
PHYSICAL REVIEW B 90, 035114 (2014)

Equilibrium currents in chiral systems with nonzero Chern number
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We describe a simple quantum-mechanical approach to calculating equilibrium particle current along the edge
of a system with nontrivial band spectrum topology. The approach does not require any a priori knowledge of the
band topology and, as a matter of fact, treats topological and nontopological contributions to the edge currents on
the same footing. We illustrate its usefulness by demonstrating the existence of “topologically nontrivial” particle
currents along the edges of three different physical systems: two-dimensional electron gas with spin-orbit
coupling and Zeeman magnetic field, surface state of a topological insulator, and kagomé antiferromagnet
with Dzyaloshinskii-Moriya interaction. We describe the relationship of our results to the notion of orbital
magnetization.
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I. INTRODUCTION

Orbital contributions to the magnetization in systems with
topologically nontrivial band spectrum represent a relatively
new but active field of study. The nonlocal nature of the
corresponding quantum operator is one of the obstacles in
calculating orbital magnetization of Bloch electrons. This
difficulty has been tackled by means of the Wannier represen-
tation [1–4], standard perturbation theory [5], first principles
calculation [6,7], and Keldysh formalism [8].

In the present paper we develop a different approach based
on the equation of motion for the density matrix. We begin
by noting that the nonlocality of the magnetization M is
intimately related to the presence of a boundary in the system.
In an infinite homogeneous system magnetization would be
undefined. It acquires a concrete physical meaning only by
virtue of its spatial variation M(r) near a boundary or any
other inhomogeneity, where it relates to the density of the
uncompensated electric currents [9], j = c∇ × M. In other
words, the concept of magnetization is simply a different way
to represent local electric currents. The latter, however, can
be calculated directly from microscopic theories where their
definition does not raise the issues of nonlocality at all. Below
we use this approach to find equilibrium currents in a number
of systems that are characterized by a nonzero Chern number:
two-dimensional electron gas with spin-orbit coupling and
Zeeman terms, surface of a topological insulator, and kagomé
antiferromagnet with Dzyaloshinskii-Moriya interaction.

In systems with a significant spin-orbit splitting in the band
structure the spin degree of freedom is tied to the momentum
of the particle. As a result, acceleration of the particle
leads to nonadiabatic spin precession, which in turn affects
the particle’s motion (current). This phenomenon was first
described by Karplus and Luttinger [10], see Refs. [11] and
[12] for a modern perspective, in terms of the geometric (Berry)
phase �(k) that produces the anomalous velocity eE × �,
responsible for the anomalous Hall effect. The electric field
E can, in principle, exist even in equilibrium, for example
due to a confining potential of the boundary of a system.
In materials with a properly designed nontrivial geometric
phase this can lead to the existence of the equilibrium
boundary currents. Similar currents could circulate inside the
system around defects or impurities. In the present paper

we study the conditions for the occurrence of such currents
near a boundary of a two-dimensional electron gas (2DEG)
with Bychkov-Rashba spin-orbit interaction, as well as the
distribution of current density. Other types of chiral systems
are then considered with the same method.

II. 2DEG WITH RASHBA SPIN-ORBIT INTERACTION

Let us consider a single-particle Hamiltonian that describes
the motion of electrons in a potential U (r)

H = − �
2

2m
∇2 − i�λη̂ · ∇ − hσ̂z + U (r), (1)

in the presence of both the spin-orbit coupling λ and Zeeman
field h. The matrices η̂ = z × σ̂ are related to the spin Pauli
matrices σ̂ , the direction z is perpendicular to the plane of
2DEG, and m is the electron effective mass. In the case where
the Zeeman term originates from the coupling of electron spin
to the perpendicular magnetic field Hz, the Zeeman field is
h = eg

2m0c
Hz, where g is the g factor. In what follows we neglect

the effect of the magnetic field Hz on the orbital motion of
electrons. Such approximation is justified, for example, when
the g factor is large. Another realization of this situation is
provided by a system of neutral cold atoms where the orbital
coupling (e/c)p · A is absent, while the Zeeman interaction is
still present.

