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Abstract—A stochastic finite-difference time-domain (S-FDTD)
algorithm is presented for electromagnetic wave propagation in
anisotropic magnetized plasma. This new algorithm efficiently
calculates in a single simulation not only the mean electro-
magnetic field values, but also their variance as caused by the
variability or uncertainty of the content of the ionosphere. By
accounting for fully three-dimensional, high resolution (even cm-
scale) structures and uncertainty in the ionosphere, this algorithm
represents a paradigm shift in our ability to analyze realistic,
complex wave propagation in the ionosphere.

I. INTRODUCTION

Communications, surveillance, and navigation capabilities

rely heavily on accurate knowledge of electromagnetic (EM)

signal propagation characteristics through and reflected by the

Earth’s ionosphere. The variability of the ionosphere renders

many propagation problems too complex to be solved using

a deterministic formulation, however. The structure of the

ionosphere can depend not only on the altitude, time of day,

and season, but also on the latitude, longitude, sun spot cycle,

and occurrence of space weather events. A useful approach to

such a highly complex problem is to consider it as a random

medium problem. The Monte Carlo method is a widely-used

brute force technique for evaluating random medium problems

via multiple realizations. However, it is significantly more

efficient to formulate the problem in such a way that its

ensemble averages may be run in a single realization scheme.

In this paper, we develop the first stochastic FDTD (S-FDTD)

[1] algorithm for electromagnetic wave propagation in three-

dimensional (3-D) anisotropic magnetized plasma.

II. METHODOLOGY

The magnetized (anisotropic) cold plasma governing equa-

tions are cast in terms of Maxwell’s equations coupled to

current equations derived from the Lorentz equation of motion

[2]. The resulting whole governing equation set is given by:

∇× E = −µ0

∂H

∂t
(1)

∇× H = −ǫ0
∂E

∂t
+ Je (2)

∂Je

∂t
+ veJe = ǫ0ω

2
PeE + ωCe × Je (3)

Here ve, Je and ωPe are the collision frequency, the current

density and the plasma frequency of electrons, respectively.

The plasma frequency is a function of the electron density ne

given by,

ωPe =

√

q2ene

ǫ0me

(4)

Ionosphere electron densities vary in a complex manner as

a function of location and time. Thus, we consider the electron

density as a random variable with its own statistical variation.

This variability in the electron density causes variability in the

EM fields, which will also be treated as random variables. ωCe

is the cyclotron frequency of the electrons given by ωCe =
qeB/me. Here, B is the applied magnetic field.

For the S-FDTD derivation, there are initially three stochas-

tic equations (1), (2) and (3) that for Cartesian coordinates

contain ten random variables for the 3-D case: Ex, Ey , Ez ,

Hx, Hy , Hz , Jex, Jey, Jez and ωPe. By using the delta

method [3], Smith and Furse demonstrated that the average (or

expected) fields can be found by solving the field equations

using the mean or averages of the variables [1]. Thus, the

mean EM field and current density values are found by using

the mean plasma frequency of ωPe, or equivalently, the mean

of electron density ne.

In order to derive the standard deviation (or variance)

equations, we must take the variance of (1), (2) and (3). This

step results in two cases as described below:

1) Case 1: If a function is formed by the sum of multiple

variables (equations (1) and (2)), its variance is:

σ2

{

n
∑

i=1

aiXi

}

(5)

=

n
∑

i=1

a2iσ
2 {Xi}+ 2

∑∑

1≤i<j≤n
aiajρXi,Xj

σ {Xi}σ {Xj}

Here, ρXi,Xj
is the correlation coefficient (−1 ≤ ρXi,Xj

≤
1). The closer this coefficient is to zero, the more independent

the terms are from each other. If the correlation coefficients
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ρXi,Xj
(1 ≤ i < j ≤ n) = 1, we obtain:

σ

{

n
∑

i=1

aiXi

}

=

n
∑

i=1

aiσ {Xi} (6)

