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Abstract—This paper proposes a novel theoretical framework to
model and analyze the statistical characteristics of a wide range of
segmentation methods that incorporate a database of label maps
or atlases; such methods are termed as label fusion or multiatlas
segmentation.Wemodel thesemultiatlas segmentation problems as
nonparametric regression problems in the high-dimensional space
of image patches. We analyze the nonparametric estimator’s con-
vergence behavior that characterizes expected segmentation error
as a function of the size of the multiatlas database. We show that
this error has an analytic form involving several parameters that
are fundamental to the specific segmentation problem (determined
by the chosen anatomical structure, imaging modality, registration
algorithm, and label-fusion algorithm). We describe how to esti-
mate these parameters and show that several human anatomical
structures exhibit the trends modeled analytically. We use these
parameter estimates to optimize the regression estimator. We show
that the expected error for large database sizes is well predicted
by models learned on small databases. Thus, a few expert segmen-
tations can help predict the database sizes required to keep the
expected error below a specified tolerance level. Such cost-benefit
analysis is crucial for deploying clinical multiatlas segmentation
systems.

Index Terms—k-nearest-neighbor (kNN), label fusion, multi-
atlas, nonparametric, regression, segmentation.

I. INTRODUCTION

T HE STRATEGY of segmenting an image using available
segmentations of similar images, termed “segmentation

by example,” has lead to various approaches in a wide spectrum
of biomedical applications over the last two decades [1], [2].
This paper deals with segmentation methods [3]–[5] that use a
combination of 1) a set of template images that depict anatom-
ical structures and 2) for each template, a set of one or more
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tissue probability maps or label maps or segmentation maps
that give the probability of each voxel belonging to a specific
anatomical structure. A pair of images comprising a template
image and an associated segmentation map is termed an atlas.
Because these methods employ multiple atlases, they are termed
as multiatlas segmentation methods. In this paper, references
to a specific segmentation problem mean a biomedical image
segmentation problem that is determined by the choice of the
anatomical structure, imaging modality, registration algorithm,
and label-fusion algorithm.
Atlas-based segmentation is most relevant for segmenting

such anatomical structures whose boundary parts fail to be
readily detectable in the image data alone. For instance, in
T1-weighted magnetic resonance (MR) brain images, sub-
cortical brain structures have boundary parts with very low
contrast-to-noise ratios between regions on either side of the
boundary. With limited information present in single-voxel
intensity, atlas-based segmentation relies heavily on the infor-
mation present in a large spatial neighborhood of the voxel.
Traditional atlas-based methods, deforming a single pre-

segmented template to match the target, leverage information
within the spatial configuration of those surrounding structures
that have well defined boundaries in the images. This relies
on the well founded biological assumption that the geometry
(i.e., location, pose, size, and shape) of the weakly visible
structure is a (stochastic) function of the geometry of these
surrounding structures. With a usually reliable matching of
these surrounding structures, the registration gives a defor-
mation that best matches the weakly visible structure. This
deformation applied to the template segmentation gives a target
segmentation.
In recent years, large collections of medical images, and as-

sociated expert-defined segmentations, are becoming ubiqui-
tous as open resources, and within specific clinical practices.
This has lead tomultiatlas or label-fusion segmentationmethods
[3]–[12] that leverage information in the entire database of at-
lases. Given a large database, multiatlas approaches, in practice,
first select a small subset of templates that are most similar to
the target. They independently register the selected templates to
the target and, then, deform database segmentations to the target
space. A weighted average of the deformed segmentations pro-
duces an estimate of the segmentation of the target. Instead of
using the entire database, the carefully selected subset produces
better results, as shown for brain [3], [5] and cardiac [4] MR
images. Similarly, well tuned weighting schemes [8], [12] pro-
duce better results. Note that selecting a subset of templates is
equivalent to assigning zero weights to all other templates. The
proposed theoretical framework and the associated results shed
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light on this behavior, indicating that an optimal subset size, or
the weighting scheme, depends on the database size.
This paper makes several contributions. It proposes a novel

statistical nonparametric regression framework to model a class
of multiatlas segmentation approaches and analyze the conver-
gence behavior of expected segmentation error with respect to
database size. It shows that the expected segmentation error
has a specific analytic form involving several parameters that
are fundamental to the specific segmentation problem. By mea-
suring these parameters, it characterizes the specific segmenta-
tion problem and method in terms of 11) the complexity of the
function mapping the geometry of (clearly visible) surrounding
structures to the geometry of the structure of interest, 2) the com-
plexity of the function mapping local template appearance to
the segmentation, 3) the inherent anatomical randomness in the
structure’s geometry, 4) number of atlases available in the data-
base, and 5) the label-fusion weighting scheme. Furthermore,
we use these parameter estimates to further optimize the regres-
sion estimator. In this way, the framework offers newmethods to
evaluate the efficacy of a particular database of atlases, imaging
modality, registration algorithm, and label-fusion algorithm.We
show that the expected error for large database sizes is well pre-
dicted by models learned on small databases. Thus, a few ex-
pert segmentations can help predict the database sizes needed to
keep the expected error below a specified tolerance level. Such
cost-benefit analysis is crucial for deploying clinical decision
support systems involving multiatlas segmentation.

II. RELATED WORK

This section describes the relationships between the literature
on atlas-based segmentation and the proposed framework.
There exists a large body of recent work proposing many

variations of multiatlas segmentation methods. For instance,
some recent approaches for label fusion have found improve-
ments in performance by using locally weighted averaging
where the tissue probability at a voxel is determined by using
only that information in the (registered) atlases which lies
within the locality of that voxel [6], [8], [10]. Other approaches
have found that generalized weighting schemes [8], [12] per-
form better. Results in [3]–[5], [7] show that a careful selection
of templates (also a kind of a weighting scheme), e.g., selecting
the top-few most-similar templates for target segmentation,
performs best. This is consistent with the results in this paper
that indicate the existence of an optimal number of atlases to
use for a given database size. This paper further shows that
this optimal number increases with the size of the multiatlas
database. The proposed multiatlas segmentation approach
also incorporates such a strategy by defining weighted-av-
erage schemes 1) separately at each voxel, relying on local
similarities between the target and the templates, and 2) that
select a small number of templates dependent on database size.
The focus of the proposed framework is less on the specific
similarity measure or the specific weighting function used,
but more on the characterization of the expected segmentation
error, as a function of database size, for any given local sim-
ilarity measure and weighting function. Indeed, the proposed
theoretical formulation is general enough to allow for modeling
and analysis of any such scheme.

