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Shape of the Hanle curve in spin-transport structures in the presence of an ac drive

R. C. Roundy,1 M. C. Prestgard,2 A. Tiwari,2 and M. E. Raikh1

1Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
2Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA

(Received 9 August 2014; revised manuscript received 19 October 2014; published 4 November 2014)

Resistance between two ferromagnetic electrodes coupled to a normal channel depends on their relative
magnetizations. The spin-dependent component, R, of the resistance changes with magnetic field, B, normal to
the directions of magnetizations. In the field of spin transport, this change, R(B), originating from the Larmour
spin precession, is called the Hanle curve. We demonstrate that the shape of the Hanle curve evolves upon
application of an ac drive and study this evolution theoretically as a function of the amplitude, B1, and frequency,
ω, of the drive. If the distance between the electrodes, L, is smaller than the spin-diffusion length, λs , the prime
effect of a weak circular-polarized drive is the shift of the center of the curve to the value of B for which the
Larmour frequency, ωL, is ∼B2

1 /ω. Magnetic resonance at ωL ∼ ω manifests itself in the derivative, dR

dB
. For

large L � λs the ac drive affects the Hanle curve if the drive amplitude exceeds the spin-relaxation rate, τ−1
s , i.e.,

at B1τs � 1. The prime effect of the drive is the elimination of a minimum in R(B). A linearly polarized drive
has a fundamentally different effect on the Hanle curve, affecting not its shape but rather its width.

DOI: 10.1103/PhysRevB.90.205203 PACS number(s): 72.25.Dc, 75.40.Gb, 73.50.−h, 85.75.−d

I. INTRODUCTION

In the past decade there has been remarkable progress in
the fabrication of lateral F-N-F structures (see Fig. 1) which
exhibit spin transport. In the pioneering experiment Ref. [1]
the existence of spin transport in an Al strip was demonstrated
by measuring a voltage, V , generated between the strip and
Co electrode upon injecting a current, I , through the other Co
electrode. The sign of voltage could be reversed upon reversal
of the relative magnetizations of the electrodes. Quantitative
information about the spin transport was inferred from the
dependence of the generated voltage on a weak external field,
B, which caused the spin precession. In particular, it was
observed that for the average spin precession angle 180◦ the
generated voltage changes the sign.

A theory for the V
I

= R(B) dependence, i.e., for the Hanle
profile, was first developed in Refs. [2,3]. Following Ref. [1],
a concise derivation of the analytical result of Refs. [2,3] goes
as follows. Suppose that the magnetizations of the injector
and detector are directed along the x axis, while the field,
B, is directed along the z axis. After a time, t , from the
moment of injection the average x projection of spin of a
given electron is Sx(t) = e−t/τs cos ωLt , where ωL = γB is
the Larmour frequency (γ is the gyromagnetic ratio) and τs is
the spin-flip time in the nonmagnetic material. If the motion
of the electron between the electrodes is a one-dimensional
(1D) drift, then the times of arrival to the detector are
distributed as P (t) = 1√

4πDt
exp[−(L − vdt)2/4Dt]. Here L

is the distance between the electrodes (see Fig. 1), vd is the
drift velocity, and D is the diffusion coefficient. Then the
nonlocal resistance, R(B), is proportional Sx(t) weighted with
the distribution P (t), i.e.,

R(B) = R0

∫ ∞

0

dt cos(ωLt)√
4πDt

exp

[
− t

τs

− (L − vdt)2

4Dt

]
. (1)

The prefactor R0 is B independent and is proportional to the
product of polarizations of the injector and detector.

The integral Eq. (1) contains four parameters of the device:
D, τs , L, and vd . In fact, the B dependence of R is governed

by only two dimensionless combinations: ωLτ̃s , where τ̃s is
the renormalized spin-flip time

τ̃s = τs

1 + v2
0τs

4D

, (2)

and the dimensionless length

L̃ = L

(4Dτ̃s)1/2
. (3)

Besides, the integral can be evaluated analytically [1,7], and
expressed in terms of the function f (y) defined as

f (y) =
∫ ∞

0

ds

s1/2
exp

[
−1

s
− ys

]
=

(
π

y

)1/2

exp [−2y1/2].

