



2.2 Post-Processing of Discontinuous Galerkin
Solutions

The discontinuous Galerkin (dG) method has quickly found
utility in such diverse applications as computational solid
mechanics, fluid mechanics, acoustics, and electromagnet-
ics. It allows for a dual path to convergence through both
elemental h and polynomial p refinement. Moreover, un-
like classic continuous Galerkin FEM which seeks approx-
imations that are piecewise continuous, the dG methodol-
ogy merely requires weak constraints on the fluxes between
elements. This feature provides a flexibility which is diffi-
cult to match with conventional continuous Galerkin meth-
ods. However, discontinuity between element interfaces can
be problematic during post-processing, where there is of-
ten an implicit assumption that the field upon which the
post-processing methodology is acting is smooth. A class of
post-processing techniques was introduced in [7, 8], with an
application to uniform quadrilateral meshes, as a means of
gaining increased accuracy from dG solutions by performing
convolution of a spline-based kernel against the dG field.
As a natural consequence of convolution, these filters also
increased the smoothness of the output solution. Build-
ing upon these concepts, smoothness-increasing accuracy-
conserving (SIAC) filters were proposed in [26, 28] as a
means of introducing continuity at element interfaces while
maintaining the order of accuracy of the original input dG
solution.

The post-processor itself is simply the discontinuous Galerkin
solution u convolved against a linear combination of B-splines.
That is, in one-dimension,

u?(x) =
1

h

∫ ∞
−∞

Kr+1,k+1
(y − x

h

)
u(y)dy,

where u? is the post-processed solution, h is the character-
istic element length (elements are line segments in 1D) and

Kr+1,k+1(x) =

r∑
γ=0

cr+1,k+1
γ ψ(k+1)(x− xγ),

is the convolution kernel, which we refer to as the convo-
lution stencil. ψ(k+1) is the B-spline of order k + 1 and
cr+1,k+1
γ represent the stencil coefficients. The term r is the

upper bound on the polynomial degree that the B-splines
are capable of reproducing through convolution. The stencil
width increases proportionately with r. xγ represent the po-
sitions of the stencil nodes and are defined by xγ = − r

2
+ γ,

γ = 0, · · · , r, where r = 2k. This will form a line and a
square lattice of regularly spaced stencil nodes in 1D and
2D respectively.

The post-processor takes as input an array of the polyno-
mial modes used in the discontinuous Galerkin method and
produces the values of the post-processed solution at a set
of specified grid points. We choose these grid points to cor-
respond with specific quadrature points which can be used
at the end of the simulation for such things as error calcu-
lations. Post-processing of the entire domain is obtained by
repeating the same procedure for all the grid points. In two
dimensions, the convolution stencil is the tensor product of
one-dimensional kernels. Therefore, the post-processed so-
lution at (x, y) ∈ Ti, becomes

u
?
(x, y) =

1

h2

∫ ∞
−∞

∫ ∞
−∞

K

(
x1 − x

h

)
K

(
x2 − y

h

)
u(x1, x2)dx1dx2

(1)

where Ti is a triangular element, u is our approximate dG
solution, and we have denoted the two-dimensional coordi-
nate system as (x1, x2).

To calculate the integral involved in the post-processed
solution in Equation (1) exactly, we need to decompose the
triangular elements that are covered by the stencil support
into sub-elements that respect the stencil nodes. The result-
ing integral is calculated as the summation of the integrals
over each sub-element. Figure 1 depicts a possible decom-
position of a triangular element based on the stencil-mesh
intersection.

(a) Triangular ele-
ment

(b) Integration re-
gions

Figure 1: Demonstration of integration regions resulting
from the stencil/mesh intersection. Dashed lines represent
the breaks between stencil nodes. Solid red lines represent
a triangulation of the integration regions.