This manuscript offers significant improvements over our
previous work [13] as follows. First, this paper formulates
multiatlas segmentation using a combination of separate local
regression functions, relying on local template-similarity ker-
nels, at every voxel in the image. Second, to evaluate the
quality of prediction of the expected segmentation error for
large databases using small databases, it presents confidence
estimates in the form of the variation of the predictions over
different instances of small databases available. Third, this
paper describes a method for optimizing, as a function of
database size, the parameter corresponding to the number of
nearest neighbors/templates to use in the -nearest-neighbor
( ) nonparametric regression estimator. Fourth, in addition
to the brain atlas database used in [13], this paper demonstrates
the efficacy of the proposed modeling and prediction on a large
knee MR atlas database for knee-cartilage segmentation.
A parametric model for the Dice similarity as a function of the

1) randomand systematic errors resulting from, e.g.,misregistra-
tion or atlas inconsistencies and 2) size of the atlas database ap-
pears in the pioneering work in [3], [14], [15]. Although [3] mo-
tivates the model primarily for quantifying segmentation errors
for a given database size, the insightfulmodel appears to bemore
general and has a wider utility. In this spirit, we use this model
for predicting theDice similarity using a large number of atlases,
by learning themodel using a small atlas database. The approach
in [3] has some limitations that are overcome by our approach.
Unlike our proposed approach, themodel in [3] 1) focuses on the
analysis of the entire structure because it uses Dice similarity as
the performance measure and is, consequently, inapplicable to
voxelwise analysis, 2) ignores the number of atlases, i.e., , in
the weighted average that gives themultiatlas segmentation, and
thereby, would entail learning separate models of segmentation
performance for every possible value of , and 3) is unable to
predict the optimal number templates to be used for any given
database size—this will be impossible for [3] if the optimal ,
for a certain large database size, is larger than the size of the
training database used to learn the models.
Some multiatlas segmentation approaches deal with specific

kinds of correlations in label maps or biomedical images. For
instance, some methods focus on compensating for inter-voxel
label correlations via second-order polynomial regression over
small ( or ) image patches [11]. Others adapt to the correla-
tions within a group of target images by proposing simultaneous
registration between a group of target images and the group tem-
plates in the atlas database [9]. The spirit of this paper is quite
different from that of the aforementioned approaches. This paper
focuses on predicting expected segmentation error as a function
of database size and by modeling the segmentation problem as a
regression problem and estimating the regression parameters.
The image clustering method in [16] uses various consistency

criteria to compute an optimal number of clusters to represent a
given population of images. They perform label fusion using the
entire set of cluster means, termed templates. Their approach is
orthogonal to the one in this paper that finds the optimal subset
of the template database to use for label fusion, as the template-
database size grows.
Some early atlas-based segmentation approaches focus on

estimating rater-performance parameters (particularly, rater
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bias) like STAPLE [17] and the parameters’ confidence in-
tervals [18], where multiple segmentations exist for a single
biomedical image. In contrast, this manuscript focuses on seg-
mentation strategies that combine one or more segmentations
from multiple biomedical images and analyzes the number of
atlases (somewhat analogous to raters) required to keep the
expected error below a specified tolerance level.

III. METHODS

This section presents a novel statistical framework, relying
on nonparametric regression [19], to model and analyze a class
of multiatlas segmentation approaches.
Consider the problem of estimating the unknown segmen-

tation for a target image, using a database of atlases. In this
context, 1) each atlas is a pair comprising one template and
one probabilistic segmentation and 2) a single template could
be a part of multiple atlases if it has multiple associated prob-
abilistic segmentations where each probabilistic segmentation
could have arisen from a group of binary expert segmentations
or a single deformed binary segmentation.
Treating each atlas as a member of a family of atlases under

constrained diffeomorphisms (e.g., constrained under limited
deformation norm), we first transform the database to factor
out a diffeomorphism between the geometrical configurations
of anatomical structures within the target and each template;
better matches of the two geometries would usually lead to
better matches of the segmentations. We assume that multiatlas
segmentation methods can compute an optimal diffeomorphism
using image registration on the raw intensities or on derived
geometry-capturing features and, later, deform each template
and segmentation, in the database, to the target image’s phys-
ical space. Thus, we propose to characterize the difficulty for
a specific segmentation problem by 1) modeling multiatlas
segmentation as a regression problem where the independent
variable represents deformed template images and the depen-
dent variable represents deformed segmentation images and 2)
analyzing the convergence of the expected segmentation error
with respect to increasing database sizes.

A. Multiatlas Segmentation as Nonparametric Regression

Let be a vector random variable that models a biomedical
image (diffeomorphically deformed to a common anatomical
space; without any loss of generality) with voxels. Note
that the assumption of the images being warped to a common
anatomical space is mainly theoretical in nature and is not
practically restrictive because the warps are assumed to be
diffeomorphic (i.e., smooth and invertible); thus, theoretically,
the analysis could be performed in the coordinate space of any
target or template. The associated probability density function
(PDF) generates observed images . For a specific
anatomical structure in the image, let be a -dimensional
vector random variable modeling the deformed segmentation
map that is non-binary or probabilistic. The associated PDF

generates observed segmentations . Let denote
the random variable at the th component of (i.e., voxel
in image). Then, . We assume that the joint PDF

captures dependencies between biomedical images
and their segmentations .

