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Abstract

Background: The genetics involved in Ewing sarcoma susceptibility and prognosis are poorly understood. EWS/FLI and
related EWS/ETS chimeras upregulate numerous gene targets via promoter-based GGAA-microsatellite response elements.
These microsatellites are highly polymorphic in humans, and preliminary evidence suggests EWS/FLI-mediated gene
expression is highly dependent on the number of GGAA motifs within the microsatellite.

Objectives: Here we sought to examine the polymorphic spectrum of a GGAA-microsatellite within the NR0B1 promoter (a
critical EWS/FLI target) in primary Ewing sarcoma tumors, and characterize how this polymorphism influences gene
expression and clinical outcomes.

Results: A complex, bimodal pattern of EWS/FLI-mediated gene expression was observed across a wide range of GGAA
motifs, with maximal expression observed in constructs containing 20–26 GGAA motifs. Relative to white European and
African controls, the NR0B1 GGAA-microsatellite in tumor cells demonstrated a strong bias for haplotypes containing 21–25
GGAA motifs suggesting a relationship between microsatellite function and disease susceptibility. This selection bias was
not a product of microsatellite instability in tumor samples, nor was there a correlation between NR0B1 GGAA-microsatellite
polymorphisms and survival outcomes.

Conclusions: These data suggest that GGAA-microsatellite polymorphisms observed in human populations modulate EWS/
FLI-mediated gene expression and may influence disease susceptibility in Ewing sarcoma.
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Introduction

Ewing sarcoma is a prototypical chromosomal translocation-

associated malignancy, in which virtually all cases harbor a

balanced somatic translocation fusing the EWSR1 gene (EWS) to

a member of the (E- twenty six) ETS-family of transcription

factors, most commonly FLI1 (FLI) [1,2]. In fact, EWS/FLI and

related EWS/ETS fusions are considered pathognomonic for the

diagnosis of Ewing sarcoma. The EWS/FLI chimera product is a

potent oncogenic transcription factor, characterized by fusion of a

transcriptional-regulatory domain of EWS to the DNA binding

domain of FLI [2]. EWS/FLI is considered the master-regulator of

oncogenesis in Ewing sarcoma, regulating numerous critical gene

targets necessary for oncogenic transformation [3,4].

Genome-wide localizations studies utilizing ChIP-seq and

ChIP-chip strategies have identified many direct EWS/FLI

targets. A remarkable observation derived from these studies was

a previously unrecognized affinity of the EWS/FLI chimera for a
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repetitive GGAA-microsatellite element embedded within pro-

moter/enhancer regions of numerous upregulated gene targets [5–

8]. Forty to fifty percent of genomic EWS/FLI binding sites are

associated with these GGAA-microsatellites [7] and EWS/FLI-

mediated DNA binding and gene expression is dependent on these

repetitive GGAA response elements [5,8,9]. These findings

collectively demonstrate an unprecedented link between micro-

satellite DNA and transcriptional dysregulation in Ewing sarcoma.

Microsatellite DNA tracts represent ,3% of the human

genome and are commonly located in non-coding extra-genic

regions [10]. The repetitive nature and non-coding position of

these elements allows microsatellite DNA to experience a higher

baseline mutational rate than coding DNA. Consequently, these

genetic elements are highly polymorphic at both an individual and

population level [11]. Recently it has been shown that the GGAA-

microsatellites within two critical upregulated EWS/FLI-target

genes (NR0B1 and CAV1) are highly polymorphic in healthy

human subjects. Notably, significant length-dependent differences

were observed comparing the NR0B1 GGAA-microsatellite in

white European and African populations [12]. This is significant as

the incidence of Ewing sarcoma is 10-fold less in African

populations compared to white Europeans, irrespective of

geographic location, suggesting a likely genetic influence [13].

Furthermore, NR0B1 is among the most highly upregulated

EWS/FLI targets and is essential for oncogenesis in Ewing

sarcoma [6,14].

Initial studies characterizing the biochemical properties of these

GGAA-microsatellite response elements demonstrated EWS/FLI

DNA binding and subsequent transcriptional activation is highly

dependent on the number of GGAA motifs within in the

microsatellite: A minimum of 4 GGAA motifs is required for

initial DNA binding, and gene expression markedly increases in a

length-dependent manner with additional GGAA motifs [5,9,15].

Importantly, these early biochemical studies only characterized the

relationship of EWS/FLI DNA binding and gene expression over

a small and narrow range of 1–11 GGAA motifs. It remains

unclear how the substantially larger spectrum of GGAA-micro-

satellite polymorphisms, observed in human populations influences

EWS/FLI-mediated transcriptional activity. The goal of the

present study was to characterize the polymorphic spectrum of

the NR0B1 GGAA-microsatellite in Ewing sarcoma tumors,

define the biochemical properties of these GGAA length

polymorphisms and to determine whether clinical outcomes are

influenced by variations in these genetic elements.

Materials and Methods

Ethics statement
This study was approved by the University of Utah, Office for

Research Integrity and Compliance prior to commencement. All

patients enrolled in the Children’s Oncology Group (COG) study

AEW0031 (or legal guardians) provided written informed consent

prior to study enrollment, which included the use of patient

samples and tissues for molecular studies. All patient samples

analyzed in the present study were de-identified and re-identifi-

cation of samples was strictly reserved for the COG Statistics and

Data Center to perform the appropriate clinical outcomes analysis.

This study was carried out in accordance with the Declaration of

Helsinki.

Patient samples
Ewing sarcoma tissue samples were obtained from the

Biopathology Center (Columbus, OH), which serves as the

specimen bank for the Children’s Oncology Group. Patient

demographics such as age, sex and race were self-reported by

the patient (or legal guardians) at the time of study enrollment.

Patients were instructed to identify their race as Caucasian,

African American, Asian, Pacific Islander, American Indian or

other. DNA from these tissue samples was extracted from OCT

embedded tissue blocks or snap frozen tumors courtesy of Dr. Julie

Bridge (University of Nebraska Medical Center, Omaha, NE).

Approximately 20 nanograms of extracted genomic DNA also

were commercially amplified using Qiagen’s REPLI-g service

(Qiagen Genomic Services, Hilden, Germany) for whole genomic

amplification (WGA).