As demonstrated in Figure 1(b), we divide the triangu-
lar region into sub-regions over which there is no break in
regularity. Furthermore, we choose to triangulate these sub-
regions for ease of implementation. The infinite integrals in
Equation (1) may be transformed to finite local sums over
elements, using the compact support property of the stencil
(Tj ∈ Supp{K}). The extent of the stencil or Supp{K} is
given by (3k + 1)h in each direction, where k is the degree
of the polynomial approximation. Each of the integrals over
a triangle Tj then becomes∫ ∫

Tj

K
(x1 − x

h

)
K
(x2 − y

h

)
u(x1, x2)dx1dx2

=

N∑
n=0

∫ ∫
τn

K
(x1 − x

h

)
K
(x2 − y

h

)
u(x1, x2)dx1dx2 (2)

whereN is the total number of triangular sub-regions formed
in the triangular element Tj as the result of stencil/mesh in-
tersection, and τn is the nth triangular subregion of the in-
tersection. In the case that the stencil intersects a boundary
of the domain, the stencil either wraps around the domain
for periodic solutions, or an asymmetric (one-sided) stencil is
used [21]. For further details on the discontinuous Galerkin
method and post-processing, see [16, 17, 18, 8, 22].

3. ALGORITHM
In previous work, stencil computations are often defined

as a method that updates each point in a structured grid
according to an expression which depends upon the values
of neighboring points in a fixed geometric pattern. For the
case of discontinuous Galerkin (dG) post-processing, we use
a more general definition of stencil computations, which is
the localized sampling area centered around a grid point
which intersects the mesh geometry. We now define the key
concepts used in the context of stencil computations over



(a) Structured Mesh (b) Structured Grid

(c) Unstructured
Mesh

(d) Unstructured
Grid

Figure 2: Structured and unstructured meshes and their
respective structured and unstructured grids

unstructured meshes: computation grids, stencil operations,
spatial data structures, and buffered vs. in-place stencils. All
of our tests were conducted over 2D unstructured triangu-
lar meshes, therefore we use the terms element and triangle
interchangeably.

When evaluating stencil operations over a mesh, a set of
evaluation points must be derived in relation to the under-
lying geometry. This set of points over which the stencil
computations are evaluated is denoted as the computation
grid. In the case of post-processing of dG solutions, the
evaluation points are the quadrature points of the polyno-
mial interpolant defined over each element. Figure 2 illus-
trates an example of structured and unstructured 2D tri-
angular meshes along with the set of grid points derived
from them. In the case of structured meshes, the layout of
the quadrature points will follow a regular pattern. For un-
structured meshes, the layout of the quadrature points will
depend on the size, shape, and orientation of the elements.
Post-processing of dG solutions requires sampling the dis-
continuous piecewise functions that exist over the elements
of the mesh.

We define stencil operations to be computations performed
which update the value of a grid point at which the stencil
is centered, using information within the localized sampling
region. The computations depend upon function values of
sampled points that lie within the stencil. The stencil may
differ for each grid point when computing stencil operations
over unstructured grids. This is due to the fact that the
set of sample points within the stencil depend upon the in-
tersection between the stencil and the underlying geometry.
The varying intersection spaces between grid points will lead
to a non-regular sampling pattern that must be calculated
independently for each grid point.

As stencil operations rely on local neighborhood relation-
ships between evaluation points, it is a common operation
to query all elements within some distance of a given point.
Therefore, an efficient method for accessing elements or points

within some spatial region is required. There exist a num-
ber of data structures used for spatially decomposing an
unstructured grid or mesh in an efficient manner, such as
k-d trees, uniform hash grids, quad/oct trees, and bounding
volume hierarchies [23]. Given that the stencils, in this case,
are square and grid points are roughly uniformly distributed,
a uniform hash grid was the most applicable choice [3].

We differentiate between stencil types based on how they
operate over their solution memory space. In-place stencils
sample from the same memory locations to which the solu-
tions are written. This is often the case with time depen-
dent iterative stencil computations. In-place stencils must
be tiled in some fashion as to avoid race conditions. Buffered
stencils write the solution to a separate memory space from
the space which is sampled to compute the stencil. As such,
buffered stencil operations can be processed independently
of each other without concern for race conditions. Post-
processing of dG solutions is a buffered stencil operation.