From the equation of motion for the electron operators
∂ψ̂/∂t = i[H,ψ̂], the equation for the density matrix

fαβ(r,r′; t) = 〈ψ†
β(r′,t)ψα(r,t)〉 (2)

can be easily obtained. It is most conveniently written in the
Wigner representation,

f̂p(R,t) =
∫

dρe−ipρ f̂

(
R + ρ

2
,R − ρ

2
; t

)
. (3)

After straightforward calculation we obtain from Eq. (1),

∂f̂p

∂t
+ 1

2

{ p
m

+ λη̂,∇f̂p

}
+ iλp[η̂p,f̂p] − ih[σ̂z,f̂p]

+ i

∫
dqUq(f̂p− q

2
− f̂p+ q

2
)eiqR = 0, (4)

1098-0121/2014/90(3)/035114(7) 035114-1 ©2014 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276278279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.90.035114


E. G. MISHCHENKO AND O. A. STARYKH PHYSICAL REVIEW B 90, 035114 (2014)

FIG. 1. Spectrum of a two-dimensional electron gas with spin-
orbit interaction and Zeeman splitting, Eq. (8). The left panel shows
the spectrum in the case of spin-orbit coupling exceeding the Zeeman
field: A ring of minima is formed at a finite value of momentum
and a local maximum appears at p = 0. The right panel corresponds
to the case of strong Zeeman coupling: Both electron subbands are
monotonic functions of momentum. Different possibilities for the
position of the chemical potential μ(x) are indicated by the dashed
lines.

where η̂p = η̂ · np is the projection of the spin operator η̂ onto
the direction of the electron momentum np. In the case when
the typical distance over which the potential U (R) changes
smoothly (the implied condition is discussed at the end of this
section), the last term in Eq. (4) can be cast in a more familiar
spatial gradient form,

1

2

{ p
m

+ λη̂,∇f̂p

}
+ iλp[η̂p,f̂p] − ih[σ̂z,f̂p]

−∇U · ∂f̂p

∂p
= 0. (5)

As we are interested in currents in a steady state (equilibrium),
the time derivative has been dropped in the last equation.

The smooth potential U (R) determines the position of
the bottom of the band in the vicinity of the system’s edge.
Correspondingly, in the zeroth order in the gradient ∇U the
density matrix is given by its equilibrium form

f̂ (0)
p = 1

2
(f+ + f−) + 1

2
(f+ − f−)

λpη̂p − hσ̂z√
λ2p2 + h2

, (6)

where the Fermi-Dirac distributions for the two subbands are

f± = 1

exp
[

ε±(p)+U (R)−ζ

T

] + 1
. (7)

The two spin-split subbands,

ε±(p) = p2

2m
±

√
λ2p2 + h2, (8)

are nondegenerate at p = 0 due to the effect of the Zeeman
field, see Fig. 1. Note that ζ is the electrochemical potential,
which is constant throughout the whole system. At zero
temperature it indicates where the filled states are separated
from the empty states with respect to their total energy. It
is also useful to consider the position-dependent chemical
potential, μ(R) = ζ − U (R), which separates filled and empty
states with respect to the “kinetic” energy (total energy sans
the potential energy of the edge). In particular, the chemical
potential μ(R) is more convenient when the distribution of
momenta is needed (as opposed to the distribution of the total

energies for which the electrochemical potential ζ is a more
natural choice).

To obtain the nonadiabatic correction to the distribution
function, linear in ∇U , we write f̂p = f̂

(0)
p + f̂

(1)
p and neglect

gradients of the correction f̂
(1)
p , keeping the latter only in the

“precession” terms:[
λpη̂p − hσ̂z,f̂

(1)
p

] = iKp, (9)

where the right-hand side contains the gradients of f̂
(0)
p and

U (R),

K̂p = 1

2

{ p
m

+ λη̂,∇f̂ (0)
p

}
− ∇U · ∂f̂

(0)
p

∂p
. (10)

The solution of Eq. (9) is readily found in the matrix form:

f̂ (1)
p = i(λpη̂p − hσ̂z)K̂p

2(λ2p2 + h2)
. (11)

Substituting now the adiabatic approximation (6) into Eq. (10)
and then into Eq. (11), after simple but somewhat lengthy
algebra, we arrive at the gradient correction,

f̂ (1)
p = −λ∇U · [λp(np × σ ) + hσ̂ ]

4(λ2p2 + h2)3/2

× [f+ − f− − (f ′
+ + f ′

−)
√

λ2p2 + h2], (12)

where the notation f ′ stands for the derivative of the Fermi-
Dirac distribution with respect to its energy argument.