(4)

Then the B dependence of the nonlocal resistance is simply
given by

R(B) ∝ fr (y) = Ref (y) =
(

π

|y|
)1/2

exp

[
−2|y|1/2 cos

φ

2

]

× cos

(
φ

2
+ 2|y|1/2 sin

φ

2

)
, (5)

where the absolute value, |y|, and the phase, φ, of the complex
argument, y, are defined as

|y| = L̃2(1 + ω2
Lτ̃ 2

s

)1/2
, φ = arctan(ωLτ̃s). (6)

It follows from Eq. (5) that there are two characteristic shapes
of the Hanle curve, loosely speaking, a short-device shape and
a long-device shape. They are illustrated in Fig. 1.

With regard to experiments, Eq. (1) provides a remarkably
accurate description of the Hanle curves measured in various
spin-transport devices. Both shapes of R(B) have been
reported in many papers (see, e.g., Refs. [4–23]). Usually
the value τs is inferred from R(B), since R(B) falls off
at values ωL ∼ τ−1

s . Experiments indicate that for the same
structures, e.g., silicon based [4–8] or germanium based [9,10],
the values of τs extracted from fitting the Hanle curves depend
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(a)

(b) (c)

FIG. 1. (Color online) (a) Schematics of a standard spin-
transport device. Nonlocal resistance is defined as a voltage between
the channel and the right ferromagnet detector generated upon
injecting the current through the left ferromagnetic electrode. While
the polarized electrons travel diffusively the distance, L, their spin
precesses in magnetic field, B, directed along the z axis. The driving
ac field B1 is either circularly polarized in the x-y plane or linearly
polarized along x. The shapes of the Hanle curves in (b) short
L/λs = 0.1 and (c) long, L/λs = 2.4, devices are calculated from
Eq. (5).

strongly on the temperature and the doping level [24]. This
strong dependence is also observed in the structures based
on GaAs [11–15]. On the other hand, in graphene-based
valves [16–20] the Hanle curves are broad or narrow depending
on whether the graphene layers are exfoliated or epitaxially
grown.

It should be noted that determination of both τs and the
spin-diffusion length, λs = (Dτs)1/2, from a single measured
Hanle curve is somewhat ambiguous, in the sense that the same
R(B) can be very well fitted with two significantly different
sets of τs and λs . To improve the accuracy of determination
of these parameters in Ref. [12] the Hanle curves for several
values of L were analyzed.

Overall, the excellent agreement of the experimentally mea-
sured Hanle profiles with theoretical prediction Eq. (5) seems
surprising, since the theory is based on a rather crude descrip-
tion of the spin dynamics of injected carriers. For example, this
description completely neglects the details of injection, such as
geometry of electrodes. Modeling the transport as a purely 1D
diffusion is also somewhat questionable [25,26]. On the other
hand, a complete understanding of the domain of applicability
and limitations of the drift-diffusion theory of spin transport
seems crucial, since the contemporary research on inverse
spin Hall effect [13,21,27–30] and its possible applications in
the logic devices contains the drift-diffusion description at its
core. One way of testing the drift-diffusion theory, which has
already been realized experimentally [31,32], is to operate with
spatially inhomogeneous spin-density profiles. For example,
in Ref. [32] this profile was created using the interference of
two laser beams.