Consider a database of atlases,
i.e., template images paired with their true segmen-
tations , where each observed image pair is
drawn independently from the PDF . For a given target
image whose true segmentation is unknown, multiatlas
segmentation methods use the database to get an estimate
of the true segmentation.
We model multiatlas segmentation as nonparametric regres-

sion. Let be a regression function of the
dependent variable on the independent variable . From the
class of regression functions, we choose as the regression
function that minimizes the mean squared error risk function

.
For any target , the risk-minimizing regression function is the
conditional expectation . Let be
an estimator of the true conditional expectation , which re-
lies on the atlas database .
For a specific segmentation problem, we want to charac-

terize the behavior of a conditional-expectation regression
estimator over varying images and varying databases
. Hence, we treat the database as a random vari-

able and then define a
joint PDF and a new mean-squared-error
(MSE) function as follows. We define the joint PDF

, assuming independence of
the observed image pair and the database . We define

, assuming that each atlas is
generated independently from the same distribution
that generates target images and their segmentations. To capture
the expected segmentation error, we define the MSE function

(1)

We want to model the regression functions for the entire
image using a combination of separate (local) regression func-
tions at every voxel in the image. With this motivation, let

and denote the th components of regression
functions and , respectively, which correspond
to the regression functions at the th voxel in the image that
produce the probabilistic segmentation at the th voxel in the
image. Associated with the regression functions at voxel
in the image is the MSE at voxel in the image, denoted by

. Then, the linearity of expectation gives

(2)

(3)

Further analysis gives

(4)

(5)

(6)
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The second term in the expansion of the expression
leads to , termed the
mean integrated squared error [19]. We now analyze all three
terms in the expression for .
1) For the conditional-expectation regression function

, the first term is the variance of the
conditional PDF , i.e.,

(7)

This term 1) depends on the inherent (beyond our control)
randomness in the segmentation, given image data and
2) is independent of the estimator .

2) The second term relates to the quality of approximation, of
the estimator , to the true conditional-expecta-
tion regression function . This term equals the sum of
the estimator’s squared bias and the estimator’s variance.
This term depends on 1) the database size and 2) the
characteristics of the marginal distribution and the
regression function in the locality of .
Note that the estimator bias is the difference between the
true conditional expectation and the expected value of the
estimator, i.e.,

(8)

The estimator variance is the expected value of the squared
difference between 1) the estimator and 2) the expected
value of the estimator, i.e.,

(9)

3) The third term vanishes because it is equal to

where the inner expectation is zero because 1)
and form a decomposition of
the random variable and
2) .

Thus, equals the sum of the variance of the condi-
tional PDF, the squared bias of the estimator, and the variance
of the estimator, i.e.,

(10)

B. Multiatlas Segmentation as Local Generalized-
Regressions in Kernel Feature Spaces

We now choose a specific regression estimator. A consis-
tent estimator for the conditional-expectation regression func-
tion is the generalized- estimator [20]

(11)

where is the feature map associated with
a Mercer kernel that maps images to a Hilbert space , is
the -normed distance between and its th nearest
neighbor in the set , and is
a bounded non-negative generalized weighting function satis-
fying and .
For the class of generalized- estimators [20], the bias

and variance are

(12)

and

(13)

where 1) is the dimension of the mapped independent vari-
able in ; 2) depends on
feature map , the values and differential properties of the
PDF in the locality of the fixed image , the local dif-
ferential properties of the true regression function , and
dimension ; 3) depends on the chosen
weight function and the dimension . Indeed, the
estimator converges to the true conditional-expectation regres-
sion function asymptotically as the database size and
the number of nearest neighbors is chosen (dependent on the
database size ) such that at an appropriate rate such
that .
It is important to note that the rate of convergence of the bias

and variance depends on 1) the dimensionality associated
with the independent random variable , 2) the values and the
differential properties of the PDF of images, and 3) the
differential properties of the regression function .
1) Choice of the Feature Map : The proposed general-

ized- framework gives us the flexibility to choose or design
a distance metric on the space of biomedical images through the
choice of a Mercer kernel or the associated feature map on im-
ages. In this way, images can be first mapped to a high-dimen-
sional Hilbert space where distances can be evaluated through
kernel evaluation. In this paper, we use a simple Mercer kernel,
i.e., the local normalized cross correlation to measure
local image similarity. Specifically, for the regression estimator

at voxel , we define the distance between
two images by using image patches centered at as

(14)

where is the normalized Mercer kernel

(15)

(16)

and is the mean-subtracted version of patch . The
Appendix gives a proof of being a Mercer kernel. With

this kernel, at voxel , the feature map is ,

the inner product for is , the
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squared norm is , and the local squared dis-
tance between images and is .
In practice, the mean subtraction and rescaling help in locally

standardizing the intensities in MR images, while effectively
addressing local variability in image contrast, intensity nonuni-
formity, and intensity scale in MR imaging. The experiments
in this paper use an isotropic patch of size . The pro-
posed framework indeed allows the usage of more sophisticated
Mercer kernels such as the pyramid match kernel [21] and the
spatial pyramid kernel [22] that was used for multiatlas segmen-
tation in [13], [23].
2) Choice of the Weighting Function : Given that the

mapped data lie in a Hilbert space,
, where is the volume of the unit

sphere in dimensions of [20]. For simplicity, this paper
chooses to be constant , which leads to

.

C. Parametric Model for Expected Segmentation Error
as a Function of Database Size

For the chosen scheme, at each voxel , the expected
segmentation error is parametrized as

(17)

(18)

(19)

In practice, the success of the model fitting, in Section IV, in-
dicates that is relatively independent of . The expected
segmentation error for the entire anatomical structure is

(20)

These equations capture the voxelwise characteristics of a spe-
cific segmentation problem and approach through parameters

, whose significance we describe next.
• is the integrated conditional variance of the segmenta-
tions and denotes the intrinsic randomness in the segmen-
tations at voxel as a function of the image data .
is independent of the regression estimator and hence is

the lowest possible achievable MSE at voxel for
the specific segmentation problem. For the chosen
regression estimator, this lowest MSE is achieved when
the regression estimator converges to the true conditional
expectation. As , we can make the estimator
converge to the conditional expectation, by letting tend
to at such a rate so that .

