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Manifestation of two-channel nonlocal spin transport in the shapes of Hanle curves
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The dynamics of charge-density fluctuations in a system of two tunnel-coupled wires contains two diffusion
modes with dispersion iω = Dq2 and iω = Dq2 + 2

τt
, where D is the diffusion coefficient and τt is the tunneling

time between the wires. The dispersion of corresponding spin-density modes depends on magnetic field as a result
of the spin precession with Larmour frequency ωL. The presence of two modes affects the shape of the Hanle
curve describing the spin-dependent resistance R between the ferromagnetic strips covering the nonmagnetic
wires. We demonstrate that the relative shapes of the R(ωL) curves, one measured within the same wire and the
other measured between the wires, depends on the ratio τt/τs , where τs is the spin-diffusion time. If the coupling
between the wires is local, i.e., only at the point x = 0, then the difference of the shapes of intrawire and interwire
Hanle curves reflects the difference in statistics of diffusive trajectories, which “switch” or do not switch near
x = 0. When one of the coupled wires is bent into a loop with a radius a, the shape of the Hanle curve reflects
the statistics of random walks on the loop. This statistics is governed by the dimensionless parameter a/

√
Dτs .
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I. INTRODUCTION

Spin-orbit interaction is the origin of spin dephasing in
semiconductors and metals. On a microscopic level, a finite
spin-relaxation time τs results from the momentum-dependent
spin-orbit term in the Hamiltonian of a free electron in
combination with scattering-induced momentum relaxation
[1]. In metals, the origin of spin dephasing is spin-dependent
impurity scattering.

The first experimental studies [2–4] of spin relaxation in
semiconductors were carried out more than four decades ago.
They were based on the notion that if the photoexcited electron
has its spin pointing along the x axis, then in a magnetic field
ωL, directed along the z axis, the projection Sx(t) evolves
as Sx(t) = cos ωLt exp (−t/τs), which is the result of the
Larmour precession. Since the time between generation and
recombination is much longer than τs , so that the spin evolution
is completed by the moment of recombination, then the polar-
ization of the luminescence is proportional to

∫ ∞
0 dtSx(t), i.e.,

P(ωL) = P(0)

1 + ω2
Lτ 2

s

. (1)

Numerous experimental measurements reported to date can
be fit very accurately with a Lorentzian Hanle profile, Eq. (1),
and when they do not, see, e.g., Ref. [5], the deviations reflect
the peculiarity of the recombination process.

In the pioneering work of Refs. [6,7], it was demonstrated
that, aside from optics, the underlying physics of spin relax-
ation manifests itself in transport experiments. The structure
fabricated and measured in Ref. [6] represented an aluminum
wire with two cobalt ferromagnetic strips on the top. The first
strip, injector, played the role of circular-polarized excitation
light in optics, in the sense, that it supplied spin-polarized
electrons into the wire. Correspondingly, the second strip,
the detector, imitated the analyzer of the emitted light. The
characteristic measured in Ref. [6] was the nonlocal resistance
R, which is the ratio of the voltage, generated between the
channel and detector, to the current passed through the injector
into the channel.

Similar to the polarization of luminescence P(ωL), the
nonlocal resistance is suppressed with an external field ωL.
There is, however, a fundamental difference between the
dependencies P(ωL) and R(ωL). This difference stems from
the fact that, in addition to the Larmour precession, the
formation of nonlocal resistance involves diffusion of carriers
over a distance L between the injector and the detector.
This diffusion is routinely incorporated into the theory by
multiplying cos ωLt exp(−t/τs) by a diffusion propagator
PL(t) and only, subsequently, integrating over time. In one
dimension, PL(t) has the form

PL(t) = 1

(4πDt)1/2 exp

(
− L2

4Dt

)
, (2)

where D is the diffusion coefficient.
The nonlocal resistance R(ωL), calculated with the help of

propagator (2), is also called the Hanle curve in the literature.
The expression for R(ωL) contains two unknown parameters,
τs and D. Still it appears that the scores of experimental
data accumulated to date can be fitted very accurately with
this expression. It is apparent that the shapes of R(ωL) is
different for “short” L � (Dτs)1/2 and long L � (Dτs)1/2

samples. This difference in shapes was pointed out already in
the seminal paper of Ref. [6], where the two samples measured
had the lengths L = 50 and 300 μm.