In the present manuscript we suggest another “knob” to
test the drift-diffusion theory. Namely, we demonstrate that

the Hanle profile can be manipulated by the ac drive. More
specifically, we assume that, in addition to a static field B0,
an ac field in the x-y plane is applied. On general grounds,
one can expect that the ac drive suppresses the R(B) response
by affecting the steady precession Sx(t) = cos ωLt . It is also
apparent that the drive should make the most pronounced effect
on R(B) if the drive frequency, ω, is comparable to ω̃L—the
value corresponding to the width of the Hanle curve in the
absence of the drive. For ω � ω̃L the ac field oscillates many
times as an electron travels between the injector and detector,
so that the effect of a weak drive with amplitude γB1 � ω

averages out. It is somewhat unexpected that, in addition to a
simple broadening, the drive gives rise to specific features in
the shape of the Hanle curves.

Below we find and analyze the expression for R(B) for an
ac field with arbitrary amplitude and frequency for the case
when it is circularly polarized. The prime effect is the shift
of the center of R(B) to the left or to the right depending on
whether the polarization of the drive is left or right. We also
analyze the evolution of the Hanle curves with increasing drive
for the case when the drive is linearly polarized. In particular,
we identify two peculiar regimes of the spin dynamics which
are specific to linear polarization. They are realized when the
drive is either very fast or very strong. We discuss how this
dynamics manifests itself in the Hanle profile.

II. DYNAMICS OF THE LARMOUR SPIN PRECESSION IN
THE PRESENCE OF THE AC DRIVE

To find the shape of the Hanle curve in the presence of the
ac drive, B1(t), it is necessary to solve the equation for the
spin dynamics

dS
dt

+ γ (B + B1(t)) × S = 0 (7)

with initial conditions Sx(0) = 1, Sy(0) = Sz(0) = 0. Then the
solution should be substituted into Eq. (1) instead of cos ωLt .
We assume that the external field is directed along z, i.e.,
B = B0k, while the ac field lies in the x-y plane. For this field
we will consider the cases of circular and linear polarization
separately.

A. Circular polarization

It is important that the components of the ac drive

Bx = B1 cos(ωt + ϕ), By = B1 sin(ωt + ϕ) (8)

contain a random initial phase, ϕ. It emerges as a result of
the randomness of the time moments at which electrons are
injected from the electrode. The nonlocal resistance should be
averaged over this phase.

For circular polarization the dynamics of the spin compo-
nents can be found exactly, since in the rotating frame the ac
field is static. We reproduce this textbook solution to track
the random phase, ϕ, which leads to averaging out of certain
contributions to R(B).

In the rotating frame, x ′ = x cos ωt + y sin ωt , y ′ =
y cos ωt − x sin ωt , the general solution of the Bloch equation
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has the Rabi form

S′(t) =
(

S0 − (H · S0)H
H 2

)
cos γHt

+ H × S0

H
sin γHt + (H · S0)H

H 2
, (9)

where the projections of the vector H , which is the ef-
fective magnetic field in the rotating frame, are defined
as Hx ′ = B1 cos ϕ, Hy ′ = B1 sin ϕ, and Hz′ = B0 − ω

γ
. After

implementing the initial condition Sx ′ (0) = 1 it is instructive
to rewrite Eq. (9) in components:

Sx ′ (t) =
⎛
⎝1 − B2

1 cos2 ϕ

B2
1 + (

B0 − ω
γ

)2

⎞
⎠ cos γHt

+ B2
1 cos2 ϕ

B2
1 + (

B0 − ω
γ

)2 ,

Sy ′ (t) = B2
1 cos ϕ sin ϕ

B2
1 + (

B0 − ω
γ

)2 (1 − cos γHt)

+
B0 − ω

γ√
B2

1 + (
B0 − ω

γ

)2
sin γHt,

Sz′ (t) = −
B1

(
B0 − ω

γ

)
cos ϕ

B2
1 + (

B0 − ω
γ

)2 (1 − cos γHt)

− B1 sin ϕ√
B2

1 + (
B0 − ω

γ

)2
sin γHt. (10)

It is now seen from Eq. (10) that Sz′ vanishes after averaging
and so does the first term in Sy ′ . In the remaining terms the
averaging amounts to the replacement of cos2 ϕ by 1/2.