• represents the overall complexity of multiatlas segmen-
tation in terms of the 1) differential properties of the true re-
gression function and 2) values and differential prop-
erties of the image PDF .

is harder to estimate when is increased because: 1)
larger gradients and curvatures in lead to larger values

of ; 2) around a target , low values of make it
harder to obtain databases comprising sufficiently many
templates near ; 3) around a target , locally varying

leads to databases where the templates near pull
the segmentation estimate towards that for the local higher-
probability templates.

• When the class of signals is unconstrained, equals
the number of voxels in the image patch minus 2 (by en-
forcing zero mean and unit norm), which can be quite
large, i.e., several hundreds or thousands. However, consis-
tent with empirical evidence in the signal-processing and
machine-learning literature that the intrinsic dimension of
real-world multivariate data is far less than the number of
variables used for representation [24]–[28], we consider
as the intrinsic dimension of the independent variable (fea-
ture-space-mapped template-image patches) at voxel .
Larger increases the difficulty of multiatlas segmenta-
tion by requiring estimation of a higher-dimensional re-
gressor.

D. Fitting the Parametric Model for Expected Segmentation
Error

This section builds upon the theory described in previous sec-
tions to estimate the set of parameters for all
voxels and to subsequently estimate an optimal as a function
of the database size .
1) Empirical Computation of the Voxelwise Expected

Segmentation Error : Consider an atlas database
with atlases available for analysis. For a

chosen number of nearest neighbors and a chosen database
size , we propose to empirically compute
in (3), for all voxels , by: 1) Monte-Carlo bootstrap sampling
of target images to evaluate the expectation
over , 2) for each , Monte-Carlo bootstrap sampling
of segmentations to evaluate the expectation
over 3) for each pair , Monte-Carlo bootstrap
sampling of databases to evaluate the expectation

, and 4) computing the MSE value ,
given the target segmentations associated with the sampled
, at each voxel . In this paper, 1) we sample 20 target images
, 2) the available databases give us only one probabilistic seg-
mentation for each and, 3) for each pair, we sample
20 databases . Thus, we sample 400 pairs of . For
the experiments in this paper, we found that a jackknife strategy
for sampling was also effective; indeed, jackknife
estimation is known to be a linear approximation to bootstrap
estimation [29].
We compute for a range of chosen values for data-

base sizes and the chosen number of nearest neigh-
bors . This gives us the MSE values . In this
paper, we use the database sizes , ,

, and values .
To estimate the variance of the subsequent parameter estima-

tion with respect to the specific choice of the available database
, we perform Monte-Carlo bootstrap sampling of to yield
databases and repeat the MSE calcula-

tion and the subsequent parameter estimation for each . In
this paper, we use .
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2) Voxelwise Estimation of Parameters With
Spatial Regularization: Given the empirically computed MSEs

, for each bootstrap sample , the estimation
of parameters (for a specific segmentation
problem) leads to a weighted nonlinear least-squares curve-fit-
ting problem at each voxel , i.e.,

(21)

where weights are the inverse of the computed variances
(over the large-database samples ) associated with the set
of squared errors that produced the MSE

for each . The weights provide prac-
tical confidence measures for the Monte-Carlo estimates of the
MSE .
We realize that the characteristics of the segmentation

problem at a voxel , which is parameterized by ,
will typically bear significant similarity to those at a nearby
voxel . Thus, we reformulate this parameter estimation
problem by incorporating a spatial regularization prior on
the parameter values by modeling the image of parameters
as a Markov random field (MRF). This spatial regularization
also helps in avoiding local minima for the nonlinear fitting
problem. For spatial regularization, we employ an MRF with
a 26-neighbor system, use the set of two-voxel cliques ,
and the clique potential as the squared difference between the
neighboring parameter values. Thus, the optimization problem
becomes

(22)

We solve this optimization problem using a gradient-descent
algorithm (with adaptive step size) that iteratively scans over
the entire set of voxels and, within each scan, at each voxel ,
performs iterative alternating minimization of the parameters

. Typically, very few scans are required for conver-
gence of this gradient-descent strategy. In this paper, we simply
use a single value for regularizing all three kinds of param-
eter values. We tune the regularization parameter empirically
using the standard L-curve approach [30].
We perform the parameter estimation once for every Monte-

Carlo bootstrap sample of the available database. This gives
parameter estimates at each voxel, one resulting from each
, and, in turn, a mean value of each of the parameter estimates

for and the standard deviation, under variations in the
particular database available for analysis.

E. Optimizing the Regression Estimator: Optimal Number of
Nearest Templates as a Function of Database Size

The MSE at every voxel for a chosen database
size depends on the number of nearest neighbors used
in the regression. As described in previous sections, to
achieve lowest possible MSE through , needs to
be optimized as a function of . Theoretically, we can choose
an optimal , at each voxel , for each regression estimator

. However, voxel-specific optimal values are im-
practical for a real-world application of multiatlas segmentation
where a more suitable strategy would be to select a single op-
timal , as a function of , for the entire image.
After estimating the set of parameters over

all voxels, we optimize for a specific segmentation problem
and any given database size by minimizing using
a gradient-descent algorithm with adaptive step size. This gives
us the optimal number of nearest neighbors/templates to
use for any given database size .
We perform the estimation of the optimal number of nearest

neighbors/templates once for every Monte-Carlo boot-
strap sample of the available database. This provides us
values of parameter estimates at each voxel, one resulting from
each . This gives us, at each voxel, a mean value of the pa-
rameter estimate and its standard deviation, under vari-
ations in the particular database available for analysis.