We are now ready to evaluate the electric current propagat-
ing along the edge of the system. It consists of two terms,

j = eTr
∑

p

(
p
m

+ λη

)
f̂p − eg

4m0
ẑ × ∇Tr

∑
p

σ̂zf̂p. (13)

The first (orbital) term, originating from the electron velocity
∂H/∂p, is determined by the correction (12) to the distri-
bution function. The second (paramagnetic) term describes
the current produced by the inhomogeneous distribution of
spin density and is determined, as calculated below, by the
equilibrium distribution function (6).

Below we consider the two contributions to the current
(13) separately. Our main result is that each contribution
vanishes when electrons are present in both the upper and
lower subbands, h < μ(R), but are nonzero when only the
lowest subband is populated, μ(R) < h, so that f+ = 0. We
choose the boundary to coincide with the y axis of the system
so that the x coordinate measures a distance from the edge, see
Fig. 2. The potential energy near the edge creates electric field
eEedge = −x(∂U/∂x) which is ultimately responsible for the
equilibrium current flowing along the boundary of the sample.

The orbital contribution to the current along the edge is
j (1)
y = eTr

∑
p(py/m + λσ̂x)f̂ (1)

p . Using Eq. (12), taking the
trace and carrying out the angular integration, we obtain

j (1)
y (x) = − e

4π
λ2h

∂U

∂x

∫ ∞

0

pdp

(λ2p2 + h2)3/2

× [f+ − f− − (f ′
+ + f ′

−)
√

λ2p2 + h2]. (14)
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FIG. 2. (Color online) Smooth boundary of a two-dimensional
electron gas. The upper panel illustrates the depletion of the electron
density near the edge. The dashed line indicates the position of the
electrochemical potential ζ as counted from the bottom of the band
deep inside 2DEG. The chemical potential μ(x) is a function of the
coordinate [μ(∞) = ζ ]. The lower panel indicates the direction of
the equilibrium electric edge currents �J .

This simple expression contains very rich physics: Its integrand
is determined by the Berry curvature,

�β(p) = z
βλ2h

(λ2p2 + h2)3/2
, (15)

opposite for the lower, β = −1, and upper, β = +1, subbands.
The curvature (15) is nonzero only when both the spin-orbit
and Zeeman splittings are present. Note that the nontrivial band
topology appears naturally in our calculations rather than being
assumed to exist. After simple integration (see Appendix A for
details) we find

j (1)
y (x) = e

4π

∂U

∂x

⎧⎪⎨
⎪⎩

0, h < μ(x),

1 − h/H(μ), −h < μ(x) < h,

−2h/H(μ), μ(x) < −h,

(16)

where H(μ) =
√

h2 + m2λ4 + 2mλ2μ(x).
The second contribution to the current in Eq. (13) is due

to the inhomogeneous spin density and appears already in
the adiabatic approximation, when f̂p is replaced with f̂

(0)
p ,

Eq. (6). It can be written as j(2)(r) = c∇ × Mpara, where
paramagnetic magnetization Mpara = Mparaz has the standard
form,

Mpara = gμB

2
Tr

∑
p

σ̂zf̂
(0)
p

= − ge

2m0c

∫
d2p

(2π )2

h(f+ − f−)√
λ2p2 + h2

. (17)

This part is distinct from Eq. (16) in that it is proportional to
the extra g factor (in addition to the one implicit in the Zeeman
field h). Simple calculation gives

j (2)
y (x) = eg

8π

m

m0

∂U

∂x

⎧⎪⎨
⎪⎩

0, h < μ(x),

h/H(μ), −h < μ(x) < h,

2h/H(μ), μ(x) < −h.