Going back to the laboratory system, Sx = Sx ′ cos ωt −
Sy ′ sin ωt , Sy = Sy ′ cos ωt + Sx ′ sin ωt , we get

〈Sx(t)〉 = B2
1

2H 2
cos ωt + 1

2

(
1 − B2

1

2H 2
+

B0 − ω
γ

H

)

× cos[(γH + ω)t] + 1

2

(
1 − B2

1

2H 2
−

B0 − ω
γ

H

)

× cos[(γH − ω)t], (11)

〈Sy(t)〉 = B2
1

2H 2
sin ωt + 1

2

(
1 − B2

1

2H 2
+

B0 − ω
γ

H

)

× sin[(γH + ω)t] − 1

2

(
1 − B2

1

2H 2
−

B0 − ω
γ

H

)

× sin[(γH − ω)t]. (12)

We see that the averaged dynamics of Sx and Sy represents
oscillations with driving frequency, ω, which are modulated
by the “Rabi” envelope with frequency [33]

γH =
√

(ω − γB0)2 + (γB1)2. (13)

Thus, while the Rabi oscillations in Sz(t) do not survive
averaging over the initial phase, ϕ, they are still present in the

averaged dynamics of Sx and Sy . In the next section we study
how this dynamics manifests itself in nonlocal resistance.

III. NONLOCAL RESISTANCE

Three contributions to Sx in Eq. (11) give rise to three terms
in the nonlocal resistance, R(B). It is convenient to express
R(B) through the same function, fr (y), which describes the
Hanle shape in the absence of the drive and is defined by
Eq. (4). One finds

R(B) ∝
{

B2
1

2H 2
fr (yω) + 1

2

(
1 − B2

1

2H 2
+

B0 − ω
γ

H

)
fr (yω+γH )

+ 1

2

(
1 − B2

1

2H 2
−

B0 − ω
γ

H

)
fr (y−ω+γH )

}
. (14)

Here the arguments yω and y±ω+γH are defined by Eq. (6) with
ωL replaced by ω and ±ω + γH , respectively. It is convenient
to analyze the shape of the Hanle curves for short and long
devices separately.

A. Small distance between the electrodes

In the limit of small L̃ � 1 the function Eq. (5) for nonlocal
resistance in the absence of the drive simplifies to

R(B) ∝

√√
1 + ω2

Lτ̃ 2
s + 1

√
1 + ω2

Lτ̃ 2
s

= L̃

(2π )1/2
fr (ωL)

∣∣∣∣
L̃�1

. (15)

Naturally, it contains only a single scale ωL ∼ τ̃−1
s .

If the magnetization of the injector is along the x axis while
the magnetization of the detector is along the y axis, then
the Hanle signal is proportional to Sy(t). The corresponding
expression for nonlocal resistance reads

R̃(B) ∝
{

B2
1

2H 2
fi(yω) + 1

2

(
1 − B2

1

2H 2
+

B0 − ω
γ

H

)
fi(yω+γH )

− 1

2

(
1 − B2

1

2H 2
−

B0 − ω
γ

H

)
fi(y−ω+γH )

}
, (16)

where the function fi(y) is defined through Eq. (5) as Imf (y),
which amounts to the change of cosine by sine in the right-hand
side. In the absence of the drive, the resistance R̃(B) is an
odd function of the magnetic field. In the limit of small L̃ it
simplifies to

R̃(B) ∝

√√
1 + ω2

Lτ̃ 2
s − 1

√
1 + ω2

Lτ̃ 2
s

= L̃

(2π )1/2 fi(ωL)

∣∣∣∣
L̃�1

. (17)