A second cohort of 20 Ewing sarcoma tumor samples and

matching bone marrow aspirates collected at our local institute

were also obtained. Tissues were stored in FFPE blocks and 5-

micron scrolls were cut from each block in triplicate. DNA was

extracted using the RecoverAllTm Total Nucleic Acid Isolation Kit

(Life Technologies, Carlsbad, CA).

PCR sequencing
Forward and reverse primers, flanking the NR0B1 GGAA-

microsatellite loci were designed using promoter sequences

obtained from the University of California Santa Cruz Human

Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway).

All polymerase chain reaction (PCR) amplifications were per-

formed using Pfx polymerase (Invitrogen, Grand Island, NY) in

accordance with established laboratory protocols for microsatellite

DNA. Each 25 mL PCR reaction consisted of 40–80 ng of

genomic DNA, 0.3 mM of forward and reverse primers, 1U of Pfx

polymerase, 0.8 mM of each deoxyribonucleotide triphosphate,

1X Pfx buffer and 1X Pfx enhancer solution. PCR products were

subcloned into competent DH5a E. coli, with each bacterial

colony representing an individual PCR-amplification clone.

Twelve clones for each subject were selected and commercially

sequenced (Beckman Coulter Genomics, Danvers, MA).

PCA analysis
NR0B1 GGAA-microsatellite sequence data for all samples

were aligned using clustalx2. Because computational methods

perform poorly on repetitive sequence, manual refinement was

also necessary. Alignments in the repetitive regions were anchored

on eight different single nucleotide adenosine residues that

partition the contiguous GGAA repeats from the largest observed

GGAA-microsatellite. The first 29 and last 50 bases of each raw

sequence file were considered non-repetitive. For each contiguous

GGAA segment, the number of GGAA repeats was counted and

the count of the base differences between each non-repetitive

region and the consensus sequence was determined (gap

weight = 0.25). The pairwise distances between haplotypes were

calculated as the squared Euclidian distance based on the 11

variable segments. Principal components analysis was performed

using the MATLAB software package (The Mathworks, Natick,

MA).

Luciferase Experiments
The pGL3 promoter luciferase vector (Promega, Madison, WI)

was used for all experimental and control conditions. Human-

derived NR0B1 GGAA-microsatellite polymorphisms or synthetic

GGAA constructs were cloned directly upstream of the SV40

minimal promoter element. 293EBNA cells were transfected with

experimental reporter plasmid constructs or control plasmids, the

Renilla plasmid and plasmids with and without EWS/FLI cDNA.

Firefly luciferase activity was normalized to Renilla luciferase

activity to control for transfection efficiency. Each experimental
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condition was performed in triplicate. Two-tailed Student’s t tests

were used for statistical comparisons.

Quantitative reverse-transcriptase polymerase chain
reaction

Total RNA from established Ewing sarcoma cell lines (A673,

COG-E-352, RDES, TC71 and SKES1) [16–19] and 293EBNA

cells was amplified and detected using SYBR green fluorescence

for quantitative analysis [20]. Normalized fold NR0B1 expression

in each of the Ewing sarcoma cell lines was calculated by

determining the fold-change of each cell line relative to 293EBNA

cells (negative control), with the data in each condition normalized

to an internal housekeeping control gene RPL21. All experiments

were performed in triplicate. Two-tailed Student’s t tests were used

for statistical comparisons.

Microarray data
Total RNA was extracted from fresh-frozen tumor specimens

using miRNAeasy columns (Qiagen). RNA was then processed

and hybridized to Affymetrix HuEx 1.0 arrays in the Genome

Core at Children’s Hospital Los Angeles according to standard

Affymetrix protocols. Data for core probeset regions were

quantile-normalized using robust multi-chip averaging in the

Partek Genomics Suite software platform (Partek, St. Louis, Mo).

NR0B1 transcript level data were derived from normalized exon

data using median summarization. Two-tailed Student’s t tests

were used for statistical comparisons.

Clinical outcomes analysis
Biological specimens were obtained from tissue submitted with

consent for banking from eligible patients enrolled on COG study

AEWS0031 [21]. The primary objective of that trial was to

compare two chemotherapy regimens with respect to risk for an

analytic event (EFS). Enrollment of 4.5 years with an additional

year of follow-up provided for the detection of a hazard ratio (HR)

of 0.64 in the failure rate with a probability of 0.80 when using a

two-sided test with size 0.05. Four instances of interim monitoring

were planned.

The primary study endpoint was event-free survival (EFS)

defined as the time from entry into the study until the occurrence

of an event (disease progression, second malignant neoplasm, or

death) or until the last contact with the patient, whichever came

first. Patients who did not experience an event by the time of last

contact were considered censored for EFS-event. The method of

Kaplan and Meier was used to estimate the probability of an event

as a function of time since enrollment. Equality of risk for EFS-

event across the various NR0B1 GGAA-microsatellite haplotypes

was assessed using the log-rank test [22]. All p-values are

calculated using the chi-squared approximation and are therefore

two-sided. EFS was assessed separately in males and females.

Patient sex was not associated with risk for events in AEWS0031

[21].

Results

Primary Ewing sarcoma tumor specimens
Ewing sarcoma tissue samples were obtained from the

Biopathology Center (Columbus, OH), which serves as the

specimen bank for the Children’s Oncology Group (COG). All

tumor samples were from patients with a pathologically confirmed

diagnosis of primary Ewing sarcoma who were enrolled in a large

multicenter COG protocol, AEWS0031 [21,23]. AEWS0031 was

opened for enrollment on May 2001 and closed in August 2005.

Data current through March 2009 (7.8 years after first enrollment)

were used in this analysis. Patients presenting with clinically

detectable metastatic disease were excluded. As part of protocol

AEWS0031, enrolled patients were prospectively randomized into

two different treatment arms: one group received the standard

chemotherapy dosing schedule (cycles every 21 days) while the

other group received interval compressed dosing (cycles every 14

days) of the same chemotherapeutic regimen, consisting of

vincristine (2 mg/m2), doxorubicin (75 mg/m2), and cyclophos-

phamide (1.2 g/m2) alternating with ifosfamide (9 g/m2) and

etoposide (500 mg/m2). All other study protocols were standard-

ized. Of 568 patients enrolled in AEWS0031, snap frozen (0.004–

0.06 gram) or optimal cutting temperature (OCT) compound-

embedded tissue (50–60 micron thickness) was available from 117

patients. Of this group, 5 patients were excluded: one patient was

represented in duplicate, two patients were determined to have a

final tissue diagnosis other than Ewing sarcoma, one patient

presented with metastatic disease and one patient could not be

properly identified due to a presumed clerical error. The final

analytic data set included 112 patients (Figure 1). Ninety-percent

(101/112) of patients were identified as Caucasian and only 2%

(2/112) were identified as African American. The demographic

characteristics of the included and excluded AEWS0031 patients

were comparable (Table 1).