(18)

The applicability of the gradient approximation (5) to the
exact equation (4) for the density matrix requires that the
relevant Fermi components of the boundary potential are

smooth on the scale of the electron wavelength, q � pF , taken
at the Fermi level. If the width of the edge is Ledge this condition
implies that

pF Ledge 	 1. (19)

Thus the chemical potential should not be too close to the
bottom of the band where the Fermi momentum pF vanishes.

The second condition arises from our use of the expansion
in powers of the gradient of the potential energy ∇U , Eqs. (6)
and (12). Each subsequent term in this expansion acquires
an extra power of λ∇U/(λ2p2 + h2). Since the nonzero net
current is found when only one subband is occupied, the typical
momenta of interest are p ∼ mλ2, and the required condition
can be written in the form

λ∇U � max(m2λ4,h2). (20)

Note that the two conditions (19) are (20) are essentially the
same for the most interesting situation where the chemical
potential in the bulk of the 2DEG is inside the Zeeman gap
and h ∼ mλ2. The width of the edge Ledge is the distance over
which the density of electrons changes from its bulk value
to zero. In that case, U ∼ mλ2 ∼ h, the Fermi momentum,
pF ∼ mλ, and both conditions coincide.

A. Net current

It is now easy to calculate the net current, Jy =∫ ∞
−∞ jy(x)dx, propagating along the edge. Since ∂U/∂x =

−dμ/dx, the net current is expressed in terms of the chemical
potential deep inside the system, which also coincides with
the electrochemical potential ζ ≡ μ(∞), when the boundary
potential is chosen to vanish there, U (∞) = 0. Integration of
Eq. (16) yields, for various possible values of ζ ,

J (1)
y = e

4π

⎧⎪⎨
⎪⎩

0, h < ζ,

h[H(ζ )−h]
mλ2 − ζ, −h < ζ < h,

2h
H(ζ )
mλ2 , ζ < −h.

(21)

Similarly, the net current due to the inhomogeneous spin
density is

J (2)
y = − egh

8π

m

m0

⎧⎪⎨
⎪⎩

0, h < ζ,

(H(ζ ) + mλ2 − h)/(mλ2), −h < ζ < h,

2H(ζ )/(mλ2), ζ < −h.

(22)

Note that the form of the spectrum depends on whether the
spin-orbit energy mλ2 is greater or smaller than the Zeeman
energy h, see Fig. 1. If the Zeeman energy is the larger of the
two there is never a situation where the lower subband has the
region of the negative group velocity and, as a consequence,
two Fermi circles. If this is the case the range μ(x) < −h is
absent. The equations (16)–(22) are still applicable in this case
as long as the expressions for −h < μ(x) are used.

III. TOPOLOGICAL INSULATORS

The formalism of Sec. II can be applied to other two-
dimensional systems with chiral Hamiltonians that are linear
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in momentum, such as graphene or the surface of a topological
insulator. Due to its sublattice symmetry and the ensuing
presence of the two Dirac points with the opposite Berry
curvatures, the net currents tend to vanish in graphene.
However, since on the surfaces of topological insulators (TI)
such Dirac points are also spatially separated, the currents are
nonzero [13].

The spectrum of the 2D electron gas on the surface of TI
in the perpendicular magnetic field is still given by Eqs. (1)
and (8) where the formal limit of m → ∞ should be taken.
The spin-orbital coupling λ now acquires the meaning of the
Fermi velocity. The smooth potential U (x) can be produced
by means of electrostatic gates placed above the surface (since
in the Dirac approximation the electron band is “bottomless,”
the true boundary, or edge, can not be envisioned).

Using now the general expression Eq. (14) we quickly arrive
at the conclusion that the current vanishes unless the chemical
potential lies inside the Zeeman gap, −h < μ(x) < h, in which
case only the term f− in the integrand contributes to the
current:

j (1)
y (x) = − e

4π

∂U

∂x
�(h − |μ(x)|). (23)

This result has previously been derived in Ref. [13]. When the
potential drop is large enough so that a p-n junction is created,
see Fig. 3, with the Fermi level residing above the gap on one
side and below it on the other side of the junction, the net
current eh/2π is flowing along the junction.