2) Case 2: If a function is formed by the product of

multiple variables (equation (3)), its variance is solved by

using the delta method [3]:

σ2 {f (X1, X2, . . . , Xm) g (Xm+1, Xm+2, . . . , Xm+2)}

=

m+n
∑

i=1

m+n
∑

j=1

∂ (fg)

∂Xi

∂ (fg)

∂Xj

∣

∣

∣

∣

∣

∣

µX1,...,µXm+n

Cov (Xi, Xj) (7)

Equations (6) and (7) are used in the derivation of the

standard deviation equations. When the standard deviation

equations are derived, covariances are needed of the E, H
fields and current density Je in both time and space. These

equations also relate the electric field to the plasma frequency

of the ionosphere, resulting in additional covariance terms

between the electric field and the plasma frequency. As for

the Maxwell’s equations S-FDTD methodology of [1], for the

3-D S-FDTD magnetized cold plasma algorithm, the magnetic

fields, electric fields and current densities are highly correlated

to each other. As such, the correlation coefficients of the E,

H fields and current density Je may be approximated as 1.

However, it is challenging to decide which method should be

used to evaluate the remaining cross correlation coefficients

between the electric field and the plasma frequency. There are

many factors in choosing the best ρω,E values, such as the

field component orientation, the cell’s location relative to the

source, the type of source wave, and the direction of the back-

ground magnetic field. The approximation of these correlation

coefficients will control the accuracy of the algorithm.

III. VALIDATION OF THE ALGORITHM

The performance of the fully 3-D S-FDTD cold plasma

model of Section II is evaluated by running a similar validation

test as for the FDTD plasma model of [2]. An x-polarized, z-

directed Gaussian-pulsed plane wave source is implemented.

The lattice space increments in each Cartesian direction of

the grid are ∆x = ∆y = ∆z = 1mm, the time step

∆t = ∆x/(c×0.55). An magnetic field B = 0.06T is applied

to the plasma (a large value so that we may observe an effect of

the plasma over a short distance for validation purposes). An

example of the standard deviation of the Ex field as recorded

10-cells away from the source in the z-direction is shown in

Fig.1.

For validation, 100 Monte Carlo simulations are used to

predict the exact standard deviation of the fields. The input

electron densities ne for each simulation are generated in a

random manner with a normal distribution given by mean

µne
= 1.0 × 1018m−3 and standard deviation σ {ne} =

2.0× 1016m−3. All of the simulation responses are collected

and analyzed to obtain their statistical properties (standard

deviation and variance values). Then, using S-FDTD, three

separate simulation cases are run using approximations for the

correlation coefficients between the plasma frequency and the

electric fields of 1, 0.5 and 0.05, respectively.

Fig.1 shows that a higher correlation coefficient leads to a

higher standard deviation of the electric field. As expected,

the approximations for the cross correlation of the plasma

frequency and the electric fields have a direct impact on the

accuracy of the S-FDTD method. The correlation coefficient of

1.0 yields a maximum (upper bound) of the standard deviation.

In this data set, a cross correlation value of 0.05 provides

the best agreement with the Monte Carlo simulations. As part

of future research, systematic studies will be performed to

evaluate the best methodology for determining the appropriate

correlation coefficients for different plasma modeling scenar-

ios.
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Fig. 1. Standard deviation of Ex (observed at a point 10 cells away from
the source).

IV. CONCLUSION

A 3-D S-FDTD model of EM wave propagation in

anisotropic magnetized cold plasma was introduced. The

plasma S-FDTD model of this paper is derived from Maxwell’s

equations coupled to the current equations derived from the

Lorentz equation of motion. It uses as input not only average

electron densities, but also their variance due to uncertainties

or variances due to factors such as space weather events.

S-FDTD offers an exceptional improvement in simulation

time compared to the brute-force Monte Carlo method. S-

FDTD may therefore serve as an important tool for EM iono-

spheric propagation studies, especially for large 3-D plasma

scenarios wherein Monte Carlo simulations would be imprac-

tical to run.
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