The NR0B1 GGAA-microsatellite is highly polymorphic in
Ewing sarcoma tumors and significantly different than
white European controls

We have previously evaluated the polymorphic spectrum of

three GGAA-microsatellite containing direct EWS/FLI targets:

NR0B1, CAV1 and GSTM4 [12]. The GGAA microsatellites at

these loci are polymorphic in human populations, although

NR0B1 was the most polymorphic loci with significant differences

observed between African and Caucasian populations. Given the

markedly different incidence of Ewing sarcoma in these popula-

tions and the role of the NR0B1 protein in sustaining the

oncogenic phenotype of Ewing sarcoma, we elected to focus on

NR0B1 for this study. The NR0B1 GGAA-microsatellite,

chrX:30328826 to chrX:30329008 (http://genome.ucsc.edu/cgi-

bin/hgTracks; GRCh37/hg19) was amplified, cloned and se-

quenced in all 112 primary tumor samples. A subcloning strategy

was used to sequence all microsatellites, ensuring in heterozygous

patients that both alleles were accurately identified. A total of 143

haplotypes were identified, which was expected given 45% of the

112 patients were female. Sequence data were compared to a

previously established data set of healthy African and white

European controls [12]. It should be noted that in AEWS0031,

white, non-Hispanic patients were classified as Caucasian and in

the aforementioned data-set by Beck et al. [12], white, non-

Hispanic subjects of northern European decent are referred to as

European. For the purpose of clarity, in the present report all

white, non-Hispanic patients are reported as white Europeans.
The NR0B1 GGAA-microsatellite is located within the

promoter region, roughly 1.5 kb upstream of the transcriptional

start site. This polymorphic microsatellite ranges in length from

80–240 bp and is located within a defined haplotype block

(International HapMap project [24], CEU reference population;

Figure 2A). The GGAA-microsatellite is characterized by a series

of contiguous GGAA motifs partitioned by a single adenosine base

substitution (Figure 2B). Variability exists not only in the total

number of GGAA motifs, but also in the number of contiguous

segments and the number of GGAA motifs in each contiguous

segment. In Ewing sarcoma tumors, NR0B1 microsatellites

ranged in size from small, two-segment repeats containing 16

GGAA motifs to larger multisegment repeats containing up to 61

NR0B1 Microsatellite Polymorphisms in Ewing Sarcoma
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Figure 1. Flow diagram of COG study AEWS0031 patient samples included for GGAA-microsatellite sequencing and clinical
analysis.
doi:10.1371/journal.pone.0104378.g001

Table 1. Patient demographics of included and excluded AEWS0031 patients.

Evaluated Patients (n = 112) Not Evaluated (n = 456) p value*

Demographic n % n %

Age 0.04

,9 38 34% 124 27%

10–17 68 61% 271 59%

.17 6 5% 61 14%

Sex 0.8

Male 62 55% 246 56%

Female 50 45% 210 46%

Race 0.9

White European 101 90% 401 88%

African American 2 2% 12 3%

Other 3 3% 19 4%

Missing 6 5% 24 5%

Primary Tumor Site 0.4

Appendicular 44 39% 151 33%

Thoracic 16 14% 73 16%

Pelvic 20 18% 70 15%

Other Axial 9 8% 66 14%

Extraosseous 23 21% 96 21%

*Fisher’s exact test.
doi:10.1371/journal.pone.0104378.t001
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GGAA motifs. The most frequent haplotype observed in tumor

samples was an intermediate sized, 3-segment microsatellite

containing 24 GGAA motifs. A comparison of the pertinent

microsatellite sequence characteristics in tumor samples and

control white European and African populations is presented in

Table 2. The descriptive statistical analyses demonstrate that the

mean values for total number of GGAA motifs and longest

consecutive GGAA segment in the tumor dataset were similar to

that of the African data set. The white European dataset had lower

mean values for the total number of GGAA motifs compared to

both Africans and tumors. Raw sequence data of all included

subjects is listed in Table S1.

Given that 90% of the Ewing sarcoma patients analyzed in this

study were white Europeans, we sought to determine if the

spectrum of NR0B1 GGAA-microsatellite haplotypes in tumor

samples were similar to a previously established control white

European data set. To assess this a principal components analysis

(PCA) was performed combining the raw NR0B1 GGAA-

microsatellite sequences from both tumor and control white

European data sets (Figure 3A). Repetitive regions of each

sequence were manually aligned and GGAA repeat motifs were

anchored by the single nucleotide adenosine residues that partition

the contiguous GGAA repeat units observed in the largest

haplotypes. For each GGAA track, the number of GGAA repeats

units were counted. The counts of base differences between the

flanking non-repetitive regions and the consensus sequence were

also determined (gap weight = 0.25). Using this analysis, three

distinct haplotype clusters were observed in tumors, which closely

overlapped the distribution of haplotypes observed in the white

European control data set.

In contrast to the descriptive values reported in Table 2 and the

PCA analysis, which examined relationships between unique

haplotypes, when the frequency of GGAA-microsatellite haplo-

types was plotted as a function of the total number of GGAA

motifs, striking differences were observed (Figure 3B). Most

notably, a strong enrichment for haplotypes containing 21–25

GGAA motifs was observed in the tumor population: 81/143

(58%) of tumor haplotypes, compared to 46/104 (44%) and 36/

106 (34%) white European and African haplotypes, respectively,

contained 21–25 GGAA motifs (p = 0.03 and p,0.001, Chi-

square), respectively. A second enrichment was also observed for

tumor haplotypes containing 56–60 GGAA motifs: 27/143 (19%)

of tumor haplotypes, compared to 8/104 (8%) and 7/106 (7%) of

white European and African haplotypes, respectively (p = 0.03 and

p = 0.01, Chi-square). Additionally, relative to white European

controls, a depletion of haplotypes containing 16–20 GGAA motifs

was also observed in tumors. The enrichment of tumor haplotypes

containing 21–25 GGAA motifs, and the depletion of haplotypes

with 16–20 GGAA motifs, contributes to the similar descriptive

statistics shown in Table 2, despite the statistically different

distribution of these data when more sophisticated techniques

are used.