F. Predicting Expected Segmentation Error for Large
Database Sizes

One of the motivations for characterizing the difficulty of
a specific segmentation problem, using the parameter estima-
tion, is to be able to predict the expected segmentation error
for database sizes much larger than those available for anal-
ysis. To demonstrate this aspect, we performMonte-Carlo boot-
strap sampling of smaller databases of size and as-
sume that we only had a database of size for analysis. In this
paper, we use that is roughly four times smaller than
. Subsequently, we perform parameter estimation for each

Monte-Carlo bootstrap-sampled database in . Having
characterized a specific segmentation problem by estimating the
parameters , for any given database , we can
find the optimal , i.e., , for any and subse-
quently predict the expected segmentation error .
The bootstrap analysis provides us with estimates of the ex-
pected segmentation error, thus informing us about the vari-
ability in the estimation process over stochastic variations in the
database available for analysis. In this way, we can predict the
database size needed to keep the expected segmentation error
below a specified tolerance level. In this paper, we predict the
expected segmentation error for a range of database sizes ,
where and validate the quality of the prediction
using the expected segmentation error values computed from
the entire available database of size as described in previous
sections.

IV. RESULTS

This section describes some practical considerations and
shows results on two large clinical databases. The results
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demonstrate the validity of the proposed model for multi-
atlas segmentation and the utility of the proposed analysis in
clinical applications. Section IV-D shows that several human
anatomical structures exhibit the parametric trends determined
by the model, thereby showing that the model is well suited
for real-world applications. Section IV-E shows results of
predicting the expected segmentation error for database sizes
larger than those available for analysis. It validates the quality
of the prediction using the results in Section IV-D. In this way,
small databases (requiring few expert segmentations) can be
used to predict the database sizes required to keep the expected
segmentation error below a specified tolerance level.
In this paper, we obtain the multiatlas segmentation at each

voxel , using a estimator where the weighting
function is constant for all the nearest neighbors. For
such an estimator at voxel , we measure distances between im-
ages via the local normalized cross correlation, a Mercer kernel,
using isotropic image patches around voxels . At
each voxel, we fit parametric curves to the empirically computed
MSE as a function of database size, incorporating spatial regu-
larization of the parameter estimates via a parameter that we
tune empirically using the standard L-curve approach [30].

A. Clinical Databases

We use two large clinical databases for evaluation.
1) From the National Alliance for Medical Image Com-
puting (NAMIC; www.na-mic.org), we obtain a database
comprising T1-weighted MR brain images
(dimensions ; voxels mm
isotropic) with expert segmentations for the caudate,
putamen, thalamus, hippocampus, and globus pallidus in
both hemispheres. In this paper, we combine the pair of
corresponding structures in the two brain hemispheres in
a single analysis.

2) From the Osteoarthritis Initiative (OAI; www.oai.ucsf.
edu), we obtain a publicly available database com-
prising T1-weighted MR knee images
(dimensions ; voxels mm
isotropic) with expert segmentations for the meniscus,
patellar, and tibial cartilages.

Both databases provide only one segmentation for each
anatomical structure within each MR image .
To compute expected errors for multiatlas segmentation using

an atlas database of size , we sample 20 target images and,
for each target image, we sample 20 databases . To evaluate
predictive power of a model learned from a small -sized data-
base available for analysis, we use .

B. Fast Nearest-Neighbor Search on Template Images

The proposed formulation is based on the independent vari-
able being the deformed templates in the entire database. Mul-
tiatlas segmentation requires only a few most-similar templates
( in ) at each voxel in the image. To avoid a computation-
ally-expensive nonlinear registration between the target image
and all templates in the database, several strategies can be used.
Some examples are as follows.
• The database can be organized using a hierarchical group-
wise nonlinear-diffeomorphic registration scheme [31],

[32] that produces several optimal mean templates for
multiple classes of images within the database. A target
can be mapped first to all the mean templates to determine
the most similar classes and then the target can be regis-
tered to templates only within the similar classes.

• We can use fast approximate searches for similar tem-
plates relying on affine registration followed by spatial
pyramid matching on coded geometry-capturing features,
e.g., canny edges clustered and coded based on orientation
and curvature [23]. The approximate search can be used
to select a number of templates larger than the required

(e.g., twice or thrice ), after which the se-
lected templates can be nonlinearly registered to the target.

Both strategies result in very few nonlinear registrations. We
perform nonlinear registration using a parallel algorithm for
large deformation diffeomorphic metric mapping implemented
on graphics processing units [33] available in AtlasWerks [34].

C. Size-Normalized Expected Segmentation Error and
the Dice Similarity Coefficient

In this section, we motivate an alternative measure of seg-
mentation performance, which divides the MSE by the
average true size of associated structure in the database. This
leads to a more meaningful interpretation as we find that, in
practice, the size-normalized MSE values relate to the widely
used Dice similarity coefficient (DSC) because both measure
(dis)similarity between segmentations relative to size. Note that
while DSC performs size normalization (via the denominator in
the DSC formula) separately for every pair of segmentation im-
ages, the proposed approach rescales MSE values , ,
by dividing them by the same constant, i.e., the average true size
of the structure in the database.
Theoretically, while DSC values lie within [0, 1], size-nor-

malized MSE values lie within , where is twice the ratio
of 1) the size of the largest structure in the database to 2) the av-
erage size of the structure in the database. Nevertheless, if the
variability in the size of a structure is low, after the image is
mapped to the common anatomical space, then the associated

(this is generally observed in practice). Moreover, for
binary segmentations , the DSC is

and the size-normalized MSE is ,
where is the average true size of the associated structure.
When the size variability is low and most of the segmenta-
tion-image values are binary (generally observed in practice),
then and the size-normalized MSE be-
comes roughly . We have found this formula to
be a good approximation for the relationship between DSC and
size-normalized MSE for real-world applications.