To find the shape of the Hanle curve in the presence of
the drive, the asymptote Eq. (15) should be substituted into
Eq. (14). In Fig. 2 we plot the modified Hanle curves calculated
for the driving frequency ωτ̃s = 7 and two magnitudes of the
drive γB1τ̃s = 4 and 6. We also plot the corresponding curves
for R̃(B). The chosen value of ω is so big because the full
width at half maximum value of R(B) in the absence of the
drive is also big, approximately 4/τ̃s . One can identify in Fig. 2
three major features caused by the drive.
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FIG. 2. (Color online) (a) Upon increasing the drive amplitude
the Hanle curve broadens and its maximum is shifted quadratically
with B1. Green, red, and blue curves are plotted from Eq. (14)
dimensionless drive frequency ωτ̃s = 7 and three dimensionless drive
amplitudes: γB1τ̃s = 0 (green curve), 4 (red curve), and 6 (blue
curve). Magnetic resonance ωL = ω resides around ωLτ̃s = 11. The
corresponding region is enlarged. Magnetic resonance is pronounced
in the dR/dB shown in (b); (c) and (d) are the same as (a) and (b) for
the nonlocal resistance R̃(B).

(i) The maximum shifts. The origin of this shift is the
interplay of the prefactor and the function fr (y−ω+γH ) in the
third term of Eq. (14). First, this term gives the dominant
contribution to R(B) for small B1. This is because the prefactor
in the first term is ∝ B2

1 , while the prefactor in the second term
is ∝ B4

1 for ωL < ω. On the other hand, the prefactor in the
third term changes rapidly from one to zero at ωL = ω. With
regard to fr (y−ω+γH ), it has two peaks at

ωL = ω± = ω ±
√

ω2 − (γB1)2. (18)

The peak at ω+ is eliminated by the prefactor, while the peak
at ω−, which behaves as (γB1)2/2ω at small B1, survives
and defines the position of the maximum in R(B). For the
two driving amplitudes plotted in Fig. 2 the expected shifts
of the maxima are related as 9 : 4, which is indeed the
case.

(ii) The Hanle curves broaden with increasing the drive
amplitude. Formally, this follows from the broadening of
the steplike behavior of the prefactor in the third term with
B1.

(iii) Upon increasing B1, the Hanle curves exhibit signatures
of magnetic resonance. True magnetic resonance, ωL = ω, is
certainly present only in the dynamics of Sz. In the dynamics of
Sx and Sy the manifestations of magnetic resonance are vague
and originate from the fact that the derivative of the arguments
ω ± γH with respect to B is equal to (ω ± γB0)/γH . It
passes through zero at the magnetic-resonance condition and
changes rapidly from −1 to 1 in its vicinity. This change
translates into a kinklike behavior indicated in Fig. 2. More
pronounced signatures of the magnetic resonance can be seen
in the derivative dR/dB, also shown in Fig. 2. The derivative
develops a plateau.

4 2 0 2 4 4 2 0 2 4

4 2 0 2 4 4 2 0 2 4

(a) (b)

(c) (d)

FIG. 3. (Color online) (a) In a spin-transport device with a long
channel the prime effect of the ac drive on the Hanle curve is
elimination of a minimum. The R(B) curves are plotted from
Eq. (14) for L/λs = 2.4, ωτ̃s = 1.1, and five values of the driving
field γB1τ̃s = 0, 0.25, 0.5, 0.75, and 1. Black arrow shows the
direction in which γB1 increases. (b) Same curves as (a) but for the
high-frequency drive, ωτ̃s = 5, show a weak response to the drive.
(c) and (d) are the same as (a) and (b) for R̃(B).

The shapes of R̃(B) shown in Fig. 2 evolve with the drive
in a predictable fashion. Namely, the position of zero shifts to
a finite magnetic field ∼(γB1)2/2ω and the curves broaden.
The signatures of magnetic resonance are more pronounced
in R̃(B). As seen in Fig. 2 the derivative dR̃/dB exhibits a
jumplike behavior near ωL = ω.