To circumvent some of the inherent bias associated with the

arbitrary binning of data, a cumulative density function was

performed for each population (Figure 3C). This figure recapitu-

lates the trends observed in Figure 3B, showing a strong

enrichment of haplotypes containing 23–26 GGAA motifs in

tumor samples, while the European density function is represented

by a larger shoulder at smaller GGAA haplotypes (16–20 GGAA

motifs) and a similar, although lower amplitude peak in the 23–26

GGAA range. The African density curve is more diffusely

populated throughout the spectrum of GGAA motifs. Using a

Kolmogorov-Smirnov test [25] to evaluate the haplotype distri-

butions based on the total number of GGAA motifs across all three

populations, the tumor data set was statistically dissimilar from

both white European (p,0.001) and African (p,0.001) popula-

tions (Figure 3C).

Using a slightly different approach, sequence data from all three

populations was stratified based on the 3 major haplotype

categories identified in the PCA analysis: 2 segment repeats with

#20 GGAA motifs, 3 segment repeats with 21–29 GGAA motifs

and a larger segmental repeats (4–8 segments) with $30 GGAA

motifs (Figure 3D). Relative to both white European and African

control populations, haplotypes containing 21–29 GGAA motifs

were statistically over-represented, while haplotypes #20 GGAA

motifs were under-represented in the tumor population (p = 0.03

Figure 2. GGAA-microsatellite organization at the NR0B1 locus. (A) Using available single nucleotide polymorphism (SNP) data from the CEU
reference population (northern and western European decent) of the International HapMap Project [24], the NR0B1 GGAA-microsatellite is identified
within a defined haplotype block. (B) For the NR0B1 locus, the GGAA-microsatellite is located approximately 1.5 kb upstream of the transcriptional
start site (TSS) and is characterized a variable number of contiguous GGAA motifs, partitioned by single adenosine base substitutions. Sequence
characteristics of interest include the total number of GGAA motifs, the total number of contiguous segments and longest consecutive GGAA
segment. Figure panel adapted from [12].
doi:10.1371/journal.pone.0104378.g002
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Table 2. NR0B1 GGAA-microsatellite sequence characteristics in Ewing sarcoma tumors and healthy controls.

Average total number
of GGAA motifs*

Most common number
of GGAA motifs

Average longest consecutive
GGAA segment*

Most common longest
consecutive GGAA segment

Ewing sarcoma tumor
samples

30614 24 1161 10

Range: 16–61 Range: 8–16

White European 24611 24 1161 11

Range: 16–60 Range: 8–16

African 32615 24 1261 11

Range: 14–72 Range: 8–21

*Mean values 6 standard deviation.
doi:10.1371/journal.pone.0104378.t002

Figure 3. NR0B1 GGAA-microsatellites are polymorphic in Ewing sarcoma tumors with an allelic distribution different than that of
white European and African controls. (A) Principal components analysis comparing unique microsatellite haplotypes in tumor samples and
white European controls demonstrate three principal sequence clusters, with a high-degree of overlap between the two populations. (B) Histogram
plots comparing the distribution frequency of NR0B1 GGAA-microsatellite haplotypes in tumors and white European and African controls. Despite the
overlapping PCA analysis, an enrichment of haplotypes containing 21–25 and 56–60 GGAA motifs was observed in tumor samples. Relative to white
Europeans, a depletion of haplotypes containing 16–20 GGAA motifs was also noted in tumors. (C) Cumulative density plots for each study
population similarly demonstrate the enrichment of haplotypes containing 21–25 and 56–60 GGAA motifs in tumors. The distribution of these
haplotypes in tumors is significantly different from both white Caucasian and African populations (KS test, p,0.001). (D) Stratifying haplotypes
according to the major sequence types identified in the PCA demonstrates that intermediate (3 segment) GGAA-microsatellites are more enriched in
tumors and larger multisegment haplotypes (.3 segments) were also more enriched compared to white Europeans, although markedly less than
Africans. Control white European and African population data from [12].
doi:10.1371/journal.pone.0104378.g003
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and p,0.0001, respectively). These data demonstrate that the

distribution of polymorphic NR0B1 GGAA-microsatellite haplo-

types in tumor samples were markedly different than white

European populations, which is compelling given the higher

incidence of Ewing sarcoma in white non-Hispanic patients of

European descent. Such observations may represent a previously

unidentified pattern of genetic susceptibility in Ewing sarcoma.

GGAA-microsatellites are genomically stable throughout
oncogenesis and after whole genome amplification

Given the non-overlapping distribution of the NR0B1 GGAA-

microsatellite haplotypes in tumor samples compared to white

European controls, we sought to determine if this difference could

be attributable to microsatellite instability during the process of

oncogenic transformation. Microsatellite instability has been

observed in various other cancers, including sarcomas, although

most commonly occurring at mono- and dinucleotide microsat-

ellite loci [26–28]. To address this question, genomic DNA was

extracted from 20 locally-archived primary or metastatic Ewing

sarcoma FFPE tissue blocks, and the NR0B1 GGAA-microsatel-

lite sequence characteristics were compared to matched germ line

DNA isolated from bone marrow aspirates. There was no evidence

of microsatellite instability in any sample (Table 3). Microsatellite

DNA stability is inversely proportional to the length of the

microsatellite tract [10] and therefore it was important to assess

the stability of the larger NR0B1 GGAA haplotypes. There was

no evidence of microsatellite instability in any of the haplotypes

containing 55–60 GGAA motifs (n = 4).