3.1 Stencil Evaluation
The most straightforward method for post-processing is a

per-point evaluation method which iterates over the grid of
points, and for each point finds all of the elements that inter-
sect with the stencil centered around that point. Those in-
tersected regions are then integrated and the values summed
to produce the value of post-processed solution at that grid
point. We propose an alternate method which is a per-
element evaluation method that iterates over each element,
and for every element finds all of the points whose stencil
intersects with that element. Each of those individual in-
tersections are then integrated, which produces a number of
partial solutions that are scattered to multiple grid points.
Figure 3 illustrates these two methods. In per-point evalua-
tion, integrations are all partial sums of the same grid point.
In per-element evaluation, every grid point whose stencil in-
tersects with the given element will have its value updated
with a partial solution.

(a) Per-Point (b) Per-Element

Figure 3: Per-point vs per-element evaluation. Red points
indicate grid points that will updated by this evaluation.
The bounds indicate the area covered by the stencil. In the
per-point case, the red dot indicates the point whose solu-
tion is being evaluated. In the per-element case, the partial
solutions are evaluated with respect to the green highlighted
element.

Post-processing of dG solutions over unstructured meshes
requires finding the intersections between the B-spline sten-
cil and the mesh geometry. We use the Sutherland-Hodgman
algorithm [27] to find and triangulate these intersections.



Figure 4: A sample triangulation of an intersection region
by the Sutherland-Hodgman algorithm.

Algorithm 1: SutherlandHodgman (SH) Algorithm

input : clipPolygon, subjectPolygon
output: intersectionPolygon
List outputList = subjectPolygon;
for Edge clipEdge in clipPolygon do

List inputList = outputList;
outputList.clear();
Point S = inputList.last;
for Point E in inputList do

if E inside clipEdge then
if S not inside clipEdge then

outputList.add(Intersection(S,E,clipEdge));

end
outputList.add(E);

end
else if S inside clipEdge then

outputList.add(Intersection(S,E,clipEdge));
end
S ← E;

end

end
intersectionPolygon ← outputList;

This clipping algorithm finds the polygon that is the inter-
section between two given arbitrary convex polygons and
divides the intersection into triangular subregions. Figure 4
illustrates this triangulation process. The convolution sten-
cil used in the post-processing algorithm is broken down into
an array of squares as depicted with red dashed lines. Con-
sequently, the problem of finding the integration regions be-
comes the problem of finding the intersection areas between
each square of the stencil array and the triangular elements
covered by the stencil support. Figure 5 depicts a sample
stencil/mesh overlap.

Figure 5: A sample stencil/mesh overlap. Dashed lines rep-
resent the two-dimensional stencil as an array of squares.
The intersections of the dashed lines are stencil node loca-
tions. The subfigure on the right illustrates the intersection
of the green highlighted element and the overlapping stencil
square.

DG post-processing consists of two main steps. The first
is finding and triangulating the stencil/mesh intersections.
This will create a set of triangulated subregions. The second
is integrating those subregions according to Equation (2)
and summing the results. The resulting sum is the post-
processed value of the solution u∗ at that point.

3.2 Grid Construction
A spatial data structure is needed to efficiently search the

elements of an unstructured mesh in order to determine in
which element a given point lies. We perform a uniform
subdivision of the mesh and each element/point is stored in
a hash grid cell based on its spatial coordinates. For per-
point sampling the hash grid stores the centroid location of
each element. On unstructured meshes, a triangle may be
located in a cell while parts of its area extend into neighbor-
ing cells. To ensure enclosure (i.e. no triangle spans more
than two cells in any one dimension), a minimum size on the
cells of the hash grid is imposed. The minimum size used
in our computation to guarantee enclosure is the length of
the longest edge amongst all triangles in the mesh. In the
per-element case the hash grid stores the grid points instead
of the triangular elements of the underlying mesh. The de-
composition in this case has no minimum size restriction on
the cells of the grid.