B. The injector and the detector are far apart

In a long device, L̃ � 1, the nonlocal resistance Eq. (5)
exhibits oscillations decaying with the magnetic field. First,
two zeros correspond to magnetic fields ωLτ̃s ≈ π/2L̃ and
3π/2L̃. The effect of the ac drive on R(B) is most pronounced
when the driving frequency lies between these two values. This
is illustrated in Fig. 3. Two sets of curves in Fig. 3 correspond
to the same values of the drive amplitudes but to different
driving frequencies. In the left and right sets the frequencies
differ by a factor of 5. It is seen that the Hanle shapes in the
right set do not respond to the drive. The reason for that is
that the value ωτ̃s for this set is 5, which is much bigger than
π/L̃ ≈ 1.4. For the left set, ωτ̃s = 1.1, which is close to π/L̃.
The lively response of R(B) and R̃(B) to the drive at this
frequency originates from the fact that a nondriven curve is
flat around ωLτ̃s ≈ 1.2. With the choice ωτ̃s = 1.1 this ωL is
near magnetic resonance and the fast change of the prefactors
in Eq. (14) with ωL is not overshadowed by the change of the
function fr (y).

IV. LINEAR POLARIZATION OF THE DRIVE

The expressions for nonlocal resistance obtained in the
previous section are exact, in the sense that they apply at
arbitrary strengths and frequencies of the circularly polarized
drive. We analyzed them for the situation when both γB1 and
ω are comparable to the width of the Hanle curve. It is easy
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20 10 0 10 20 30

FIG. 4. (Color online) Evolution of the Hanle curves in a short
device with increasing the amplitude of the drive and very high driving
frequency, ωτ̃s = 30. The curves are plotted from Eq. (14) for the
values of γB1τ̃s = 0 (magenta), 18 (blue), 25 (tan), and 30 (green).
The prime effect of the drive is the shift of the maximum with slow
broadening of the shape.

to see from Eq. (14) what happens to the Hanle curve when
both γB1 and ω are much bigger than γB0. With the shape
of the Hanle curve dominated by the third term in Eq. (14),
the argument −ω + γH of fr in this term can, at low B0, be
expanded as

− ω + γH ≈ −ω + [(γB1)2 + ω2]1/2 − γB0ω

[(γB1)2 + ω2]1/2
.

(19)

Equation (19) suggests that under a fast and strong circularly
polarized drive the Hanle curve simply shifts to the right,
preserving its shape. This is illustrated in Fig. 4, where the
R(B) curves are plotted from Eq. (14) for fast and strong
drives. We intentionally chose a very high driving frequency
ωτ̃s = 30 to allow the R(B) peak to shift substantially with
increasing γB1τ̃s .

Obviously, under a linearly polarized drive, the R(B)
dependence maintains its symmetry with respect to B = 0.
From Fig. 4 one would expect that, when the maximum of
R(B) for the circularly polarized drive is shifted by more than
the width in the absence of the drive, then the effect of the
linearly polarized drive would be a “symmetrized” peak. This
is, actually, not the case. The reason is that the spin dynamics
for a fast linearly polarized and circularly polarized drives are
very different.

Assume that the driving field oscillates along the x axis,
B1(t) = iB1 cos(ωt + ϕ). In the Appendix we derive the
following expressions for the dynamics of the spin projections
averaged over ϕ:

〈Sx(t)〉 = cos

[
γB0J0

(
γB1

ω

)
t

]
, (20)

〈Sy(t)〉 = J0

(
γB1

ω

)
sin

[
γB0J0

(
γB1

ω

)
t

]
, (21)

〈Sz(t)〉 = 0. (22)

The above result leads us to the conclusion that, with the
fast linearly polarized drive, the curves R(B) and R̃(B) have
exactly the same shape as in the absence of the drive. The only
difference is that the Larmour frequency ωL gets replaced by
ωLJ0(γB1/ω), signifying the broadening of the curves, which
oscillates with the drive amplitude.