In a complementary series of experiments, we also sought to

determine if the process of whole genome amplification (WGA)

altered the composition of these GGAA-microsatellites. Given the

limited availability of tumor tissue, relatively small reserves of

DNA are available for molecular studies in Ewing sarcoma; WGA

provides an opportunity to amplify DNA from precious biological

samples. Genomic DNA from all 112 Ewing sarcoma samples was

commercially amplified using Qiagen’s Repli-g WGA service

(Qiagen Genomic Services, Hilden, Germany) and GGAA-

microsatellite characteristics were compared to unamplified

DNA. Repli-g WGA utilizes multiple displacement amplification

technology and provides a highly unbiased and complete coverage

of the genome [29]. A minimum of 10 WGA amplified tumor

samples with an NR0B1 GGAA-microsatellite sequence for each

major sequence category (,20, 20–30, 50–60 GGAA motifs) were

sequenced and compared to the unamplified, original DNA

source. GGAA-microsatellite sequences were unaltered by the

WGA process in 10/10 (100%) and 13/13 (100%) of small (,20

GGAA motifs) and medium (20–30 GGAA motifs) microsatellites,

respectively. In the largest microsatellites (50–60 GGAA motifs),

sequences were a perfect match in only 4/12 (42%) cases.

However, of the 5/7 discordant cases, the WGA sequence was

incorrect by only a single GGAA motif. In 2/12 samples, the

WGA product did not yield a sequencable amplicon (Figure 4).

These data suggest that for small and medium sized GGAA-

microsatellites, the WGA process yields highly concordant

sequences, although it introduces minor sequence perturbations

in larger repeats containing 50–60 GGAA motifs.

A narrow range of GGAA motifs facilitates maximal EWS/
FLI-mediated gene expression

Based on evidence from earlier studies, which initially

characterized GGAA-microsatellites as EWS/FLI-response ele-

ments, it appeared that after a critical threshold of 4 GGAA

motifs, DNA binding and subsequent NR0B1 gene expression

markedly increased with an increasing number of GGAA motifs.

However, more recent data has demonstrated the polymorphic

spectrum of these GGAA-microsatellites is well beyond the range

Table 3. Comparison of germline and tumor NR0B1 GGAA-microsatellites.

Patient ID Tumor Germline GGAA Tumor GGAA Alignment

EWS 17 Metastatic 25/57 25/57 Concordant

EWS 19 Primary 17/25 17/25 Concordant

EWS 22 Primary 25 25 Concordant

EWS 24 Primary 17 17 Concordant

EWS 29 Primary 24 24 Concordant

EWS 36 Primary 25 25 Concordant

EWS 41 Metastatic 25 25 Concordant

EWS 43 Metastatic 24 24 Concordant

EWS 44 Metastatic 25 25 Concordant

EWS 45 Metastatic 24 24 Concordant

EWS 46 Primary 17 17 Concordant

EWS 58 Primary 24 24 Concordant

EWS 59 Primary 24 24 Concordant

EWS 61 Primary 25/57 25/57 Concordant

EWS 62 Primary 24 24 Concordant

EWS 106 Primary 24 24 Concordant

EWS 107 Primary 58 58 Concordant

EWS 115 Primary 23 23 Concordant

EWS 116 Primary 57 57 Concordant

EWS 119 Primary 24 24 Concordant

doi:10.1371/journal.pone.0104378.t003
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tested in these earlier biochemical studies. To assess the potential

length-dependent relationship between EWS/FLI-mediated gene

expression and GGAA-microsatellite polymorphisms, various

polymorphic GGAA sequences identified in control populations

ranging from 17–72 GGAA motifs were cloned into a luciferase

reporter vector directly upstream of the SV40 minimal promoter

element. 293 EBNA cells were co-transfected with the various

experimental GGAA plasmids and a vector containing EWS/FLI

or an empty vector control. All experiments were performed in

triplicate and the luciferase data presented is a composite of two

independent experiments.

In human-derived sequences (Figure 5A), a bimodal relation-

ship of EWS/FLI-mediated gene expression across the spectrum

of GGAA constructs investigated was observed. Gene expression

was maximal in microsatellites containing 20–25 GGAA motifs,

and values precipitously dropped in constructs ranging from 29–40

GGAA motifs followed by a second lesser peak in constructs

ranging from 50–60 GGAA motifs. Relative to the 24 GGAA

construct, the reduction in expression was maximal in constructs

containing 17, 29 and 72 GGAA motifs (3-fold, 4.5-fold and 4.5-

fold; p,0.0001), respectively. Expression levels using the 58

GGAA construct were 1.5-fold less than the 24 GGAA construct

(p,0.001).

The human-derived sequences contained varying combinations

of single-base insertions and contiguous GGAA sequences, thus

complicating the interpretation of these data (see Figure 2B). To

focus the evaluation on the overall length of the GGAA-

microsatellite, synthetic GGAA-microsatellites constructs were

synthesized, ranging from 10–70 contiguous GGAA motifs and

cloned into the same luciferase vector in an identical fashion.

Similar differences were observed in the assays using the synthetic

constructs (Figure 5B). Additionally, average gene expression

levels in the assays using the contiguous synthetic constructs were

markedly elevated compared to the segmental constructs cloned

from human DNA (4586330 vs. 107662, respectively, p = 0.02).

These trends suggest contiguous GGAA-microsatellites afford

more optimal gene expression than partitioned repeats. Exempli-

fying this, gene expression in the smallest synthetic construct (10

GGAA) was 2.5-fold greater than the maximal expression

observed from the partitioned 24 GGAA construct. Interestingly,

the third segment of the 24 GGAA construct contains 10

contiguous GGAA motifs.

To assess the influence of these polymorphic GGAA-microsat-

ellite response elements in a more native cellular context, NR0B1
mRNA levels were quantified from various patient-derived Ewing

sarcoma cell lines confirmed to be polymorphic at the NR0B1
GGAA locus. Given the position of NR0B1 on the X chromo-

some, to circumvent any issues associated with heterozygosity and

potential X-linked inactivation, only cell lines either homozygous

or hemizygous for a polymorphic NR0B1 GGAA-microsatellite

locus were included. Unfortunately none of the investigated cell

lines were hemizygous or homozygous for a larger 50–60 GGAA

motif allele; two cell lines (EWS502 and TC32) were heterozygous

(20/58 GGAA and 24/58 GGAA, respectively), but a clear

Figure 4. GGAA-microsatellites sequence characteristics after whole genome amplification (WGA). Microsatellites were sequences after
WGA and compared to unamplified DNA.
doi:10.1371/journal.pone.0104378.g004
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pattern of allelic activation (or inactivation) could not be

established for these cell lines. Figure 5C illustrates quantitative

RT-PCR normalized expression levels of NR0B1 mRNA

transcripts relative to the number of GGAA motifs measured.