D. Validating the Parametric Model for Expected
Segmentation Error as a Function of Database Size

Fig. 1 shows 1) size-normalized MSE values, i.e., MSE
values divided by the average true size of the structure
in the database, and 2) the fitted parametric model, for various
database sizes. Fig. 1 demonstrates that the parametric model
fits the real-world data quite well.
Based on Fig. 1, the hippocampus is quite difficult to seg-

ment probably because of its elongated thin shape and small
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Fig. 1. MSE (for fixed ) as a function of database size for (a) subcortical struc-
tures in brain MR images and (b) cartilages in knee MR images. Box-whisker
plots show the empirically computedMSE values after size nor-
malization (see Section IV-C) for database sizes for
the number of neighbors/templates in fixed to eight independent of data-
base size. Variance depicted by the whiskers comes from the bootstrap samples
of databases available for analysis (we use ). Solid lines and
the associated error bars show the mean and standard deviation, respectively,
of the fitted MSE values, using voxelwise parametric curve fitting with spatial
regularization. The error bars come from the bootstrap samples of databases.

size. On the other hand, the thalamus gives the lowest MSEs
probably due to its large size, despite the part of its boundary
next to the gray matter being quite weak. The segmentation of
cartilage structures in the knee is more challenging, as com-
pared to the subcortical brain structures, probably because of the
thin sheet-like shapes that are highly variable across the popu-
lation represented in the database. Indeed, the knee MR images
present a more challenging registration problem as compared to
the brain dataset.
In Figs. 2–6 (b)–(d) and (f)–(h) show the mean and standard

deviation, respectively, over Monte-Carlo bootstrap samples of
databases , of the parameter values at
each voxel for the subcortical structures in brain MR images.

Fig. 2. Parameter values for multiatlas caudate segmentation from brain T1
MR images using large databases . Images (a) and (e) show the average MR
image and the average expert segmentation, respectively, in a common anatom-
ical space. Images (b) and (f) show the mean and standard deviation, respec-
tively, of , at voxel , generated from bootstrap samples of the databases

employed for analysis. Similarly, (c) and (g) show the mean and stan-
dard deviation of and (d) and (h) show the mean and standard deviation
of .

Fig. 3. Parameter values for multiatlas globus pallidus segmentation from brain
T1 MR images using large databases .

Fig. 4. Parameter values for multiatlas hippocampus segmentation from brain
T1 MR images using large databases .

We use . Similarly, in Figs. 7–9 (b)–(d) and (f)–(h) show
the mean and standard deviation, respectively, of the parameter
values for the cartilages in kneeMR images. To estimate param-
eters, this paper uses .
Values for (inherent randomness) indicate the lowest pos-

sible MSE achievable with and the chosen general-



AWATE AND WHITAKER: MULTIATLAS SEGMENTATION AS NONPARAMETRIC REGRESSION 1811

Fig. 5. Parameter values for multiatlas putamen segmentation from brain T1
MR images using large databases .

Fig. 6. Parameter values for multiatlas thalamus segmentation from brain T1
MR images using large databases .

Fig. 7. Parameter values for multiatlas meniscus cartilage segmentation from
knee T1 MR images using large databases .

ized- estimator. Values for (regression complexity) and
(intrinsic dimension) are indicative of 1) the size of databases

needed to achieve small MSEs, e.g., MSE closer to , and 2)
the amount of benefit, in terms of a decrease in MSE, obtained
for the cost of an increase in database size. Such cost-benefit
analyses are crucial for designing clinical support systems. In-
terestingly, the range of our estimates for , for probabilistic

Fig. 8. Parameter values for multiatlas patellar cartilage segmentation from
knee T1 MR images using large databases .

Fig. 9. Parameter values for multiatlas tibial cartilage segmentation from knee
T1 MR images using large databases .

segmentations, are roughly comparable to that found for sev-
eral real-world datasets including fuzzy digit images and texture
[24]–[28].
For voxels well inside or well outside the structures, the

values of and are close to zero, which implies that the
MSE values are also close to zero. As expected, this indicates
the ease of segmentation for such voxels. Voxels where the
segmentation is the most difficult (high values for )
lie near the boundaries of the structures, especially near those
boundaries that are weakly visible in the MR image and where
the boundary locations cannot be well predicted based on the
locations of nearby landmarks that are clearly visible in the
images. Prominent examples of such voxels are the tail of the
hippocampus and some parts of the interfaces of the caudate,
globus pallidus, putamen, and thalamus with the white matter.
Interestingly, while the weakly visible posterior boundaries of
putamen (where the shape tapers off) are difficult to delineate,
the weakly visible anterior boundaries of the putamen are much
easier to delineate. Similarly, the weakly visible hippocampus
head, where the hippocampus touches the amygdala, is easier
to predict, based on nearby clearly visible landmarks, than the
hippocampus tail.

E. Validating the Predictive Model of Expected Segmentation
Error for Large Database Sizes

Fig. 10 shows the results of experiments using Monte-Carlo
bootstrap samples of smaller databases ; we use

, . Fig. 10 shows that the predicted MSE for
large databases ( ) (predicted using small databases)
is quite close (typically within one standard deviation) to the
fitted MSE values computed using large databases . This
validates the proposed predictive model. Thus, small databases,
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Fig. 10. Predicting MSE (for fixed ) as a function of database size for (a)
subcortical Structures in brainMR images and (b) cartilages in kneeMR Images.
Box-whisker plots show the empirically computedMSE values
after size normalization (see Section IV-C) for for the
number of neighbors/templates in fixed to eight independent of database
size. Variance depicted by the whiskers comes from the bootstrap samples of
small databases available for analysis (we use , ).
Solid lines and associated error bars are the same as those in Fig. 1 obtained
using the larger databases . Dashed lines and associated error bars show the
mean and standard deviation, respectively, of the fittedMSE values using small
databases . Error bars come from the bootstrap samples of databases.

which require fewer expert segmentations and less time and
effort to construct, can be used to predict the much larger data-
base sizes required to achieve a specified maximum tolerable
error in segmentation. Such cost-benefit analysis is crucial
for designing and deploying multiatlas segmentation systems,
potentially comprising a few thousand atlases.
Overall, the quality of prediction is a little better for subcor-

tical structures in the brain MR images as compared to the carti-
lages in the kneeMR images. This is consistent with the findings
in the previous section.
In Figs. 11–15 (b)–(d) and (f)–(h) show the mean and stan-

dard deviation, respectively, over Monte-Carlo bootstrap sam-

Fig. 11. Parameter values for multiatlas caudate segmentation from brain T1
MR images using small databases . Images (a) and (e) show the average MR
image and the average expert segmentation, respectively, in a common anatom-
ical space. These are the same as those shown in the previous section, in Fig. 2.
Images (b) and (f) show the mean and standard deviation, respectively, of ,
at voxel , generated from bootstrap samples of the small databases
employed for parameter estimation (we use , ). Similarly, (c)
and (g) show the mean and standard deviation of and (d) and (h) show the
mean and standard deviation of .