When evaluating the intersection of a stencil and the tri-
angular mesh we first evaluate the intersection of the stencil
and the uniform hash grid. The intersected cells store indices
of the elements/points that must be tested for intersections
with the given element/point being evaluated. We choose
the domain of the hash grid to be [0, 1] in both dimensions,
with per-point and per-element cell spacings cp and ce re-
spectively. We set cp and ce to be some factor of s, which
represents the longest side amongst all triangles in the mesh.
For our tests we used cp = s and ce = s

2
. Construction of

the uniform hash grid follows from dividing the the mesh
into d 1

cp
e and d 1

ce
e, cells in each dimension.

Given an element with vertices (A,B,C) and a grid point
(x, y), we construct a bounding box around the element with
corners being defined as

minx = min (Ax, Bx, Cx) miny = min (Ay, By, Cy)

maxx = max (Ax, Bx, Cx) maxy = max (Ay, By, Cy).

The bounds are extended by half of the stencil width, which
is defined to be w = s(3P + 1), where P is the polynomial
order. The bounds of the per-element and per-point stencils
(e, p) are defined as

lefte = b
minx − w

2

ce
c leftp = b

x− w
2

cp
c − 1

righte = b
maxx + w

2

ce
c rightp = b

x+ w
2

cp
c+ 1

tope = b
maxy + w

2

ce
c topp = b

y + w
2

cp
c+ 1.

bottome = b
miny − w

2

ce
c bottomp = b

y − w
2

cp
c − 1 (3)

The hash grid is constructed in a similar manner for both
methods, with the per-point hash grid storing the triangle el-
ements and the per-element hash grid storing the grid points.

The size of the intersection search space, in each dimen-
sion, for the per-point method is the sum of the stencil width



Intersections from Halo Cells

Per-point Intersection Per-element Intersection

Element Bounding Box

Stencils

Figure 6: Per-point vs per-element mesh intersections on
hash grid. The yellow areas denote the stencil regions, the
red area denotes the halo region, and the green area is the
element bounding box.

and the width of the cells surrounding the stencil, known as
the halo region [11]. The size of the intersection space for the
per-element scheme is sum of the width of element bounding
box and the stencil width. The resulting size of the inter-
section search space has an upper bound of 2s + w for the
per-point scheme, and s + w for the per-element scheme.
Figure 6 illustrates the difference in the intersection search
spaces between the two methods. Elements that lie within
the halo cells around the stencil but do not intersect the
stencil are also tested. This results in additional unneces-
sary stencil/triangle intersection tests in the per-point case.
Data about the number of intersection tests performed with
the per-point and per-element hash grids are detailed in Ta-
ble 1.

Since a single point cannot span more than one cell, this
allows for smaller cells which form a tighter bound around
the stencil, and additionally, the elimination of the halo re-
gion. We found that setting the cell size equal to half the
maximum triangle edge size produced good results. This
method makes a tradeoff by reducing uncoalesced reads from
sampling the unstructured mesh and increasing coalesced
writes by splitting the solution in parts. Note that not every
triangle tested will intersect with the stencil around the grid
point. Only true positive intersections will be integrated.

Mesh # of Per-Point # of Per-Element
Size Intersection Tests Intersection Tests
4k 6647394 3525297
16k 26492809 14235618
64k 110778427 59277119
256k 455614318 243245703
1024k 1919070326 1017924543

Table 1: Number of intersection tests performed with the
per-point and per-element methods using linear polynomials

3.3 Per-Point Evaluation
To evaluate a stencil computation with the per-point method,

a stencil is centered around each grid point and the intersec-
tions between that stencil and the underlying mesh geometry
are found. When determining the mesh/stencil intersection,

we first determine the intersection between the hash grid
and the stencil. A bounded region on the hash grid is de-
termined by centering the stencil at the grid point and ex-
panding the borders to nearest cell boundary in each dimen-
sion, as denoted in Equation (3). Next, each element within
the bounded cells is tested for intersections. Intersected re-
gions are then triangulated with the Sutherland-Hodgman
algorithm and integrated. The set of halo cells around the
bounded region must be included to ensure that all intersect-
ing triangles are tested. Algorithm 2 provides psuedo-code
for the per-point evaluation method. The element data re-

quires a minimum of (P+1)(P+2)
2

+ 3 values to be read from
memory per integration, where P is the polynomial order.