Similar to the luciferase experiments, maximal gene expression

was observed in cell lines ranging from 24–26 GGAA motifs.

Negligible NR0B1 levels were observed in the RDES cell line,

which is hemizygous for a 17 GGAA-microsatellite. These results

using a native cellular context strongly support the trends observed

in both patient-derived and synthetic luciferase experiments of

maximal gene expression in constructs containing 20–25x GGAA

motifs.

When comparing the gene expression profiles (Figure 5) to the

allelic distributions of the NR0B1 GGAA-microsatellite sequenced

from tumor samples (Figure 3), striking similarities are observed.

Notably, the bimodal pattern of maximal gene expression and the

amplitude of these peaks in constructs ranging from 20–25x and

56–60x GGAA motifs parallels the frequency and distribution of

NR0B1 GGAA-microsatellite in tumors.

To investigate if GGAA-microsatellite polymorphisms influ-

enced NR0B1 gene expression in Ewing sarcoma tumors, we

quantified normalized NR0B1 expression using microarray data

from 31 Ewing sarcoma samples from which both PCR

sequencing data and RNA were available. Ten of the 31 samples

were heterozygous at the NR0B1 GGAA-microsatellite locus,

leaving 21 hemi- or homozygous tumors for analysis (Figure 5D).

Consistent with the cell line data in Figure 5C, we observed lower

normalized NR0B1 expression levels in tumors containing only

17–18 GGAA motifs in their NR0B1 microsatellite. This was a

statistically-significant diminished level as compared to tumors

containing 23–26 GGAA motifs (p = 0.04). Thus, the human

tumor data is consistent with the cell line and in vitro luciferase

studies.

Polymorphisms of the NR0B1 GGAA-microsatellite are not
predictive of event free survival

Given the documented influence of GGAA length polymor-

phism on gene expression and mRNA levels, we next sought to

Figure 5. EWS/FLI-mediated gene expression is highly variable across various GGAA-microsatellite length polymorphisms. (A)
Polymorphic NR0B1 GGAA-microsatellites from white European and African subjects were cloned into luciferase reporter vectors and co-transfected
with EWS/FLI into 293 EBNA cells. A bimodal pattern of gene expression was observed, with greatest expression in constructs with 24 GGAA motifs
and a lesser peak in constructs with 58 GGAA motifs. (B) A similar bimodal trend was observed using synthetic GGAA constructs identically cloned
into the same luciferase reporter construct. (C) In patient derived Ewing sarcoma cell lines, RT-PCR quantified NR0B1 mRNA expression was also
maximal in cell lines containing an NR0B1 microsatellite containing 24–26 GGAA motifs. (D) In primary Ewing sarcoma tumors, normalized NR0B1
transcript levels were lowest in tumors with NR0B1 GGAA-microsatellites containing 17–18 GGAA motifs, which was significant less than tumors with
microsatellites containing 23–26 GGAA motifs (p = 0.04).
doi:10.1371/journal.pone.0104378.g005
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determine if these polymorphisms influence tumor biology and

clinical outcomes in patients with Ewing sarcoma. NR0B1 is one

the most highly upregulated, direct EWS/FLI targets, and

expression of this gene is essential for transformation in Ewing

sarcoma cell lines [6,30]. Clinical outcome data for at least 5 years

(in surviving patients) [21] was available in all 112 samples used in

the sequencing analysis. Of the 112 patients included in the

analysis from AEWS0031, 69/112 were treated with the standard

chemotherapy regimen as compared to 43/112 treated with

compressed chemotherapy (Figure 1). It should be noted that the

5-year EFS was slightly improved in patients receiving compressed

therapy (73% vs. 65%, p = 0.048 [21]). The aggregate outcome of

patients who were considered in this analysis was similar to

patients who were eligible for AEWS0031 but who were not

included in the analysis (p = 0.21).

Given the biochemical data favoring optimal gene expression

over a narrow range of GGAA motifs and the distribution of these

haplotypes in Ewing sarcoma tumors, Kaplan-Meier survival

analyses were performed stratifying patients based on the presence

or absence of NR0B1 alleles containing 22–27 GGAA motifs

(Figure 6). The presence of one or more NR0B1 alleles containing

22–27 GGAA motifs did not influence EFS compared to patients

without these alleles (Figure 6A and 6B). Given that females

represented 45% of our cohort, numerous patients heterozygous

for different length alleles were identified. Whether one or both of

these alleles is active in tumor cells remains unclear; therefore, EFS

was assessed separately in males and females (Figure 6C and 6D).

In male and female patients, EFS was also not influenced by allele

type. Furthermore, stratifying the patients based on assignment to

standard vs. compressed chemotherapy arms also did not influence

EFS survival based on allele type (Figure 6E and 6F). These results

clearly demonstrate that despite biochemical data showing a

strong relationship between GGAA-microsatellite length and gene

expression levels, polymorphisms of the NR0B1 GGAA-micro-

satellite do not influence clinically relevant outcomes.

Discussion

Transcriptional dysregulation via microsatellite DNA in Ewing

sarcoma represents a fascinating and novel property of the EWS/

FLI chimera. Microsatellite DNA is not subject to the same

evolutionary pressures as coding DNA, rendering these sequences

highly polymorphic across individuals and populations [11,12,31].

Furthermore, given that 40–50% of genomic EWS/FLI occupan-

cy occurs at GGAA-microsatellites [7], these EWS/FLI-responsive

elements provide a unique opportunity to examine Ewing sarcoma

susceptibility and pathogenesis from an alternative genetic basis.