Fig. 12. Parameter values for multiatlas globus pallidus segmentation from
brain T1 MR images using small databases .

Fig. 13. Parameter values for multiatlas hippocampus segmentation from brain
T1 MR images using small databases .

pling of databases , of the parameter values
at each voxel for the subcortical structures in brain MR
images. Similarly, in Figs. 16–18 (b)–(d) and (f)–(h) show the
mean and standard deviation, respectively, of the parameter
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Fig. 14. Parameter values for multiatlas putamen segmentation from brain T1
MR images using small databases .

Fig. 15. Parameter values for multiatlas thalamus segmentation from brain T1
MR images using small databases .

Fig. 16. Parameter values for multiatlas meniscus cartilage segmentation from
knee T1 MR images using small databases .

values for the cartilages in knee MR images. These parameter
values obtained from small databases are a good approximation
to those obtained using large databases in Section IV-D, To
estimate parameters, this paper uses .

Fig. 17. Parameter values for multiatlas patellar cartilage segmentation from
knee T1 MR images using small databases .

Fig. 18. Parameter values for multiatlas tibial cartilage segmentation from knee
T1 MR images using small databases .

F. Validating Regression-Estimator Optimization (Optimal
Number of Nearest Templates ) and Resulting Prediction
of Expected Segmentation Error

Fig. 19 shows the optimal number of nearest neighbors/tem-
plates computed from the parameter fits. As ,
we see that and , thereby
ensuring convergence of the estimators at each voxel to
the true conditional-expectation regression function. For some
brain structures, for large , predicted using small

databases is within 10% of the computed using
large databases . Even though the optimal values for
many structures computed from small and large databases are
not that close in terms of the standard deviations, the absolute
differences between them are only of the order of a few number
of templates. Nevertheless, the MSE prediction relying on
the optimized is largely unaffected. Indeed, Fig. 20
shows that the predictions of MSE values, for large , via
parameter estimation and optimization of using much
smaller databases, match the MSE values computed using large
databases quite well.
More importantly, the MSE values with optimal in

Fig. 20 are lower than those with a fixed in Fig. 10, for small
values of the database size . Thus, the proposed algorithm
for optimally estimating and using that for multiatlas
segmentation performs better than the strategy where is fixed
independent of the database size .
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Fig. 19. Predicting optimal for large database sizes using small
databases for (a) subcortical structures in brain MR images and (b) cartilages
in knee MR images. Solid lines and associated error bars, show the mean
and standard deviation, respectively, of the optimal number of nearest neigh-
bors/templates computed using large bootstrap-sampled databases .
Similarly, dotted lines and associated error bars, show the same quantities
computed using small bootstrap-sampled databases . Error bars come from
the bootstrap samples of databases.

G. Comparing Segmentation-Performance Prediction With an
Earlier Model [3]

This section presents results using an earlier pioneering ap-
proach in the literature [3], [14], [15], which comes closest to
our proposed approach, for modeling multiatlas-segmentation
performance parametrically. The approach in [3] is restricted
to a global analysis, by being based on the DSC measure, and
models the DSC, for a given database size , as the curve

, where and are model parameters. This para-
metric model was motivated by the need to quantify subopti-
mality in DSC measures resulting from random errors (via pa-
rameter ) and systematic errors (via parameter ), where the

Fig. 20. Predicting MSE, using optimal , for large database sizes using
small databases for (a) subcortical structures in brain MR images and (b) carti-
lages in knee MR images. Solid lines and associated error bars, show the mean
and standard deviation, respectively, of the MSE (after the size normalization
described in Section IV-C) computed using the optimal number of nearest neigh-
bors/templates for large bootstrap-sampled databases . Similarly,
dotted lines, and associated error bars, show the same quantities computed using
small bootstrap-sampled databases . Error bars come from the bootstrap sam-
ples of databases.

errors might stem from, e.g., misregistration or atlas inconsis-
tencies. Unlike our proposed approach, the parametric model
was perhaps not intended to be used for measuring segmenta-
tion performance as a function of database size and may not
be perfectly applicable when the atlases are selected in a data
driven manner [3]. Nevertheless, the model appears to be more
general, having wider utility, and does suggest that for large
database sizes , the effect of the random errors is nullified. In
this spirit, we choose to compare our proposed approach with
the parametric model in [3] for predicting multiatlas-segmen-
tation performance for large databases, where the predictive
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Fig. 21. Comparing segmentation-performance prediction with an ear-
lier model [3]: predicting dice similarity for large database sizes using
small databases for (a) subcortical structures in brain MR images.
Box-whisker plots show the empirically computed DSC values for

for the number of templates fixed to 8, independent of
database size . Variance depicted by the whiskers comes from the bootstrap
samples of small databases available for analysis (we use ).
Solid lines and the associated error bars show the mean and standard deviation,
respectively, of the fitted DSC values, using the larger databases ; the
error bars come from the bootstrap samples of databases. Dashed lines and
associated error bars show the mean and standard deviation, respectively, of
the fitted DSC values using small databases ; the error bars come from the
bootstrap samples of databases.

model is built using a small database. We perform a rigorous
fair Monte-Carlo analysis for comparing segmentation-perfor-
mance predictability with our approach (Fig. 10).
Fitting the model in [3] leads to a weighted linear

least-squares optimization problem (unlike the nonlinear
problem for our approach in Section III-D), where the optimal
estimates for the parameters are obtained in closed form by
minimizing the sum of (weighted) squared deviations between
the model-dictated DSC curve and the observed DSC values;
where the weights are the inverse of the computed variances
associated with the set of squared deviations, via bootstrap
sampling (analogous to our approach).
The results of the approach in [3] in Fig. 21 clearly show

large errors in predicting the DSC for three of the five subcor-
tical structures, i.e., caudate, globus pallidus, and putamen. For
instance, for [3] in Fig. 21, the mean and median DSC values
(for fitted solid lines and empirical box plots, respectively) using
large-sized databases deviate from the predicted mean DSC by
more than 3–4 standard deviations of the predicted DSC. In con-
trast, for the proposed approach in Fig. 10, the mean and me-
dian segmentation errors (for fitted solid lines and empirical box
plots, respectively) using large-sized databases deviate from the
predicted segmentation error by at-most 1 standard deviation
(mostly far less than that) of the predicted segmentation error.
Thus, the proposed approach has significantly better predictive
power than that in [3] for the subcortical structures in this large
brain MR image database.