We now turn to the second (paramagnetic) contribution
to the current, Eq. (A1). While in the case of conventional
2DEG it is in general of the same order as the orbital
term, cf. Eqs. (16) and (18), in TI the paramagnetic term
is significantly smaller. Nonetheless, this contribution is
important since it has a completely different dependence on the
chemical potential. In particular, it is nonzero where the orbital
contribution (23) vanishes. Calculating the spatial derivative
of the magnetization (17) we observe that only the vicinity of
the Fermi surface contributes to the momentum integral via the
derivatives of the equilibrium distribution functions f±. As a

FIG. 3. (Color online) Two-dimensional electron gas formed by
the surface states of a topological insulator. Smooth gate potential
creates a p-n junction. The net current eh/2π is flowing along the
junction.

result we obtain

j (2)
y (x) = egh

8πm0λ

∂U

∂x

⎧⎪⎨
⎪⎩

1, h < μ(x),

0, −h < μ(x) < h,

−1, μ(x) < −h.

(24)

In particular the paramagnetic current is of the opposite sign
in the p and n regions of the p-n junction. This should be
contrasted with the orbital part (23), which is nonzero only
within the “neutral” strip of the junction.

IV. KAGOMÉ ANTIFERROMAGNET WITH
DZYALOSHINSKII-MORIYA INTERACTION ABOVE

THE SATURATION FIELD

The edge current does not need to be that of electrons
only. Here we show that a very similar physics plays out in a
rather different system: a two-dimensional insulating quantum
antiferromagnet on kagomé lattice in the presence of external
magnetic field. The current that flows around the edge in
this case is that of chargeless magnons, which are quanta of
excitations of the angular momentum, i.e., spin waves. The
role of spin-orbit interaction is played by the Dzyaloshinskii-
Moriya (DM) interaction Dij · Si × Sj , where spatial vector
Dij is living on the bond (ij ) connecting the nearest neighbor
sites of the kagomé lattice. We choose DM vectors Dij = Dẑ

to be normal to the layer, and oriented along the bonds (ij ) of
the kagomé lattice as shown in Fig. 4. Note that this choice
respects translational and rotational C6 (rotations about the
center of the hexagon) symmetries of the lattice, and is of
the kind realized in kagomé antiferromagnet ZnCu3OH6Cl2
[14,15]. It appears that a very similar DM geometry is also
realized in an organometallic kagomé ferromagnet compound
[16] which is being investigated currently. Similar setups, in
relation to thermal Hall effect, have been recently discussed in
Refs. [17] and [18].

We subject a kagomé antiferromagnet to a strong magnetic
field B = Bẑ which exceeds the saturation field Bsat above
which the spins are fully polarized. Excitations of this fully
polarized ground state are spin waves which we describe with
the help of a standard large-S approximation

Sz
r = S − a†

rar,S
† ≈

√
2Sar. (25)

Since the unit cell of kagomé lattice contains three spins, there
are in fact three kinds of spin waves, one for each sublattice
type, which we denote as ar,br, and cr in the following. The

FIG. 4. Kagomé lattice antiferromagnet. Bond arrows point from
site i to site j in DM interaction term Dẑ · Si × Sj . Also indicated
are sublattices a, b, and c.
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coordinate r here is that of the unit cell. Simple algebra shows
that the linear spin wave Hamiltonian of the system has a 3 × 3
matrix form

Hkagome = 2JS
∑

k

(a†
k,b

†
k,c

†
k)Mk

⎛
⎜⎝

ak

bk

ck

⎞
⎟⎠, (26)

where the matrix reads

Mk =

⎛
⎜⎜⎝

h − 2 (1 + id̃) cos k1
2 (1 − id̃) cos k2

2

(1 − id̃) cos k1
2 h − 2 (1 + id̃) cos k3

2

(1 + id̃) cos k2
2 (1 − id̃) cos k3

2 h − 2

⎞
⎟⎟⎠,

(27)

and k1 = 2kx,k2 = kx + √
3ky,k3 = kx − √

3ky . Here d̃ =
D/J is dimensionless DM interaction and h = gμBB/(2JS)
is rescaled magnetic field.