In particular, our research group is interested in whether

polymorphisms at transcriptionally important GGAA-microsatel-

lites are biologically relevant in this context. In the present study,

we have demonstrated that the NR0B1 GGAA-microsatellite in

primary Ewing sarcoma tumors is highly polymorphic, with an

allelic distribution dissimilar from white European controls. Here

we report the first series of biochemical experiments detailing the

effect of GGAA-microsatellite polymorphisms on EWS/FLI-

mediated transcriptional regulation demonstrating that the distri-

bution of these NR0B1 haplotypes in tumors is strongly biased

towards a narrow range of microsatellite alleles that facilitate

maximal EWS/FLI-mediated gene expression.

Traditionally viewed as ‘‘junk’’ DNA, microsatellite DNA is

becoming increasingly recognized as an important cis-regulating

genetic element [32,33]. The discovery of GGAA-microsatellites

as a direct EWS/FLI-mediated transcriptional response element in

Ewing sarcoma identified a novel function of microsatellite DNA

in human cancer development and a previously unrecognized

ETS factor binding site [34]. We have demonstrated that across a

large numeric range of GGAA motifs, EWS/FLI-mediated gene

expression is highly variable. However, contrary to our prelimi-

nary understanding of these EWS/FLI-responsive elements, we

did not observe a simple linear relationship of increasing gene

expression as a function of an increasing number of GGAA motifs

[5]. Instead, a bimodal relationship was observed. A mechanistic

explanation for this bimodal relationship was not assessed in the

present study, although similar findings have been observed in

other model systems. For instance, in Neisseria meningitides,
expression of a virulence factor, NadA is regulated by a

polymorphic, promoter-based tetranucleotide microsatellite ele-

ment with a similar pattern of transcript periodicity to that

observed in our study [35,36]. The variations in NadA transcript

levels were attributed to altered binding abilities of transcriptional

cofactors across the various microsatellite polymorphisms [36].

The EWS/FLI chimera requires a minimum of 4 contiguous

GGAA motifs (16 bp) to effectively bind microsatellite DNA.

Furthermore, EWS/FLI occupies these microsatellites in a ratio of

2 protein molecules for every DNA molecule in synthetic

microsatellite constructs comprised of 4, 5, 6 and 7 contiguous

GGAA motifs [9]. A potential explanation for the bimodal

biochemical expression patterns observed in this study is that the

stoichiometric occupancy of EWS/FLI and associated co-factors is

most optimal across microsatellites containing 21–25 or 55–60

GGAA motifs. Another possibility is that certain GGAA-micro-

satellite polymorphisms are more (or less) likely to form inhibitory

secondary DNA structures. Guanine-rich DNA sequences can

predispose to the formation of non-B-form DNA structures and G-

quadruplexes [32,37], which may influence EWS/FLI and

associated co-factor occupancy. Certainly, the results of the

luciferase, cell line, and primary human tumor data detailed in

the present study are compelling and warrant further investiga-

tions into the biochemical effects of GGAA content on EWS/FLI-

mediated DNA binding in a native cellular and chromatin context.

The incidence of Ewing sarcoma in African populations is 10-

fold less than that of white Europeans [13], but as of yet there is no

concrete explanation for this difference [38–40]. The GGAA-

microsatellite of two critical upregulated EWS/FLI-targets in

Ewing sarcoma (NR0B1 and CAV1) have been shown to be highly

polymorphic in African and white European populations, with a

predisposition for significantly larger GGAA-microsatellites in

Africans, especially at the NR0B1 locus [12]. This finding

prompted further inquiry into the makeup of these elements in

Ewing sarcoma tumor samples. Indeed, our results demonstrate

that these GGAA elements are highly polymorphic in tumors,

although the distribution of these haplotypes within primary

tumors demonstrated compelling differences compared to both

African and white European controls. The dissimilar distribution

of tumor and white European control haplotypes is an important

observation, given that 90% of the AWES0031 cohort was

identified as white European. Our preliminary hypothesis was that

the NR0B1 GGAA-microsatellite sequence data set from white

European controls would be very similar to the patient-derived

tumor samples.

Compared to white European controls, a strong enrichment for

NR0B1 microsatellite haplotypes containing either 21–25 or 56–

50 GGAA motifs and a bias against smaller alleles containing 17–

20 GGAA motifs was observed in patient samples. Given the

stability of these GGAA sequences as determined by the

comparison of tumor and germline DNA sequences, the predilec-

tion for those two allele ranges does not appear to be a product of

sequence evolution within tumor cells during the process of

NR0B1 Microsatellite Polymorphisms in Ewing Sarcoma

PLOS ONE | www.plosone.org 10 August 2014 | Volume 9 | Issue 8 | e104378



oncogenesis. Given that NR0B1 is among the most upregulated

direct EWS/FLI targets, and is essential for maintenance of

oncogenic transformation [5,6,14], two alternative hypotheses

were proposed: the predilection for the selection bias of specific

NR0B1 GGAA-microsatellite haplotypes in tumors is a conse-

quence of either superior oncogenic potential in tumors harboring

21–25 or 56–50 GGAA motifs at the NR0B1 locus or conversely,

these principal GGAA-microsatellite haplotypes observed in

tumors are important for Ewing sarcoma susceptibility and

transformation in progenitor cells harboring the EWS/FLI

translocation. The luciferase assays and qRT-PCR data from

human-derived cell lines clearly show that the most common

GGAA-microsatellite allele observed in tumors also facilitates

maximal EWS/FLI-mediated gene expression. The results from

these experiments are further supported by patterns of NR0B1
gene expression observed in tumor microarray data, wherein

tumors harboring small GGAA microsatellites (,20 GGAA

repeats, Figure 5D) are those that have the lowest levels of

NR0B1 gene expression. Although interpretation of tumor

microarray experiments is limited by the small number of samples

included, the limited number of samples available with smaller

numbers of GGAA repeats further supports the hypothesis that

Ewing sarcoma tumor development is restricted by lower levels of

NR0B1 expression in the setting of these small GGAA-microsat-

ellites. Thus, these results provide additional supportive data in a

more biologically relevant context. Likewise, the clinical analysis of

AEWS0031 patients demonstrates that EFS is not influenced by

Figure 6. NR0B1 GGAA-microsatellite polymorphisms do not influence event free survival (EFS) in Ewing sarcoma patients. (A) EFS
was compared in 112 patients from AEWS0031 based on the presence of absence of at least one NR0B1 GGAA-microsatellite allele containing 22–27
GGAA motifs. This allele type was chosen based on the pattern of alleles present in tumor samples and the maximal EWS/FLI-mediated gene
expression supported by alleles of this length category. (B) EFS was similarly assessed based on the presence of one or both alleles containing 22–27
GGAA motifs. Additional subgroup analyses were also performed in males (C) and females (D) and in patients receiving standard (E) or compressed
(F) therapy.
doi:10.1371/journal.pone.0104378.g006
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these NR0B1 GGAA polymorphisms, which we believe also

supports the latter hypothesis.