Experimental studies of nonlocal spin transport became
a hot topic in 2001 when the measurements of R(ωL) were
reported [8] for small samples with L ∼ 0.5 μm. Small
structures are appealing for information-storage applications.
Indeed, the effect of sign reversal of nonlocal resistance upon
reversal of the magnetization of the detector allows one to
view the detector as an element of information storage. For
this reason, the R(ωL) measurements in spin transport were
carried out since 2001 on various structures with L in the
micrometer range and with materials of nonmagnetic channels
ranging from Si and GaAs, see, e.g., Refs. [9,10], to graphene
[11], and organic materials [12].
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It turns out that the scope of the experimental results
on nonlocal resistance is described by the drift-diffusion
theory with remarkable precision and including finest details,
see, e.g., Refs. [9,13–16]. For example, in long samples
L � (Dτs)1/2, the theory predicts several zeros in R(ωL)
dependence. The origin of these zeros is that during the time
L2/D of travel between the injector and detector the spin can
precess by 2π , 4π , and so on. Clearly, the values of R(ωL)
between these zeros fall off dramatically. Then the number of
the zeros observed in the experimental R(ωL) attests to the
accuracy with which the theory captures the process of spin
transport. Usually, only the first zero is resolved in experiment.
However, the very recent data in Ref. [16] exhibit the second
zero as well.

To illustrate the accuracy with which the drift-diffusion
theory works for spin-transport devices with variable channel
length, in Figs. 1(b) and 1(c), we plot the Hanle shapes
measured for two devices fabricated from epitaxial ZnO
films. Both devices were fabricated under the same conditions
[17], which included pulsed-laser deposition of ZnO onto a
sapphire substrate, deposition of a thin barrier layer of MgO
on top, and, finally, the deposition of NiFe electrodes using
photolithography and e-beam evaporation. The only difference
between the two devices was the distance between the contacts
(L = 90 and 650 nm) in the four-probe structure, see Fig. 1(a).
We see that the seven-fold increase in L changes the shape
dramatically, in quantitative agreement with predictions of the
drift-diffusion theory.

The fact that the measured R(ωL) is so accurately described
by the drift-diffusion theory suggests that the shape of the
Hanle curve is the characteristics of the spin transport in
nonmagnetic channel only, and is not affected by the details of
injection and detection. It also suggests that the description
of electron diffusion paths as purely one-dimensional is
surprisingly adequate. In fact, in experimental geometries,
the length L of the channel does not exceed significantly the
channel width.

This motivated us to study theoretically the shapes of the
Hanle curves in geometries when the transport between the
injector and detector does not reduce to a 1D random walk.
The results of this study are reported in Secs. II and III,
where we consider the spin transport along two parallel
tunnel-coupled wires. In Sec. IV, we analyze the shapes of the
Hanle curves for the geometry of two wires coupled locally. In
Sec. V, we consider the special case when one of the wires is
bent into a loop. Concluding remarks are presented in Sec. VI.

Our objective was to find out whether the statistics of
diffusion paths, specific for quasi-1D geometries, can be
distinguished in nonlocal spin-transport measurements. Our
main message is that the difference of the Hanle curves
measured with two detectors, one located in the same wire as
injector and the other located in the neighboring wire, reflects
the peculiar statistics of the diffusion paths in a coupled system.

II. SPIN-DENSITY FLUCTUATIONS IN
TUNNEL-COUPLED WIRES

Fluctuations of electron densities, n1(x,t) and n2(x,t), in a
system of two coupled wires satisfy the system of equations

(a)

(b)

(c)

FIG. 1. (Color online) (a) Schematic view of a four-terminal
device used for nonlocal spin-transport measurements [17]. Epitaxial
ZnO film of thickness 200 nm, deposited on a sapphire substrate,
is spaced from a NiFe layer by a thin MgO barrier; (b) and
(c) Hanle curves measured for the channel length L = 90 and
650 nm, respectively. The insets show the theoretical fits plotted from
Eqs. (17), (18), (24), and (26). The values τs used for both fits are the
same, so that the dimensionless lengths L = L/

√
4Dτs differ seven

times.

[18]

∂n1

∂t
= D

∂2n1

∂x2
− 1

τt

(n1 − n2),

(3)
∂n2

∂t
= D

∂2n2

∂x2
− 1

τt

(n2 − n1),

where τt is the interwire tunneling time. We assume that the
wires are disordered so that τt � τ , where τ is the disorder-
scattering time. The latter condition implies that the tunnel
splitting �t of the spectra of the wires in the absence of disorder
is much smaller than τ−1

t . In this limit, the expression for τt

reads [19,20]

τt = 1

�2
t τ

. (4)
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Upon introducing the variables

n±(x) = n1(x) ± n2(x), (5)

we find that Eq. (3) gives rise to two modes with dispersions

iω = Dq2, iω = Dq2 + 2

τt

(6)

corresponding to symmetric and antisymmetric distributions
of densities, respectively. The fact that the antisymmetric mode
is gapped indicates that the contribution to transport from this
mode cannot be described by a simple diffusion used in the
theory of the Hanle effect. This is because the propagator (2),
describing the statistics of the location of a carrier in time and
in space, no longer applies.