A. Strong drive

Another regime of the spin dynamics specific for a linearly
polarized drive is realized when the drive is very strong,
B1 � B0. We will describe this regime qualitatively. As B1(t)
oscillates, it exceeds the static field B0 during, practically,
the entire period, 2π/ω. Then B0 has a negligible effect on
the spin dynamics. However, during short-time intervals, δt ,
when B1(t) passes through zero, the electron spin is affected
by B0 only. During each of these intervals the spin rotates
by the angle ∼B0δt . Thus, the net rotation after time t is
∼(B0δt) ωt . Now the value δt can be estimated from the
relation B1(ωδt) = B0. This leads us to the conclusion that the
spin dynamics, averaged over the the period of the drive, is still
a regular spin precession around the z axis but with effective
frequency ∼γB2

0/B1 instead of ωL. One consequence of the
replacement of ωL by γB2

0/B1 � ωL in Eq. (5) is a general
broadening of the Hanle profile, which can be controlled by
the strength of the drive. The other consequence is that the
Hanle profile acquires a flat top.

V. DISCUSSION

Our overall conclusion is that the ac drive with frequency ω

affects nonlocal spin transport if its amplitude is strong enough,
γB1 � ( ω

τ̃s
)−1/2. Choosing for an estimate the values τs = 50

ns and ω = 200 MHz, we find that the driving amplitude must
be bigger than 1 mT to affect the spin transport. This value is
quite realistic for experiments where the effects of the ac drive
are studied by electrical measurements [35].

Our consideration is based on the conventional model of
spin transport which is captured by Eq. (1) for nonlocal
resistance. This implicitly suggests that all the physical
assumptions underlying this model are met. For example, it
assumed that the the resistance of the channel is much smaller
than the contact resistance at the boundary with ferromagnets.
It is also assumed that the resistance Eq. (1) is ohmic, i.e.,
the deviation from the local charge neutrality is completely
neglected. This deviation would necessitate simultaneous
solution of the Poisson and drift-diffusion equations in a
self-consistent manner [36,37]. We have also disregarded the
magnetic proximity effects at the F-N interfaces, which can be
important if the normal channel is graphene [38].

In this paper we considered the domain of parameters
γB1 < ω and found that modification of the shapes of the
Hanle curves is primarily the broadening and the shift of the
maximum. The above numerical estimate suggests that the
opposite relation γB1 > ω is also experimentally accessible.
For this domain of a strong circularly polarized drive the shapes
of the Hanle curves change dramatically, as it is illustrated in
Fig. 5. The curves exhibit two scales, which can be qualitatively
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10 5 0 5 10

FIG. 5. (Color online) At strong drive γB1 > ω. The zero-drive
Hanle curves not only lose their symmetry but acquire additional
maxima and minima. The evolution of the Hanle shapes for a given
γB1τ̃s = 2 and L/λs = 1.4 is plotted from Eq. (14) for driving
frequencies ωτ̃s taking the values between zero and one with a step
0.1. The arrow shows the direction of the increase of the driving
frequency.

interpreted as follows. The low-B scale is the signature of the
condition ωL = ω for which the argument y−ω+γH of fr in
Eq. (14) is minimal. The high-B feature is the signature of
ωL = γB1 at which the prefactor in the third term in Eq. (14)
changes significantly.

One of our main findings is that the fast and strong circularly
polarized ac fields affect the Hanle profile dramatically, as
illustrated in Fig. 4, while the linearly polarized field with
the same amplitude and frequency has a little effect on the
Hanle curve. This is in contrast to usual reasoning in magnetic
resonance suggesting to treat the linear polarization as the
superposition of two circular polarizations and keep only the
polarization which corotates with precessing electron spin.
The easiest way to understand the difference between the spin
dynamics for linear and circular polarizations qualitatively is
to set B0 equal to zero. Then, with initial spin direction along
x, the ac field, linearly polarized along x, would not cause any
spin dynamics at all. On the other hand, according to Eqs. (11)
and (12), the average spin will precess around the z axis (if
γB1 � ω) even when B0 = 0.