Algorithm 2: Per-Point Post Processing

foreach Point p do
// Compute hash grid bounds

L,R,T,B ← PointHashGridBounds(p);
foreach Cell j within bounds L,R,T,B do

foreach Element e in Cell j do
// Compute and store per-element data

ED ← ElementData();
// Compute and triangulate

stencil/element intersections

Regions ← SH(Stencil(p), e);
// Integrate triangulated regions

Solution[p] ← Solution[p] +
Integrate(Regions, ED);

end

end

end

3.4 Per-Element Evaluation
The per-element evaluation scheme groups sample points

by the underlying geometric element in which they happen
to fall. The per-element stencil bounds, denoted in Equation
(3), enclose an area that includes all grid points which have
stencil intersections with the bounding box of the triangle.
From this bounded area, the set of grid points whose sten-
cils intersect the triangle are determined. Each grid point
that falls within this region is tested for a stencil/triangle in-
tersection using the given triangle element. The evaluation
points within the triangle are then processed concurrently.
The per-element scheme breaks up Equation (2) into par-
tial solutions. The partial solutions are grouped together by
triangular element, and each element will contribute partial
solutions to every grid point whose stencil intersects that
triangle. We divide the mesh into patches, the details of
which are described in the next section, with the solution
of each patch being accumulated into a separate memory
space. Algorithm 3 provides the psuedo-code for the per-
element evaluation method.

Data associated with the given element, such as the ele-
mental coefficients and the bounds of the triangle, can be
stored and reused for all evaluations. This takes advantage
of data locality and leads to more coalesced memory accesses
than in the per-point scheme. In the per-element case, only
the spatial offset of the grid point (two values in 2D) are re-

quired to be read per integration, since the ( (P+1)(P+2)
2

+ 3)
values associated with the triangle are reused for all integra-
tions over that element.



Algorithm 3: Per-Element Post Processing

foreach Element e do
// Compute hash grid bounds

L,R,T,B ← ElementHashGridBounds(e);
// Compute and store element data in Shared

Memory

ED ← ElementData();
foreach Cell j within bounds L,R,T,B do

foreach Point p in Cell j do
// Compute and triangulate

stencil/element intersections

Regions ← SH(Stencil(p), e);
// Integrate triangulated regions

PSolution[patch(e), p] ← PSolution[patch(e),
p] + Integrate(Regions, ED);

end

end

end
// Perform reduction on solution by patch

Solution ← Reduction(PSolution)

4. IMPLEMENTATION
The Sutherland-Hodgman algorithm presents a challenge

in efficiently post-processing on many-core architectures. The
highly divergent nature of the intersection processing, caused
by branching logic, may lead to sub-optimal performance on
streaming SIMD architectures. The polygon clipping that
takes place within the Sutherland-Hodgman algorithm oc-
curs at irregularly-spaced intervals on an unstructured mesh.
The GPU architecture relies on SIMD parallelism to gain
efficiency, and this irregularity causes divergence between
threads that are operating synchronously. This leads to no-
ticeably poorer performance for unstructured meshes ver-
sus that of structured meshes, due to noncontiguous mem-
ory accesses and thread divergence. Minimizing the total
number of intersection tests is key to achieving high perfor-
mance with stencil computations over unstructured meshes
on SIMD architectures.