The actual distributions n1(x,t) and n2(x,t) are linear
combinations of symmetric and antisymmetric modes with
weights determined by the initial conditions. If electrons are
injected into the first wire at x = 0, the combinations satisfying
the initial conditions

n1(x,0) = δ(x), n2(x,0) = 0 (7)

are the sum and the difference of two diffusion modes:

n1(x,t) = 1
2Px(t)(1 + e−2t/τt ),

(8)
n2(x,t) = 1

2Px(t)(1 − e−2t/τt ),

where the diffusion propagator Px(t) is defined by Eq. (2).
To describe the nonlocal resistance we need the expressions

for the spin densities, S1(x,t) and S2(x,t), similar to Eq. (8).
The system of coupled equations for S1(x,t), S2(x,t) has the
form

∂ S1

∂t
= ωL × S1 − S1

τs

+ D
∂2 S1

∂x2
− 1

τt

(S1 − S2) ,

(9)
∂ S2

∂t
= ωL × S2 − S2

τs

+ D
∂2 S2

∂x2
− 1

τt

(S2 − S1) ,

and differs from the corresponding equations Eq. (3) describ-
ing the charge-density fluctuations in two aspects: both S1 and
S2, precess in magnetic field, ωL, and both decay during the
spin relaxation time τs ,

τs = 1

�2
s τ

, (10)

where �s is the spin-orbit splitting of the spectrum in each
wire in the absence of disorder. Note that, while both τt and
τs contain scattering time, the ratio τs/τt does not contain
disorder, i.e., it is a characteristics of clean wires. The term
coupling the wires in the system, Eq. (9), has the same form
as in the system (3) since tunneling conserves the spin.

By choosing for τs the form (10) we specified the dominant
spin relaxation mechanism as Dyakonov-Perel [1]. The fact
that the expression for Eq. (4) for τt has a similar form is not a
coincidence. Indeed, the degenerate states in the wires can be
viewed as a pseudospin. Due to finite �t , the electron density
exercises the “beatings,” cos �tt , between the wires, in the
same way as real spin precesses in a spin-orbit field. Finally,
both processes are terminated after the scattering time, τ .

Without boundary conditions, the system (9) defines four
modes:

iω = −Dq2 − 1

τs

± iωL, iω = −Dq2 − 1

τs

− 2

τt

± iωL,

(11)

of which the first two correspond to symmetric and the
second two to the antisymmetric spin-density fluctuations.
With boundary conditions, the solution of the system (9) can
be expressed in terms of the solution (8) of Eq. (3) as follows:

S1(x,t) = s(t)n1(x,t), S2(x,t) = s(t)n2(x,t), (12)

where the function s(t) satisfies the conventional equation of
spin dynamics,

ds
dt

= ωL × s − s
τs

. (13)

III. NONLOCAL RESISTANCES

The initial condition to Eq. (13) is set by the direction of
the polarization of the injector. We assume that s(0) is directed
along the x axis.

As it is illustrated in Fig. 2, there are two nonlocal
resistances: R11(ωL) is the resistance measured by the detector
within the same wire, 1, where polarized electrons are injected,
and R12 is the resistance measured by the detector that covers

FIG. 2. (Color online) (a) Two-channel spin-transport device.
The injector is located in the left channel. Two detectors in the left and
right channels are located at the same distance L from the injector.
An electron reaches the first detector by diffusion and the second
detector by a combined diffusion-tunneling process. (b) In contrast to
(a), two channels are coupled locally at the point x = 0; (c) the second
wire is bent into a loop. Electron diffusion trajectories encircle the
loop several times before the spin polarization is “forgotten”; (d) two
branches, E(kx), of the energy spectrum of the tunnel-coupled wires.
At small momenta, the splitting �t is determined by tunneling, while
at large kx the splitting �s is dominated by the spin-orbit coupling in
the wires.
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the wire 2. Within a prefactor they are given by

R11 = R0L

∫ ∞

0

dt

τs

S1x(L,t), R12 = R0L

∫ ∞

0

dt

τs

S2x(L,t).

(14)

In Eq. (14), it is implicit that the magnetization of the detector
is also along the x axis. In some experiments, say Ref. [21], the
spin transport was studied for the polarization of the detector
along the y axis. The corresponding expression for nonlocal
resistance reads

R̃11 = R0L

∫ ∞

0

dt

τs

S1y(L,t), R̃12 = R0L

∫ ∞

0

dt

τs

S2y(L,t).

(15)

Our goal is to find the expressions for R11(ωL) and
R12(ωL) for two tunnel-coupled wires. One can see that the
coupling strength τ−1

t enters into the formulas for R11(ωL),
R12(ωL) through the last terms in Eq. (3). These terms decay
exponentially with time. We also notice that s(t), which
satisfies Eq. (13) is also an exponential function of time.
This observation allows one to expressR11(ωL),R12(ωL) with
tunneling through nonlocal resistance, R(ωL), in the absence
of tunneling.

