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ABSTRACT

The human brain undergoes rapid organization and struc-

turing early in life. Longitudinal imaging enables the study

of these changes over a developmental period within individ-

uals through estimation of population growth trajectory and

its variability. In this paper, we focus on maturation of white

and gray matter depicted in structural and diffusion MRI of

healthy subjects with repeated scans. We provide a frame-

work for joint analysis of both structural MRI and DTI (Dif-

fusion Tensor Imaging) using multivariate nonlinear mixed

effect modeling of temporal changes. Our framework con-

structs normative growth models for all the modalities, taking

into account the correlation among the modalities and individ-

uals, along with estimation of the variability of the population

trends. We apply our method to study early brain develop-

ment, and to our knowledge this is the first multimodel longi-

tudinal modeling of diffusion and signal intensity changes for

this growth stage. Results show the potential of our frame-

work to study growth trajectories, as well as neurodevelop-

mental disorders through comparison against the constructed

normative models of multimodal 4D MRI.

1. INTRODUCTION

The human brain undergoes significant changes during in-

fancy and early development. Advances in medical imaging

have allowed us to track these changes in vivo longitudinally

which more accurately captures development as compared to

cross-sectional analysis. Growth modeling of longitudinal

data yields a more accurate average trajectory as the popula-

tion model is built from individual temporal trajectories. This

results in significantly improved model of growth and growth

variability, especially when inter-subject variability is greater

than the temporal change [1].
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Previous neuroimaging studies have substantially in-

creased our understanding of early brain development. Prior

studies of DTI and MRI have shown changes in early brain

development, including changes of diffusion parameters over

time [2, 3] and contrast changes as is depicted in T1W and

T2W [4]. There are relatively few studies that have looked at

both DTI and MRI [5]. However, most of these studies have

been cross-sectional and only consider one modality. In this

paper, we focus on multivariate longitudinal modeling where

growth model is jointly estimated based on all the modalities.

We present a new method to generate models of temporal

changes in multimodal MRI taken at non-uniformly sampled

discrete time points. Our proposed method estimates non-

linear models of growth trajectories for individual subjects,

the population, and confidence intervals around the aver-

age trajectory. This is accomplished using non-linear mixed

effects modeling (NLME) where multimodal changes are

described using Gompertz functions. The Gompertz growth

function provides a representation of asymptotic growth us-

ing intuitive parameters such as delay, rate of change, and

expected asymptotic value. We have demonstrated the utility

of such modeling in our recent paper that presents a method

for unimodal analysis [6], where we compare growth in white

matter regions. In this paper, we demonstrate and apply our

new method to longitudinal multimodal MRI data contain-

ing both structural (T1W and T2W) and diffusion imaging

modalities. We construct and analyze normative models in

anatomical regions of interest located in white matter and

gray matter. Results indicate that quantitative modeling of

early brain development through MRI generates normative

models with confidence intervals that have potential for de-

tecting abnormal growth due to disease.

2. METHOD

2.1. Non-linear Mixed Effects Modeling

We use a non-linear mixed effects (NLME) model to analyze

the longitudinal T1W, T2W and DTI data. The mixed effect

model is robust to outliers as it accounts for the variability
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and 2 years of age. Four of the subjects had suboptimal

DTI scans at 1 year that were removed, but their scans for

other time points and modalities were included. The images

include T1W, T2W and DTI. We apply the unbiased atlas

building framework [8] to the set of T2W images at 1 year

to obtain spatial mappings between each subject through the

estimated atlas. Intra-subject registration was performed by

IRTK software.1 All time points of each subject are registered

to this atlas via linear and nonlinear transformations, first by

mapping these images to the year 1 scan and then cascading

the two transformations for a mapping to the atlas. Tensor

maps are calculated for each DTI scan, and are registered to

the atlas using transformations obtained by registering the

DTI baseline (B0) images to T2W images. T1W images were

normalized using intensity value of fatty tissue between the

skull and skin. For T2W, the csf region of ventricles was used

for normalization. Fractional anisotropy features from the

registered tensors were used for the joint analysis between

DTI and structural MRI.

We analyze growth trajectories in white and gray matter

anatomical regions, using atlases developed and disseminated

by Mori et al. [9] and Harvard Center for Morphometric Anal-

ysis 2. Figure 1 shows the right posterior thalamic radiation

(PTR) overlaid on longitudinal T1W, T2W and FA image of

one subject, along with the population and individual trajec-

tories estimated using our multivariate nonlinear mixed effect

model. PTR includes optic radiation and it is one of the white

matter tracts that matures early [10]. There is a rapid change

in T1W and T2W in the first year followed by slower matura-

tion during second year.

Figure 2 show the population trends and confidence in-

tervals for white matter regions of interest. This includes the

body of corpus callosum (BCC) that is known to have a very

limited myelination at birth, whereas Posterior limb of inter-

nal capsule (PLIC) is known to be one of the regions that

shows early myelination. This pattern is evident as PLIC has a

higher FA and T1W values, with lower T2W values compared

to BCC and superior longitudinal fasciculus (SLF). However,

BCC and SLF show a quick maturation during first year, spe-

cially in T2W.

We also analyze growth trajectories in gray matter, even

though DTI analysis has been typically performed only in

white matter. We observe small changes in FA values as gray

matter matures, however the changes of T1W and T2W are

greater as expected. Figure 3 shows the changes of white

and gray matter in different lobes. T1W and FA increase

with age and T2W intensities decrease with age. We noted a

higher degree of maturation in average T1W and T2W curves

for occipital lobe as compared to frontal and temporal lobes.

Higher FA values are observed in white matter compared to

gray matter due to the fiber structure in white matter. We also

observe high variability of FA and T2W at birth for white

1http://www.doc.ic.ac.uk/˜dr/software
2http://www.cma.mgh.harvard.edu/fsl_atlas.html
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Fig. 2. Population growth trajectories (bold) and confidence

intervals (light). From top to bottom: Body of Corpus Callo-

sum (BCC), Posterior Limb of Internal Capsule (PLIC), and

Superior Longitudinal Fasciculus (SLF). Bold curves are the

average growth trajectories for normalized T1W (red), T2W

(green) and FA (blue), while the 95% confidence interval of

the curves are shown as shaded regions. Light color curves

show the 95% predicted intervals for each region.

matter, while T1W has high variability throughout early brain

development.

Conclusions: We have presented a new method for gener-

ating normative models of growth from multimodal longi-

tudinal MR images. The method utilizes non-linear mixed

effects modeling using Gompertz parametrization of longi-

tudinal changes. We applied and evaluated our method to

clinical data of early brain development to obtain normative

growth models in anatomical regions of interest in white and

gray matter. These models describe the expected trends of

the population, as well as the expected deviations from these

trends. Results suggest that our approach has potential for

detecting abnormalities in growth trajectories of a patient by

direct comparison to the constructed normative models. In

the future, we will explore the application of our approach to

subjects with developmental delay or degenerative disorders

such as Krabbe disease.
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Temporal Gray Matter Temporal White Matter
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Fig. 3. Population trends and confidence intervals for gray matter and white matter in the frontal, occipital, and temporal lobes.

Red denotes normalized T1W, green is T2W and blue is FA. Bold color curves are the estimated population growth trajectories,

while the 95% confidence interval of the curves are shown as shaded regions. Light color curves show the 95% predicted

intervals for each region.
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