It is clear that the major factor for the significantly improved
performance of the proposed method stems from its ability to
optimize the (intrinsic) dimension parameter ; not just for
each structure overall, but for every voxel within each structure.
On the other hand, the approach in [3], to force an analogy, fixes
to 8 for all voxels for every structure. Thus, the predic-

tive model of [3] incidentally works well for some structures
(hippocampus and thalamus), but fails for all others. In con-
trast, our approach presents a principled sophisticated model
for predicting segmentation performance, which offers the flex-
ibility of tuning the dimension parameter for each voxel for each
anatomical structure, thereby yielding a significantly improved
prediction for segmentation performance. Furthermore, the pro-
posed approach offers other significant benefits to improve pre-
diction, as discussed in Section II, including the ability 1) to
model segmentation error as a function of the size of the subset
selected for averaging and 2) to optimize the subset size as a
function of the database size.

V. DISCUSSION AND CONCLUSION

This paper establishes a brand-new principled theoretical
framework for the modeling and analysis of multiatlas seg-
mentation relying on local generalized- nonparametric
regression and Mercer-kernel-based distances between im-
ages. It shows how the proposed framework can be utilized
to measure the difficulty of a specific multiatlas segmentation
problem in terms of the convergence behavior of expected
segmentation error as a function of database size. It captures
these properties using parameters that are fundamental to the
underlying generalized- regression model for multiatlas
segmentation. These parameters capture the natural variance
of the PDFs of the segmentation conditioned on the templates
and the bias and variance of the estimator. It also uses
these parameters to optimize the regression estimator. It shows
the validity of the model using rigorous Monte-Carlo valida-
tion on two large clinical databases. This paper shows how
the proposed framework coupled with a small set of atlases
(requiring few expert segmentations) can be utilized to predict
the much-larger database sizes (“cost”) required to achieve
a specified maximum tolerable error (“benefit”) in segmen-
tation. Such “cost-benefit” analysis is crucial for designing
and deploying multiatlas segmentation systems comprising,
potentially, several thousands of atlases.
Apart from presenting a novel theoretical framework for anal-

ysis of multiatlas segmentation, this paper also offers novelty
in the context of label-fusion algorithms through the proposed
method for estimating the optimal subset of atlases, with subset
size being a function of database size , and using this
optimal subset for segmentation.
The quality of prediction of expected segmentation error de-

pends on the size of the small database and the factors deter-
mining the specific segmentation problem. Our results indicate
that the prediction quality for the brain structures may be unaf-
fected with database sizes somewhat smaller than what we used
( ), but the prediction for the knee structures may be-
come substantially worse with smaller .
The proposed framework allows the template images to be

registered to the common anatomical space, or the target image
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space, as long as the warps are diffeomorphic. The assumption
of the images warped to a common anatomical space is mainly
theoretical in nature and is not practically restrictive because
the warps are assumed to be diffeomorphic (i.e., smooth and
invertible). Thus, under the assumption of diffeomorphic reg-
istrations, (theoretically) registering to the common anatomical
space and computing errors in that space is equivalent to reg-
istering to the target space and evaluating segmentation errors
in the target space. In practice, label fusion in the target space
might produce better segmentations.
The current theoretical framework relies on diffeomor-

phisms. Nevertheless, this is not a major concern because of
the increasing popularity and practical utility of diffeomorphic
registration. How well would the proposed analysis behave
(e.g., how robust would it be) if the strict diffeomorphic-reg-
istration assumption is lifted would be interesting to study in
the future. We believe that, because the popular methods for
nonlinear nondiffeomorphic registration yield deformations
that are reasonably close to being diffeomorphic, 1) the results
of such nondiffeomorphic registration methods are quite similar
to those using nonlinear diffeomorphic registration and 2) the
results of multiatlas segmentation and the predictive analysis
in the two scenarios would also remain quite similar.
Taking a broader perspective, the proposed framework can be

employed for modeling and analysis of approaches where the
segmentation-image dependent variable, underlying the regres-
sion, is replaced by other kinds of clinical data, e.g., clinically
relevant test scores.

APPENDIX

Theorem 1: (Local Normalized Cross Correlation is a
Mercer kernel) , defined in (15), is a Mercer kernel.

Proof: Consider any finite set of vectorized image observa-
tions . Consider this set represented as a
matrix such that the th column of is .
For the function at voxel , consider a patch around
comprising voxels. Without loss of generality,

consider that the vectorized images are permuted such that
the intensities in the patch are the first components (in some
fixed order) of or the first rows in .
Consider a diagonal matrix , with all elements along

the diagonal being 1. Then, crops the vectorized image
and gives the intensities in the patch around voxel .
Consider a matrix with all elements having value
. Then gives the mean-subtracted patch inten-

sities. Let .
Consider any vector of real numbers where the th

component of is denoted by . Then,

(23)

for any chosen and set of vectorized images . The
function is also continuous and symmetric. Therefore,
the local cross correlation , defined in (16), is a Mercer

kernel [35]. The function of interest , defined in (15), is
the normalized version of the Mercer kernel . Therefore,

is a Mercer kernel [35]. Q.E.D.
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