Setting τt = ∞ and substituting

s(t) = e−t/τs (i cos ωLt + j sin ωLt) (16)

into Eq. (12) and, subsequently, into Eq. (14), we restore a
standard expression for the Hanle profile of a single channel:

R(ωL,τs) = R0F (ωL,τs), (17)

where the dimensionless function F (ωL,τs) is defined as

F (ωL,τs) = L

τs

∫ ∞

0
dt cos ωLte−t/τs PL(t), (18)

so that R0 has the dimensionality of the resistance.
Then, in terms of the function R(ωL,τs), the final result for

nonlocal resistances can be presented as

R11 = 1

2

[
R(ωL,τs) + τ̃s

τs

R(ωL,τ̃s)

]
,

(19)

R12 = 1

2

[
R(ωL,τs) − τ̃s

τs

R(ωL,τ̃s)

]
,

where τ̃s is an effective spin relaxation time

τ̃s = τsτt

2τs + τt

, (20)

which includes tunneling and is shorter than τs . Modifications
of the Hanle curves due to tunneling are analyzed below.

A. Limiting cases

As it was mentioned in Introduction, the shape of the Hanle
curve for a single wire is governed by the dimensionless length

L = L√
4Dτs

. (21)

(i) It is apparent that when both wires are long, L � 1, the
shapes of the curves R11 and R12 do not differ significantly,

since a typical electron will have enough time to tunnel before
it reaches one of two detectors.

(ii) It is also obvious on general grounds that when the
tunneling time is much shorter than the spin-relaxation time,
τt � τs , the nonlocal resistanceR11 exceedsR12 only slightly.
This is because the electron gets equally distributed between
the wires before the spin precession takes place. Formally, this
follows from Eqs. (19) and (20). In the limit τt � τs , one has
τ̃s ≈ τt/2. The relative difference, (R11 − R12) /R11, is of the
order of (τt/τs)1/2.

(iii) The opposite limit of weak tunneling between the
wires is most insightful. In this limit, we have τt � τs , so
that only a small portion of electrons injected in the first wire
reach the detector in the second wire. This means that R12, is
much smaller than R11. Formally, two terms in Eq. (19) for
R12 nearly cancel each other. However, R12(ωL) possesses a
distinctive shape. To find this shape, we expand Eq. (19) with
respect to τs/τt and get

R12 ≈ R0
τs

τt

G(ωL,τs), (22)

where the function G(ωL,τs) is defined as

G(ωL,τs) = L

τ 2
s

∫ ∞

0
dt t cos ωLte−t/τs PL(t). (23)

Analytical expressions for F (ωL,τs) and G(ωL,τs) for arbi-
trary length can be found using the identities∫ ∞

0

ds

s1/2
exp

(
−1

s
− ys

)
=

(
π

y

)1/2

exp (−2y1/2), (24)

∫ ∞

0
dss1/2 exp

(
−1

s
− ys

)
= π1/2

2y3/2
(1+2y1/2) exp(−2y1/2),

(25)

and taking the absolute value and the phase of the complex
argument y to be

|y| = L2
(
1 + ω2

Lτ 2
s

)1/2
, φ = arctan(ωLτs). (26)

In Fig. 3, we plot these functions that represent the Hanle
curves for diagonal and nondiagonal resistances for three
domains of L. It is seen, Fig. 3(a), that for large length the
shapes of both curves are identical. The smaller is the length
the more pronounced is the difference between R11 and R12

behaviors. The R12(ωL) curve is significantly narrower than
R11(ωL) for small length, as it is seen in Fig. 3(c). This
narrowing originates from the extra factor t in the integrand
of Eq. (23) compared to Eq. (18) and can be qualitatively
interpreted as follows. In order to reach the detector in the
second wire, injected electron diffuses along the first wire,
tunnels into the second wire, and diffuses there. Narrower
shape indicates that reaching the detector in the second wire
takes more time than reaching the detector in the first wire to
which electron simply diffuses.

(iv) Note that the limit of short wires allows a comprehen-
sive analytical study to which we now turn. In the limit of small
wire length, L � 1, analytical expressions for R11 and R12

can be obtained for an arbitrary relation between τt and τs . In
this limit, corresponding to |y| � 1 in Eq. (24), the expression
for nonlocal resistances, R(ωL,τs) and R̃(ωL,τs) of an isolated
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(a)

(b)

(c)

FIG. 3. (Color online) Hanle curves R11(ωL) (blue) and R12(ωL)
(green) measured by two detectors, one located in the same wire as
the injector and the other located in the neighboring wire. Dashed
curves are plotted directly from Eq. (19) using the definition (17);
the solid curves are plotted from the asymptotic expansions, R11 is
given by Eq. (18) and R12 is given by Eq. (22). In all graphs, the
tunneling time τt is 10τs . The three panels correspond to different
dimensionless lengths, L = L/

√
4Dτs : L = 3 (a), L = 0.45 (b), and

L = 0.1 (c). All curves for R12 are multiplied by τt/τs = 10.

wire simplify to

R(ωL,τs) = R0L√
2

√√
1 + ω2

Lτ 2
s + 1√

1 + ω2
Lτ 2

s

, (27)

R̃(ωL,τs) = R0L√
2

√√
1 + ω2

Lτ 2
s − 1√

1 + ω2
Lτ 2

s

. (28)

Here, R̃(ωL,τs) is naturally defined by Eqs. (17) and (18),
namely, upon replacing cos ωLt by sin ωLt in the integrand.