In the per-point method we assign a block to compute the
solution for a given grid point. On the GPU we use a num-
ber of blocks equal to the SM count on the GPU (NSM ).
The blocks then iterate over the points in a strided fashion
(i.e. Pi+k∗NB , where Pi is the ith point, NB is the num-
ber of concurrent blocks, and k is an incrementing integer).
Within a block, we assign threads to iterate over the element
indices that lie within intersected cells of the hash grid in
a similar strided fashion. The stencil/element intersections
are then tested and integrated. There is no contention be-
tween stencils, as each stencil updates a discrete grid point.
In this case it is trivial to achieve perfect load balancing be-
tween all processing groups. In the per-element method we
assign a block to each patch. The threads within the blocks
iterate over the points stored within the intersected cells of
the hash grid in a strided manner. To maximize parallelism,
we chose a number of blocks equal to the number of SMs per
card. For multi-GPU decomposition we divide the mesh into
NGPU×NSM patches, where NGPU is the number of GPUs.
In the multi-GPU implementation we use a two stage reduc-
tion. In the first stage, each GPU computes a reduction on
the patches that it processed. This is followed by a final
reduction of those resulting solutions in the second stage.

The per-element evaluation scheme requires that concur-
rent execution of stencil tiles acting on the same memory
space do not overlap. Overlapping stencils may introduce
race conditions where the value of a grid point is being up-
dated by multiple stencils. To solve this problem, we assign a
separate scratch pad memory space to each concurrent sten-
cil tile where the partial solutions are accumulated. After all
the stencils have finished their computations, the final solu-
tion is summed together from all the partial solutions. This
requires additional memory space, but allows for maximum
parallelism without the need for pipe-lining of the stencils.

We implemented a spatially overlapped tiling scheme, in-
troduced in [13], where each tile uses a disjoint memory
working set. Each logical block is assigned to process sten-
cils in a localized patch of the mesh. The partial solutions
of each patch are stored in a separate scratch pad memory
space. This requires that grid points lying along the borders
of patches have multiple partial solutions. Grid points that
fall within the intersection of stencils from multiple patches
will have a partial solution stored in each of those patches
memory sets. Grid points that lie in the interior of a patch
and only fall within stencils from that patch will have a
single solution in memory. Figure 7 illustrates an exam-
ple patch division and the partial solutions formed from the
patches. The overlapped regions that lie within the intersec-
tion of stencils from multiple patches are summed together
to produce the final result for those respective grid points.
This leads to a relatively low amount of storage overhead.
The memory overhead, relative to the memory requirement
for the total solution, decreases as the mesh size increases.

Partial Solutions

Final Solution

+

+

+

Overlapping Regions

Figure 7: Example of mesh division into four patches

Patch construction follows from simple recursive bisection
of the mesh elements until there are k patches of roughly
equal size, with k being the number of concurrently execut-
ing blocks. This method easily scales with the mesh size. As
the domain size increases, the number of concurrent stencils
can be increased. Patch perimeter distance should be min-



imized in order to minimize the overall memory overhead.
Increasing the number of tiles while decreasing the tile size
has the effect of increasing overall memory overhead, but
allows for higher parallelism. The number of concurrent
executing tiles has a maximum upper bound equal to the
number of geometric elements in the mesh. As the surface
area of a patch grows at a faster rate than the perimeter,
the memory overhead tends to be relatively low for large
meshes. This also naturally extends to 3D with the memory
overhead determined by the surface area to volume ratios of
the patches.