Assessing the clinical impact of these NR0B1 GGAA polymor-

phisms was an important outcome measure in this study and

consequently various statistical approaches were employed to

sufficiently address this association. However, when subgroup

analyses were performed to address potential confounding

influences such as patient sex, zygosity, and chemotherapy our

results clearly demonstrate that disease behavior in Ewing sarcoma

is not influenced by GGAA-microsatellite polymorphisms at the

NR0B1 locus.

Integrating the results of this study we propose that in Ewing

sarcoma, GGAA-microsatellite polymorphisms play an important

role in disease susceptibility. It is generally accepted that the

EWS/FLI translocation event is the driver oncogenic mutation in

Ewing sarcoma. We suggest that in precursor cells exposed to the

EWS/FLI chimera, cells with a more ‘permissive’ genetic

constitution of GGAA-microsatellite polymorphisms are more

likely to transform when exposed to the EWS/FLI chimera than

cells with a non-permissive GGAA genotype (Figure 7). Further

supporting this model is that Ewing sarcoma is believed by many

experts to be exclusively a human condition; spontaneous cases of

Ewing sarcoma have not been observed in any other animal

species (except for a single case report in a camel [41]), and

inducible Ewing sarcoma models in murine progenitor cell and

transgenic mice do not recapitulate the molecular hallmarks of

disease [42–45]. Interestingly, the mouse orthologs of NR0B1,
CAV1, GSTM4, and FCGRT (4 microsatellite-containing upre-

gulated EWS/FLI targets in humans) do not possess a GGAA-

microsatellite in their respective promoter/enhancer regions.

Additionally, ectopic EWS/FLI expression in murine-derived

NIH3T3 cells does not upregulate Nr0b1, further supporting

observation that GGAA-microsatellites are necessary for regula-

tion of Nr0b1 in Ewing sarcoma [46]. Additional sequencing

efforts are underway to better characterize a more comprehensive

cohort of EWS/FLI-enriched GGAA-microsatellites in African,

white Europeans and Ewing sarcoma patients.

In a recent genome-wide association study three candidate

Ewing sarcoma susceptibility loci were identified using a compre-

hensive single nucleotide polymorphism (SNP) analysis [39]. The

authors demonstrated a greater frequency of these susceptibility

loci in white Europeans as compared to Africans. However, the

oncogenic contribution of these identified susceptibility loci in the

pathogenesis of Ewing sarcoma has yet to be clarified. Further-

more, it does not appear that the observed differences in the

frequency of these susceptibility loci will fully account for the 10-

fold increase in Ewing sarcoma in white Europeans compared to

Africans. EWS/FLI-responsive GGAA-microsatellites provide a

complementary genetic approach to understand these discrepant

patterns of disease incidence. These GGAA-microsatellites are

highly polymorphic and are also direct genetic targets of the

EWS/FLI chimera. Additionally, compared with white European

and Asian populations, African populations have are known to

have increased genetic diversity for many microsatellite loci [47].

Based on our biochemical data, a greater diversity of GGAA

motifs at important microsatellite loci may actually negatively

impact EWS/FLI-mediated gene expression, which appears

optimal over a narrow range of GGAA motifs. Additional work

will be needed to discern the relative contributions of microsatellite

polymorphisms and SNPs in the susceptibility to Ewing sarcoma

development.

An additional important finding gleaned from this study is that

GGAA-microsatellites are genetically stable during the process of

oncogenic transformation. Consequently, tumor tissues are not

required to obtain DNA for GGAA-microsatellite genotyping in

individuals with Ewing sarcoma. Given the current practice of

CT-guided core biopsies and neoadjuvant chemotherapy, Ewing

sarcoma tissue is infrequently available for genetic studies.

Germline sources of DNA such as blood, bone marrow aspirates,

saliva and buccal swabs are more readily available and based on

Figure 7. Model of GGAA-microsatellite polymorphism contributions to Ewing sarcoma susceptibility in African and white
European populations.
doi:10.1371/journal.pone.0104378.g007
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the results presented here, can be used in future GGAA-

microsatellite genotyping experiments. Additionally, our data also

demonstrates that commercial WGA of tumor DNA does not

erroneously expand or contract small or medium sized GGAA-

microsatellites. Even in extremely large microsatellites (50–60

GGAA motifs) discordance was minimal (1 GGAA motif).

Importantly, together these findings provide valuable insight into

the stability of GGAA-microsatellites in Ewing sarcoma, providing

an opportunity for prospective genotyping studies to progress

beyond the barriers of limited tissue supplies.

In conclusion, this report is the first detailed examination of

EWS/FLI-responsive GGAA-microsatellite polymorphisms in

Ewing sarcoma. At the NR0B1 locus, we have demonstrated that

in primary Ewing sarcoma tumor samples, there is strong

overrepresentation of a narrow range of GGAA haplotypes,

which was discordant from healthy white European controls. We

further demonstrated that maximal EWS/FLI-mediated gene

expression is also highly dependent on a comparably narrow range

of GGAA motifs. At the NR0B1 locus, these polymorphisms do

not influence clinical outcomes, favoring a model in which these

GGAA polymorphisms may contribute to the elusive permissive

cellular and genetic environment necessary for EWS/FLI-medi-

ated transformation.

Supporting Information

Table S1 Complete sequence data of NR0B1 GGAA-microsat-

ellites form all samples. In the ‘‘COG Data’’ tab all data from

Children’s Oncology Group primary tumor samples are included.

The data fields indicate the zygosity, the number of GGAA repeats

for each allele, the segment characteristics of each allele, and the

raw sequence of each allele. In the ‘‘African Data’’ and ‘‘European

Data’’ tabs, all data from the African and European subjects,

respectively, are included. The data from these latter tabs were

previously described in reference [12].
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