Substituting Eq. (27) into Eq. (19), we get

(R11(ωL)

R12(ωL)

)
= R0L

2
√

2

⎡⎢⎢⎣
√√

1 + ω2
Lτ 2

s + 1√
1 + ω2

Lτ 2
s

±
√

τ̃s

τs

√√
1 + ω2

Lτ̃ 2
s + 1√

1 + ω2
Lτ̃ 2

s

⎤⎥⎥⎦ . (29)

The second term in Eq. (29) is responsible for the difference
between R11 and R12. It is apparent that this difference is
maximal when τ̃s ≈ τs , i.e., when the tunneling time is long.
In the latter case, we can simplify Eq. (29) further by expanding
with respect to τs/τt :

R12 = R0L
2
√

2

τs

τt

1(
1 + ω2

Lτ 2
s

)3/2

√
1 + ω2

Lτ 2
s + 1 − ω2

Lτ 2√√
1 + ω2

Lτ 2
s + 1

.

(30)

Now R12 is a function of a single argument, ωLτs . We see that,
whileR11 falls off at large ωLτs as (ωLτs)−1/2, the decay ofR12

is much faster, as (ωLτs)−3/2. Besides, the distinctive feature
of R12 is that it passes through zero at ωLτs = √

3. Overall,
see Fig. 3, despite that the length is small, the behavior of
nondiagonal resistance R12 resembles the shape of the Hanle
curve for a long wire, L � 1.

IV. LOCAL COUPLING

A different arrangement of two coupled wires is shown
in Fig. 2(b). Electron injected into the first wire can cross
into the second wire only through a narrow bridge at x =
0. This means that, while R11 is constituted by all diffusive
trajectories in the first wire, the contribution to R12 comes
from a subset of diffusive trajectories, which visit the point of
contact. More precisely, the bridge serves as “weak” boundary
condition for the diffusion equation. We are going to study
how this modification of the diffusion due to crossing into
neighboring wire affects the shape of the Hanle curve,R12, and
compare the result with R12(ωL) calculated for homogeneous
tunneling in the previous section.

We assume that the coupling via the bridge is weak, so that
the concentration n1(x,t) is given by Px+L1 (t). The presence of
the bridge in the diffusion equation (3) for n2(x,t) is reflected
as a source,

∂n2

∂t
− D

∂2n2

∂x2
= l

τt

δ(x)n1(0,t), (31)

where l � L represents the width of the bridge. The solution
of Eq. (31) can be obtained in a standard way, e.g., by the
Fourier expansion of both sides. The expression for n2(x,t)
reads

n2(x,t) = l

τt

∫ t

0
dt1Px(t − t1)n1(0,t1). (32)
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Substituting the expression for n1(0,t) into the integrand, we
cast the final result in the form

n2(x,t) = l

τt

∫ t

0
dt1

∫ t

0
dt2Px(t1)PL1 (t2)δ(t1 + t2 − t), (33)

which is simply the convolution of two diffusion propagators.
Physically, the result (33) is transparent. It expresses the fact
that, to get to the point x in the second wire, an electron first
diffuses from the injector to the bridge and then from the bridge
to the point x.

The form (33) is convenient for the calculation of the
nonlocal resistance R12(ωL). Indeed, for this calculation one
has to multiply n2(x,t) by s(t), given by Eq. (16), and integrate
over t , which leads to the expression

R12(ωL) = R0L

∫ ∞

0
dt n2(L2,t)e

−t/τs cos ωLt. (34)

Substituting Eq. (33) into Eq. (34) and performing integration
over time with the help of the δ function, we get

R12(ωL)

= R0(L1 + L2)l

τt τs

∫ ∞

0
dt1

∫ ∞

0
dt2 PL1 (t1)PL2 (t2)

× e−(t1+t2)/τs (cos ωLt1 cos ωLt2 − sin ωLt1 sin ωLt2). (35)

We now notice that, for both terms in the brackets, the double
integral (35) factorizes into a product of single integrals, which,
in turn, can be expressed through the functions R(ωL) and
R̃(ωL) for a single wire. The final expression for R12(ωL)
reads

R12 = τs

τt

(L1 + L2)l

L1L2

1

R0

× (R(ωL,L1)R(ωL,L2) − R̃(ωL,L1)R̃(ωL,L2)). (36)

Similarly, for orthogonal magnetizations of injector and
detector we get

R̃12 = τs

τt

(L1 + L2)l

L1L2

1

R0

× (R(ωL,L1)R̃(ωL,L2) + R̃(ωL,L1)R(ωL,L2)). (37)