The baseline memory consumption is the minimum amount
of memory required to store the solution at all the evalua-
tion grid points. The patch based tiling method adds addi-
tional memory overhead based on the number of grid points
that fall within the intersection of stencils from multiple
patches. Each patch stores partial solutions for every grid
point that falls within the union of intersections spaces of
the elements contained within the patch. Thus only points
near the boundaries of patches will require storing multiple
partial solutions. The ratio of boundary length to patch area
decreases inversely proportional to mesh size for a fixed num-
ber of patches. Figure 8 illustrates the scaling of memory
overhead across the range of test meshes. The perimeter of
a patch grows linearly while the surface area grows quadrat-
ically. As the results demonstrate, this adds relatively little
overhead memory consumption for larger meshes.
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Figure 8: Memory overhead of per-element method using 16
patches with linear polynomials

The final summation of the partial solutions only requires
a linear reduction based on the memory offset of each patch
solution. In the reduction phase, we divide up the grid points
based on the patch they fall within. We then assign a block
to each patch which performs the reduction on the partial
solutions for those grid points. This eliminates write con-
tention to the final solution space. The process contributes
a minimal amount of time to the overall process. We also
explored a pipe-lined tiling method, but this introduces ad-
ditional synchronizations between pipeline stages. There is
no additional memory overhead introduced by pipe-lining,
but there is reduction in overall performance.

5. EXPERIMENTAL RESULTS
In this section we evaluate the performance of GPU im-

plementations of the per-point and per-element methods. In

addition, we demonstrate the scalability of our approach on
1, 2, 4, and 8 GPUs. We ran our tests on a node with
two Intel Xeon E5630 processors (4 cores each) running
at 2.53GHz, 128GB of memory, and eight NVIDIA Telsa
M2090 GPUs using CUDA 5.0. We executed the tests across
a series of 2D unstructured triangular meshes created using
Delaunay triangulation. We tested our implementations on
two different types of meshes. The first was an unstructured
mesh with roughly uniform sized triangles, shown in Figure
9. The second type was an unstructured mesh with highly
varying element sizes, shown in Figure 10. We tested each of
these mesh types across mesh sizes on the order of 4k, 16k,
64k, 256k, and 1024k triangles. We used periodic boundary
conditions with linear, quadratic, and cubic polynomials,
which have three, six, and ten coefficients respectively for
triangular elements. All tests were conducted with double
precision floating point values.

Figure 9: Unstructured mesh with low variance

Figure 10: Unstructured mesh with high variance

The post-processing is divided into two main components.
The first of which finds the intersections between the stencils
and the underlying mesh geometry, and the second which in-
tegrates those subregions and accumulates the results. The
intersection finding has linear complexity with respect to
the number of intersection tests performed, while the in-
tegral calculation has a computational complexity on the
order of O((P + 1)d), where P is the polynomial order used
in the post-processing of the finite element solution and d is
the dimension. The higher computational complexity of in-
tegration calculation dominates the overall run-time as the



polynomial order increases. This is demonstrated by the
smaller performance increase between the the per-point and
per-element evaluation scheme for quadratic and cubic poly-
nomials.

5.1 Metrics
Figure 11 provides FLOP metrics for the GPU over low-

variance meshes. The per-element method achieves a peak
FLOP rating of 345 GFLOP/s for linear polynomials on
the 1024k mesh. For quadratic and cubic polynomials, the
FLOP ratings are lower, but the relative difference between
the methods is larger. For quadratic polynomials, the meth-
ods achieve a peak FLOP rating between 50 - 120 GFLOP/s,
while for cubic polynomials a peak rating of 30 - 60 GFLOP/s
is seen. The computational complexity of the integral kernel
grows quadratically with respect to the polynomial order.
As polynomial order grows, the integral kernel occupies a
larger percent of the total run-time and the ratio of time
spent computing intersections to time spent performing in-
tegrations decreases. In addition the integration kernel re-
quires storage of a large number of intermediate values that
grow on the order of O((P + 1)2). These constraints lead to
a lower FLOP performance at higher polynomial orders.
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Figure 11: GPU Flop/s

Figure 12 provides GPU flop ratings for high variance
meshes. The difference in FLOP performance between the
two methods is more noticeable on meshes with high vari-
ance in element size. This is due in part to the fact that the
search area for the per-point method includes a halo region
that has a cell width equal to the largest element size. This
has significantly more impact on performance than in the
case of meshes with low variance in element size.