This Hamiltonian possesses remarkable extensive degen-
eracy in the absence of DM interaction (d = 0)—its lowest
energy band is completely flat, ε1(k) = h − 3 [19]. Finite
DM, d �= 0, lifts the degeneracy and provides ε1 with a weak
dispersion, see Eq. (30) below. One of the eigenmodes of the
Hamiltonian (26) is a symmetric precession mode with high
energy of the order of hsat = 3, while the two others, describing
relative fluctuations of spins on different sublattices, have
much smaller energy of the order h − hsat � hsat. As a result,
near the saturation (h � hsat) and at low temperature T , one
can just project the high-energy precession out. Carrying this
approximation out and focusing on the long wavelength limit
k → 0 leads us to a much simple 2 × 2 effective Hamiltonian

H̃ =
∑

k

(ψ†
1,k,ψ

†
2,k)M̃k

(
ψ1,k
ψ1,k

)
, (28)

where

M̃k =
⎛
⎝ V + k2

y

m
− kxky

m
− i

√
3d

− kxky

m
+ i

√
3d V + k2

x

m

⎞
⎠. (29)

Here we denoted V = 2JS(h − hsat), m = 8/(2JS), and d =
2JSd̃ . Eigenvalues of this Hamiltonian are

ε±(k) = V + k2

2m
±

√
3d2 + k4

4m2
. (30)

Observe that for d = 0 the lowest eigenvalue becomes flat,
ε− → V , in accordance with the discussion above.

Subsequent analysis is based on Eq. (30) and, as we
show, valid at low temperatures such that T � d, when
thermal occupation of β = ± bands with energies ε±(k) is
exponentially small. To describe the boundary, which we
again assume to run along the y axis, we promote V to
a position-dependent variable V → V (R) which smoothly
increases from its minimum V0 = h − hsat value in the bulk
of the magnet to V → ∞ on the vacuum side, R = (X,Y ) →
(∞,Y ). Long but straightforward algebra leads to the bosonic

analog of Eq. (5):{
i(pyσ̂1 + pxσ̂3)

m
,
∂fk

∂X

}
+ ∂V

∂X

i∂fk

∂kx

− ikx

m

∂fk

∂X

+
[√

3dσ̂2 − kxky

m
σ̂1 + k2

y − k2
x

2m
σ̂3,fk

]
= 0.

(31)

Neglecting linear gradients ∂/∂X at first, we find fk → f̂
(0)
k

where

f̂
(0)
k = 1

2
(f+ + f−) − 1

2
(f+ − f−)

�tk · �̂σ√
3d2 + (k2/2m)2

, (32)

and �tk = [kxky/m,−√
3d,(k2

x − k2
y)/(2m)]. The equilibrium

distribution function is now Bose-Einstein,

fβ=±(k) = (exp[εβ(k)/T ] + 1)−1. (33)

Note that V plays the role of chemical potential now.
The correction is found to be

f̂
(1)
k = −∂V

∂X

f+ − f− − (f ′
+ + f ′

−)|tk|
4|tk|3

×
[
kyk2

2m2
σ̂2 +

√
3d

m
(kxσ̂1 − kyσ̂3)

]
. (34)

The velocity along the boundary is vy = ∂M̃k/∂ky and the
magnon current density is then jy = ∑

k Tr(vyf̂k),

jy = ∂V

∂X

∑
k

√
3dk2

2m2[3d2 + (k2/2m)2]3/2

× [f+ − f− − (f ′
+ + f ′

−)
√

3d2 + (k2/2m)2]. (35)

Once again, the kernel of this expression is given by the Chern
curvature of the two magnon bands involved.

We now focus on the low-temperature regime, T � d,
when the temperature is much smaller than the splitting
between the magnon bands. In this case only the lowest,
β = −, band needs to be retained in Eq. (35). Focusing on
the total magnon current and denoting z = k2/(2m), we find

Iy = −
√

3d

2π

∫ ∞

0
dX

∂V

∂X

∫ ∞

0

dzz

(3d2 + z2)3/2

× [f−(z) + f ′
−(z)

√
3d2 + z2]. (36)

The upper limit of the z integration can be set to infinity due
to the exponential convergence of the integral in the T � d

limit. Simple calculation shows that under these conditions the
second term in square brackets dominates, and we find

Iy =
√

3d

2π

(
T√
3d

)2

e−(V0−d)/T . (37)

The contribution from the first term is smaller by an additional
factor of T/d � 1.