According to Eq. (36), R12 depends on both the position
of the bridge and the position of the detector. In Appendix,
we demonstrate that the dependence of the concentration,
n2(L2,t), on the position of the bridge drops out, so that R12

only depends only on the distance, L = L1 + L2 between the
injector and the detector. This observation allows L2 to be
set to zero in Eq. (36); correspondingly, L1 should be set
equal to the total length L. Technically, this implies that we
can use the short-distance asymptotes, Eq. (27) and Eq. (28),
while for R(ωL,L) and R̃(ωL,L) the general expressions
should be used. These general expressions [8,22] follow from
Eq. (24):

R(ωL,L) =
(

π

|y|
)1/2

exp

(
−2|y|1/2 cos

φ

2

)
× cos

(
φ

2
+ 2|y|1/2 sin

φ

2

)
, (38)

where the magnitude |y|, and phase φ, are defined by Eq. (26).
The corresponding expression for R̃(ωL,L) differs from
Eq. (38) by the replacement of cos with sin in the second
factor.

Summarizing, in the geometry of two wires with a bridge,
the Hanle curve measured by the first detector is described by
R(ωL,L), Eq. (38), while the Hanle curve measured by the
second detector has the shape given by

R12 ∝ τs

τt

l

L

⎛⎜⎜⎝
√√

1 + ω2
Lτ 2

s + 1√
1 + ω2

Lτ 2
s

R(ωL,L) −

√√
1 + ω2

Lτ 2
s − 1√

1 + ω2
Lτ 2

s

R̃(ωL,L)

⎞⎟⎟⎠ . (39)

The most dramatic difference in the shapes of two Hanle
curves emerges in the limit of short wires, L � 1. Substituting
Eqs. (27) and (28) into Eq. (39), we get the amusingly simple
expressions for R12, R̃12

R12 = 1

1 + ω2
Lτ 2

s

, R̃12 = ωLτs

1 + ω2
Lτ 2

s

. (40)

This means that, while the first detector measures the shape,
Eq. (27), the second detector measures a simple Lorentzian,
Eq. (1), as in optical measurements. In Figs. 4(a) and 4(b), this
difference in shapes is illustrated graphically for R12 and R̃12,
respectively. We see that R12 in the second wire is not only
narrower, but also possesses a distinctively different shape.
Figure 4(c) illustrates that the difference in the shapes of the
two Hanle curves gradually vanished as the wires get longer.
Qualitatively, this can be understood from Eq. (39). In a long
wire, the Hanle curve is narrow. This allows us to set ωLτs � 1

in the prefactors in the brackets. Then the first prefactor is
close to 1, while the second prefactor is much smaller. Thus
we conclude that the ratio of R12 to R11 is approximately
constant.

V. COUPLING OF A WIRE TO THE LOOP

As a last example of the modification of the Hanle profile
with restricted geometry consider a loop tunnel-coupled to a
wire, see Fig. 2. The injector is located in the wire while the
detector is located in the loop. The spin-transport equation has
a form

∂

∂t
S(θ,t) = ωL × S(θ,t) + D

a2

∂2

∂θ2
S(θ,t) − S(θ,t)

τs

, (41)

where θ is the azimuthal coordinate and a is the radius of
the loop. This equation also allows a factorization: S(θ,t) =
s(t)n(θ,t), where s(t) satisfies Eq. (13), while the equation for
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(a)

(b)

(c)

FIG. 4. (Color online) The difference in the diffusion trajectories
in a single wire and in two wires coupled via a bridge manifests itself
in the shapes of the Hanle curves. (a) The Hanle curvesR11(ωL) (blue)
and R12(ωL) (green, dashed) are plotted from Eqs. (38) and (39) for a
small dimensionless length L = L/(4Dτs)1/2 = 0.1. The solid green
curve is the Lorentzian asymptote, Eq. (40). The inset shows a com-
parison of R12(ωL) for the case of local tunneling (yellow), Eq. (40),
and for the case of homogeneous tunneling (brown), Eq. (30);
(b) same geometry as in (a). Nondiagonal components of nonlocal
resistance corresponding to the perpendicular magnetizations of
injector and detector are plotted; (c) the Hanle curve R11(ωL)
(blue) and R12(ωL) (green) are plotted for the dimensionless length
L = 0.45. The shapes are much closer than in (a).

n(θ,t) reads

∂n

∂t
= D

a2

∂2n

∂θ2
. (42)

The solution of this equation satisfying the initial condition,
n(θ,0) = δ(θ ), can be presented as a sum of angular harmonics:

n(θ,t) = 1

2π
+ 1

π

∞∑
k=1

exp

(
−Dk2t

a2

)
cos(kθ ). (43)

Assuming that the detector is located at θ = π , we find the
following expression for the spin density:

Sx(t) = 1

2π

∞∑
k=−∞

(−1)k exp

(
−Dk2t

a2
− t

τs

)
cos ωLt. (44)

Integration of Sx(t) over time yields the nonlocal resistance in
the form of the infinite sum

R(ωL) = R0

∞∑
k=−∞

1 + Dk2τs

a2(
1 + Dk2τs

a2

)2 + ω2
Lτ 2

s

. (45)