The results in Figure 13 illustrate the relative perfor-
mance of the per-point and per-element method for low and
high variance meshes. The timings of the per-point meth-
ods have been normalized. The performance difference be-
tween the per-element and per-point methods is greater on
meshes with high variance in element sizes. The per-element
method achieves over a 2× speedup for the low-variance
mesh with cubic polynomials, and over a 3× speedup for
the high-variance mesh.

The results demonstrate a significant performance improve-
ment of the per-element evaluation scheme over the per-
point scheme for many-core architectures. Local data asso-
ciated with each element is accessed only once and reused
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Figure 12: GPU Flop/s

for all evaluations within the element. The heterogeneity
of the unstructured mesh leads to irregular memory access
patterns and uncoalesced memory accesses. Fewer intersec-
tion tests combined with increased data reuse contribute to
increased performance. The results provide insight into the
performance of each evaluation method on many-core ar-
chitectures. The streaming many-core architecture of the
GPU benefits greatly from reduced intersection tests and in-
creased data reuse of the local element information, in part
due to the relatively low amount of cache per core. We also
implemented a single threaded CPU version of the methods.
We noticed that implementations with low levels of concur-
rency see less benefit from data reuse. The improvement of
per-element evaluation over per-point evaluation is less sig-
nificant, and in a few cases even worse due to the increased
overhead.

5.2 Scaling
To demonstrate the scaling of the per-element method,

we tested the per-element evaluation method on 1, 2, 4, and
8 GPUs across the entire range of our test meshes. The
results demonstrate that the method has perfect linear scal-
ing with respect to increased mesh size. This is to be ex-
pected for a problem with outer parallelism where there is no
inherent dependencies between grid points. Figure 14 illus-
trates the scaling of the GPU per-element method across the
range of test meshes for linear polynomials. Parallelization
across GPUs was achieved by subdividing the mesh into the
NGPU×NSM patches and evenly distributing them between
the GPUs.

6. CONCLUSION
In this paper, we have introduced an efficient, scalable

scheme for evaluating stencil computations over unstruc-
tured meshes. We present two general strategies for eval-
uating stencil computations over unstructured meshes, per-
point and per-element. In addition, we present a scalable
overlapped tiling method which allows for concurrent execu-
tion of stencils. We implemented a discontinuous Galerkin
post-processor for 2D unstructured triangular meshes us-
ing both per-point and per-element evaluation schemes. We
compare each approach in the context of memory efficiency
and overall performance. Further, we compared the per-
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8 GPUs with linear polynomials

point and per-element evaluation schemes across unstruc-
tured meshes with low and high variance, and we demon-
strated the scalability of the per-element scheme to multiple
GPUs.

The results of our tests show that increased data-reuse and
data locality has a significant impact on the performance
of stencil computations over unstructured meshes with high
levels of concurrency. On the GPU, the per-element method
exhibits between a 2× - 6× performance improvement over
the per-point counterpart. The technique of homogenizing
similar operations by their associated geometric element on
unstructured meshes leads to significantly increased perfor-
mance on many-core architectures like the GPU. The per-
element method demonstrates perfect linear scaling as the
number of computing cores increases. The overlapped tiling

method we employ allows for nearly perfect linear scaling
with minimal synchronization overhead. The per-element
method adds some memory overhead to the process, but
significantly improves overall performance.

Future opportunities for research include the extension of
these ideas to 3D over unstructured tetrahedral meshes. The
overlapped tiling methodology with partial solutions could
be extended to 3D as the volume of the patches grows at a
faster rate than the surface area. In addition, the method-
ology we present is general, and need not be constrained to
only dG post-processing. Our technique could be extended
to methods operating over unstructured meshes which com-
pute the values over an element based upon linear or non-
linear combinations of values from spatially neighboring el-
ements. This includes methods such as weighted essentially
non-oscillatory (WENO) spatial filtering, radial basis func-
tion finite differences (RBF-FD), and narrow-band schemes
for solving level set equations in parallel.
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