The effect of the ac drive on the Hanle curve is more
pronounced for circular polarization of the drive when the
symmetry of the curve is broken. In experiment, the circular
polarization of microwaves is achieved [39–41] with the
help of two crossed microstrip resonators. In particular, in
Ref. [40] it was demonstrated that the optically detected
magnetic resonance spectrum of the nitrogen vacancies in
diamond depends on the direction of the circular polarization
of microwaves.

Sensitivity of the Hanle curves to the ac drive can serve
as a test of whether a spin-polarized current indeed flows
through the channel of the device. Such a test is especially
important for three-terminal devices [8,42–47] where the
question about the spin injection is still controversial. In
these devices, with only one of the electrodes being a
ferromagnet, the spin-dependent buildup of a voltage between
the injector and detector observed in experiment, as well as

the sensitivity of this voltage to the magnetic field [8,42,43],
can be caused by the physical mechanisms [44–47], which are
quite different from the conventional drift-diffusion picture.
Definitely the sensitivities of “drift-diffusion” magnetoresis-
tance to the ac drive, studied in the present paper, and the
magnetoresistance within the recent models [44–47] are very
different.
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APPENDIX

The equations of motion for the spin projections in the
presence of the linearly polarized drive, B1(t) = iB1 cos(ωt +
ϕ), assume the form

dSx

dt
= −γB0Sy, (A1)

dSy

dt
= γB0Sx − γB1Sz cos ωt, (A2)

dSz

dt
= γB1Sy cos ωt. (A3)

To handle the fast linearly polarized drive it is convenient [34]
to switch to the variables

Sx ′ = Sx, (A4)

Sy ′ = Sy cos θ (t) + Sz sin θ (t), (A5)

Sz′ = −Sy sin θ (t) + Sz cos θ (t), (A6)

where the angle θ (t) is defined as

θ (t) = γB1

ω
sin(ωt + ϕ). (A7)

The physical meaning of the above transformation is moving
into the frame rotating around the ac field; the ac field is
“canceled” in the new frame. The equations of motion for the
new variables read

dSx ′

dt
= γB0Sz′ sin θ (t) − γB0Sy ′ cos θ (t), (A8)

dSy ′

dt
= γB0Sx ′ cos θ (t), (A9)

dSz′

dt
= −γB0Sx ′ sin θ (t). (A10)

One can see that there are two natural frequencies in the system
Eq. (A8): one is γB0 and the other is ω. Since the second
frequency is much bigger than the first, we can average the
equations over time interval (−π

ω
,π
ω

) assuming that the spin
projections do not change significantly during this interval.
Taking into account that 〈cos(θ )〉 = J0(γB1/ω), where J0(z)
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is a zero-order Bessel function, we get

dSx ′

dt
= −γB0J0

(
γB1

ω

)
Sy ′ , (A11)

dSy ′

dt
= γB0J0

(
γB1

ω

)
Sx ′ , (A12)

dSz′

dt
= 0. (A13)

We see that the dynamics after averaging is slow, which
justifies the averaging performed [34]. Upon returning to the
laboratory frame the solution of the system Eq. (A11)satisfying

the condition Sx(0) = 1 reads

Sx(t) = cos

[
γB0J0

(
γB1

ω

)
t

]
, (A14)

Sy(t) = sin

[
γB0J0

(
γB1

ω

)
t

]
cos

[
γB1

ω
sin(ωt + ϕ)

]
,

(A15)

Sz(t) = sin

[
γB0J0

(
γB1

ω

)
t

]
sin

[
γB1

ω
sin(ωt + ϕ)

]
.

(A16)

As a final step, we average over the initial phase, ϕ, and arrive
to Eq. (20).
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