A closed expression for R(ωL) can be obtained with the use of
the identity

∞∑
k=−∞

(−1)k(1 + k2λ2)

(k2λ2 + 1)2 + z2
= 2

(1 + z2)1/2

×
[
x sinh(x) cos(y) − y sin(y) cosh(x)

cosh 2x − cos 2y

]
, (46)

where

x = π

λ

√√
1 + z2 + 1

2
, y = π

λ

√√
1 + z2 − 1

2
. (47)

Expressing the nonlocal resistance with the help of Eq. (46)
requires the following identifications:

z = ωLτs, λ = (Dτs)1/2

a
. (48)

The prefactor π/λ in Eq. (47) is equal to 2πa/ (4Dτs)1/2,
which is the circumference of the loop in the units of spin-
diffusion length. The identity Eq. (46) suggests that nonlocal
resistance depends on parameter y in an oscillatory fashion.
To clarify the physical meaning of these oscillations consider
the limit of weak fields, z � 1, so that the precession angle of
spin, δϕ, during the time τs is small. In this limit, the parameter
y can be cast in the form

y
∣∣
z�1 ≈ 2πa

(Dτs)1/2 δϕ. (49)

The first factor in Eq. (49) can be interpreted as a number
of intervals, each having a length equal to the spin-diffusion
length, covered by an electron before it makes a full loop. Since
the spin is rotated by δϕ over each interval, the parameter y

can be interpreted as a full rotation angle for the whole loop.
Then the periodicity of nonlocal resistance corresponds to this
full angle being π , 2π , and so on.

To interpret the oscillations in strong fields, z � 1, we
rewrite the parameter y as

y
∣∣
z�1 ≈ 2πa

(D/ωL)1/2 . (50)

The denominator in Eq. (50) has the meaning of the length
traveled during one Larmour precession period. The fact that
R is sensitive to whether the circumference contains integer or
half-integer number of these lengths can be interpreted as an
effect of finite step size in the random walk. Naturally, these
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(a)

(b)

FIG. 5. (Color online) (a) Evolution of the Hanle curves R(ωL)
with radius a. The curves are plotted from Eq. (46) for three values
of the dimensionless loop radius λ−1 = a/(Dτs)1/2. Dotted, dashed,
and solid lines correspond to λ = 1.7, 1, and 0.7, respectively.
(b) Same as (a) for the high-temperature domain λ = 0.35 (dotted),
0.32 (dashed), and 0.27 (solid).

oscillations are suppressed exponentially, since at strong fields
we have x ≈ y.

Suppose now that the temperature is low, so that τs is long.
This means that, before the spin orientation is forgotten, the
particle performs many loops, so that density n(θ ) is nearly
homogeneous. This, in turn, suggests that the Hanle profile
is unaffected by the diffusion, and has a Lorentzian shape.
Plotting R(ωL) from Eq. (46) indicates that a Lorentzian
shape is achieved only for very small loops, such that λ � 40.
For moderate values of λ ∼ 1, i.e., for higher temperatures,
the Hanle profiles are non-Lorentzian, but rather resemble
R(ωL) for a long wire, as illustrated in Fig. 5(a). Finally, for
“high” temperatures corresponding to λ ∼ 0.3, see Fig. 5(b),
the Hanle curves develop oscillations discussed above, while
the magnitude of R(ωL) drops rapidly with decreasing λ.

VI. DISCUSSION

(1) The fact that experimental Hanle curves are amazingly
robust motivated us to investigate whether the charge-transport
characteristics could be inferred from their shapes. Namely, in
a system of two coupled wires, the tunneling time, τt , between
the wires is a parameter that does not depend on spin. Still,
as it is seen in Fig. 3, the Hanle curves calculated for a given
wire, R11, and between the wires, R12, have visibly different
widths. The difference in widths is governed by the ratio
�t/�s of fundamental “band-structure” parameters. Thus this
ratio can be inferred from the comparison of these widths.
Also, �s can, in principle, be inferred independently from the
shape of R11. The possibility of such an extraction of tunnel
splitting is facilitated by the fact that τs falls off with increasing
temperature dramatically (as T −3 for the Dyakonov-Perel

mechanism [1]), whereas τt varies slowly. This rapid change
of τs with temperature allows for a “dimensional crossover”
between 0D and 1D statistics of diffusion paths within the same
ring-shaped sample, see Fig. 2(c). This crossover manifests
itself not only in the width but also in the shape of Hanle
curve, which becomes a Lorentzian at low temperatures.

Note that, in principle, there is an alternative way to infer
the bare tunnel splitting �t experimentally that does not
involve spin, namely, the luminescence measurements. For
the case of two tunnel-coupled quantum wells [23], one well is
excited, while the luminescence is measured from both wells.
Luminescence from the second well emerges after time τt ,
while the width of the luminescence spectrum yields τ−1. In
this way, �t = (ττt )−1/2 can be found.