V. DISCUSSION

The fact that the currents found are equilibrium and nondis-
sipative (in all cases considered j · ∇U = 0) makes one want to
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ask, what kind of magnetization M such a current gives rise to?
The standard steady-state relation j(r) = c∇ × M implies that
M is not exhausted by Mpara, expressed by Eq. (17). One can
expect that there is an additional orbital magnetization Morb,
which is responsible for the contribution j(1) given by Eq. (16),
via a similar relation, j(1) = c∇ × Morb. This additional part
of the magnetization was initially introduced on the basis of
the semiclassical wave packet considerations in Refs. [1] and
[2] and later derived rigorously in Ref. [5]. To complement our
density matrix calculations we present a detailed application
of that formalism to the Rashba system of Sec. II in
Appendix B.

We emphasize that our main result, however, is not the
application of the standard relation j(r) = c∇ × M to the
particular cases of systems with the nontrivial band topology.
Rather, our findings point to a novel way to experimentally
observe “topological” contribution (orbital magnetization)
Morb and to separate it, via the difference in the g-factor de-
pendence of the currents j(1,2), from the standard paramagnetic
magnetization Mpara. The experimental technique of this kind
has recently been developed [20,21].

Another important application of our calculations is the
system of cold atoms, where the resulting edge current
represents a mass current, circulating around the boundary
of the system, which should be observable [22]. Such mass
current is determined by ∇U , which is routinely controlled
in cold atom systems. This leads to the realistic possibility of
studying current generation in response to a change in the
confining potential U (R) and/or Zeeman potentials. It can
also be detected by a muon spin rotation experiments, like
in Sr2RuO4 [23].

As we have shown, a circulating edge current of magnons
is also realized in a kagomé antiferromagnet geometry, which
too can now be realized in optical lattices [24]. Perhaps more
importantly, our calculation raises an intriguing possibility of
generating circulating magnon currents around a nonmagnetic
impurity.

ACKNOWLEDGMENTS

We would like to thank Dima Pesin for numerous insightful
discussions of the magnetization current and surface states of
topological insulators and Oleg Tchernyshyov for discussions
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APPENDIX A: CALCULATION
OF THE ELECTRIC CURRENT

1. Velocity contribution

Substituting Eq. (12) into the expression for the electric
current jy = eTr

∑
p(py/m + λσ̂x)f̂ (1)

p and calculating the
trace and the angle integral, we arrive at the remaining integral

over the absolute value of the electron momentum,

jy(x) = − e

4π
λ2h

∂U

∂x

∫ ∞

0

pdp

(λ2p2 + h2)3/2

× (f+ − f− − (f ′
+ + f ′

−)
√

λ2p2 + h2). (A1)

(i) When the chemical potential lies above the bottom
of the upper subband, μ(x) > h, the contribution from the
difference of the two Fermi-Dirac functions in Eq. (A1) at
zero temperature is

I1 =
∫ ∞

0
pdp

f+ − f−
(λ2p2 + h2)3/2

= − 1

λ2

(
1

ω+
− 1

ω−

)
, (A2)

where ω± =
√

λ2p2
± + h2 and p± are the Fermi momenta of

the upper and lower subbands determined from the equations
ε±(p) = μ. Similarly, the contributions from the derivatives
of the Fermi-Dirac functions (at T = 0 given simply by delta
functions) in Eq. (A1) are

I2 = −
∫ ∞

0
pdp

f ′
+ + f ′

−
λ2p2 + h2

=
∑
±

m

ω±(ω± ± mλ2)
. (A3)

The sum of the two contributions is thus

I1 + I2 = 1

λ2

(
1

ω− − mλ2
− 1

ω+ + mλ2

)
. (A4)

From the condition p2
±/2m ±

√
λ2p2

± + h2 = μ(x) we find
that

ω± =
√

h2 + m2λ4 + 2mλ2μ(x) ∓ mλ2, (A5)

so that I1 + I2 = 0, which means that the current density
vanishes when μ(x) > h.