(2) In a sense, our quest to reveal the statistics of diffusion
paths through the Hanle curves is in line with attempts taken
to unravel this statistics from the weak-localization correction
to the conductivity, �σ of a 2D sample [24,25].

The Hanle profile comes from multiplying the diffusive
propagator by cos ωLt and integrating over time. Similarly, the
expression for �σ comes from multiplying the diffusive return
probability by cos 2π
(t) where 
(t) is the flux (in the unit
of the flux quantum) through the area covered by the diffusing
particle after time t and integrating over t . Thus both R and
�σ are essentially the Fourier transforms of the diffusion
propagator. The role of the spin-flip time τs in spin transport
is played by the phase-breaking time in magnetoresistance.

In fact, a rapid decay of the phase-breaking time with
temperature was also exploited previously in the transport
studies [26,27] to demonstrate the dimensional crossover from
quasi-2D to purely 3D diffusion. It should be noted, however,
that while weak-localization relying on the spatial coherence
of electrons shows up only at low temperatures, the Larmour
precession survives at high temperatures and gives rise to the
Hanle curve.

(3) Throughout the paper we considered a two-wire
geometry. Another class of structures to which our results
might be applicable is tunnel-coupled graphene layers. It
was previously demonstrated [11,15,16,28,29] that a single
layer of graphene can be used as a channel for nonlocal
spin-transport measurements. A possibility to fabricate two
tunnel-coupled layers was also demonstrated very recently
[30–33]. The structures [30–33] were fabricated in order to
realize the vertical gate-controlled graphene heterostructures.

(4) We considered the spin-current distribution in a loop
geometry. Very recently [34] a measurement of nonlocal
spin transport in a loop geometry has been reported. The
importance of findings of Ref. [34] is that the result of
conversion of a spin current into a charge current was revealed
not through the voltage buildup in an open-circuit geometry
but rather by directly measuring the circulation of current in
the loop.

(5) The bridge between two channels shown in Fig. 2(b)
can be viewed as a boundary condition for the diffusion
equation that changes the random-walk trajectories leading
to a modified shape of the Hanle curves. The origin of such a
boundary condition can be simply a finite length of the channel.
This situation was recently considered theoretically [35]. In
accord with our findings, the result of decreasing the channel
length is the crossover of the Hanle shape to a Lorentzian.
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APPENDIX

In order to substantiate the statement made in Sec. III that the concentration profile in the second wire,

n2(L2,t) ∝
∫ t

0
dt1 PL2 (t − t1)PL1 (t1), (A1)

does not depend on the position L1 of the bridge, it is convenient to use the Fourier representation of the diffusive propagators
PL1 and PL2 . In this representation, Eq. (A1) acquires the form

n2 ∝
∫ t

0
dt1

[∫
dq2

2π
exp

(−Dq2
2 (t − t1) + iq2L2

) ∫
dq1

2π
exp

(−Dq2
1 t1 + iq1L1

)]
. (A2)

Performing the time integration, we get

n2 ∝
∫

dq1

2π

∫
dq2

2π
exp (iq1L1 + iq2L2)

(
exp

( − Dq2
1 t

) − exp
( − Dq2

2 t
)

q2
1 − q2

2

)
. (A3)

The sum, L = L1 + L2, which is the total length, does not depend on the position of the bridge, while the difference l = L1 − L2

is fully determined by the position of the bridge. In order to decouple L and l, we introduce the new variables

u = q1 + q2, v = q1 − q2, (A4)

so that the integral (A3) assumes the form

n2 ∝
∫

du

u
exp

(
−Dtu2

4
+ i

L

2
u

) ∫
dv

v
exp

(
−Dtv2

4
+ i

l

2
v

)
sinh

(
Dtuv

2

)
. (A5)

Independence of n2 on the position of the bridge implies that ∂n2/∂l = 0. Differentiating Eq. (A5) with respect to l, we get

∂n2

∂l
∝

∫
du

u
exp

(
−Dtu2

4
+ i

L

2
u

)∫
dv exp

(
−Dtv2

4
+ i

l

2
v

)
sinh

(
Dtuv

2

)
. (A6)

Note that the internal integral in Eq. (A6) can be readily evaluated∫
dv exp

(
−Dtv2

4
+ i

l

2
v

)
sinh

(
Dtuv

2

)
∝ exp

(
Dtu2

4

)
sin

lu

2
. (A7)

This allows us to express ∂n2/∂l as a single integral:

∂n2

∂l
∝

∫
du

u
exp

(
iLu

2

)
sin

lu

2
= 1

2

∫
du

sin (L+l)u
2 − sin (L−l)u

2

u
. (A8)

From the identity ∫ ∞

−∞

ds

s
sin αs = π sign(α), (A9)

we conclude that indeed ∂n2/∂l is zero as long as l < L. Thus the concentration, n2(L2,t), does not depend on the position of
the bridge only when the bridge is located between the injector and the detector.
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