(ii) When the chemical potential resides inside the Zeeman
gap, −h < μ(x) < h, the upper band is completely empty,
f+ = 0, so that only the lower subband contribution should
be retained in the expression (A3) for I2. In the other integral
(A2) a similar procedure yields

I1 = −
∫ ∞

0
pdp

f−
(λ2p2 + h2)3/2

= − 1

λ2

(
1

h
− 1

ω−

)
. (A6)

The integral in Eq. (A1) is therefore given by

I1 + I2 = 1

λ2

(
1

ω− − mλ2
− 1

h

)
, (A7)

giving the current density Eq. (16).
(iii) Finally when the chemical potential is below the

Zeeman gap, μ(x) < −h, the lower subband is occupied
only for the momenta in the range p1 < p < p2, whose
boundaries are determined by the roots of the equation,
p2/2m −

√
λ2p2 + h2 = μ(x). Similarly to Eq. (A2) we

obtain

I1 = −
∫ p2

p1

pdp

(λ2p2 + h2)3/2
= − 1

λ2

(
1

ω1
− 1

ω2

)
, (A8)

where

ω1,2 = mλ2 ∓
√

h2 + m2λ4 + 2mλ2μ(x). (A9)
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The second term Eq. (A3) has now two contributions from the
two Fermi momenta p1 and p2 of the lower subband:

I2 = m

ω1(mλ2 − ω1)
+ m

ω2(ω2 − mλ2)
. (A10)

As a result we obtain

I1 + I2 = 2

λ2
√

h2 + m2λ4 + 2mλ2μ(x)
, (A11)

reproducing the last line of Eq. (16).

2. Inhomogeneous spin density contribution

The integral in the expression for the current, Eq. (13),
with the distribution function given by Eq. (6), is particularly
simple. In a case when both subbands are populated,

Tr
∑

p

σzf̂p = −h(ω− − ω+)

2πλ2
. (A12)

When the local Fermi level is in the Zeeman gap, ω+ has to
be replaced with 0; when the Fermi level is below the gap,
μ(x) < −h, we have to replace ω+ with ω1 and ω− with ω2.
As a result we find Eq. (22) which, upon formally replacing ζ

with μ(x) and differentiating over x yields Eq. (18).

APPENDIX B: ORBITAL MAGNETIZATION

Applied to the Rashba system of Sec. II, orbital magnetiza-
tion Morb = Morbz reads

Morb =
∑
β=±

∫
d2p

(2π )2

(
mβfβ + e

�
�β(μ − εβ)fβ

)
. (B1)

Here mβ is the orbital moment of the subband β,

mβ = ie

2�

〈
∂uβ

∂p

∣∣∣∣ × (εβ − Hp)

∣∣∣∣∂uβ

∂p

〉
, (B2)

where × stands for vector product and uβ is the periodic part
of the Bloch wave function of the subband β,

|uβ〉 = 1√
2

1√
�2

p + βh�p

(
λ(py + ipx)

h + β�p

)
, (B3)

where we abbreviated �p =
√

h2 + λ2p2. Here Hp is the
Hamiltonian acting on uβ , so that Hp − εβ = λ(pyσ̂x −
pxσ̂y) − hσ̂z − β�pσ̂0. Simple calculation shows that mβ =
eλ2h/[2(λ2p2 + h2)] is in fact β independent.

Using this and Eq. (15) we obtain the explicit form

Morb =
∫

d2p
(2π )2

{
eλ2h

2�2
p

(f− + f+) − eλ2h

2�3
p

[μ − ε−(p)]f−

+ eλ2h

2�3
p

[μ − ε+(p)]f+

}
. (B4)

It is now a simple exercise to check that

j (1)
y = −c

∂Morb

∂x
= −c

∂Morb

∂μ

∂μ

∂x
(B5)

gives exactly the current density (14). In doing so it is important
to remember that there f ′ stands for the derivative of the
distribution function with respect to its energy argument, and
thus f ′

± = ∂f±/∂ε± = −∂f±/∂μ.
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