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ABSTRACT
A population growth model that represents the growth tra-

jectories of individual subjects is critical to study and under-

stand neurodevelopment. This paper presents a framework

for jointly estimating and modeling individual and popula-

tion growth trajectories, and determining significant regional

differences in growth pattern characteristics applied to longi-

tudinal neuroimaging data. We use non-linear mixed effect

modeling where temporal change is modeled by the Gom-

pertz function. The Gompertz function uses intuitive param-

eters related to delay, rate of change, and expected asymp-

totic value; all descriptive measures which can answer clin-

ical questions related to growth. Our proposed framework

combines nonlinear modeling of individual trajectories, popu-

lation analysis, and testing for regional differences. We apply

this framework to the study of early maturation in white mat-

ter regions as measured with diffusion tensor imaging (DTI).

Regional differences between anatomical regions of interest

that are known to mature differently are analyzed and quan-

tified. Experiments with image data from a large ongoing

clinical study show that our framework provides descriptive,

quantitative information on growth trajectories that can be di-

rectly interpreted by clinicians. To our knowledge, this is the

first longitudinal analysis of growth functions to explain the

trajectory of early brain maturation as it is represented in DTI.

1. INTRODUCTION

Longitudinal imaging studies with repeated scans per subjects

require appropriate analysis procedures that take into account

the special nature of such study designs. These include corre-

lation due to repeated measures, often with unbalanced spac-

ing due to acquisitions at different time points and missing

data at certain time points. Early brain development is char-

acterized by large initial growth that flattens off, which fa-

vors nonlinear growth modeling. Typical clinical questions

are addressing growth trajectory characterizations such as de-

layed or advanced growth, accelerated or slowed growth, or
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the question if groups can reach the same level of maturation

if they have a delayed start. Diffusion Tensor Imaging (DTI)

provides a unique opportunity to assess the tissue structure of

brain white matter in vivo, and has great potential to provide

insight into early development. Previous studies have mostly

focused on morphometry changes such as volume of gray and

white matter, cortical thickness, and shape [1, 2, 3, 4]. Re-

cent methods have also been developed to combine shape and

appearance [5]. There is also considerable research on DTI,

however these are cross sectional studies and/or studies on

children older than 2 years [6, 7]. While longitudinal DTI of

infants covering the few years of life are becoming available,

analysis methodologies for assessing longitudinal changes of

individuals and populations, to our knowledge, are limited.
In this study, we focus on developing longitudinal models

for diffusion parameters which are obtained from repeated

scans of children imaged at 2 weeks, 1 year and at 2 years

of age. DTI indices have been shown to provide relevant

information about brain maturation and the underlying tissue

changes as they indicate water content and myelination [2].

Describing and analyzing the non-linear changes of white

matter are difficult as regions in the brain begin to mature at

different times, with different rates [6]. We quantify these dif-

ferences using Gompertz functions that provide an intuitive

parametrization representing delay, growth, and saturation

rate in each region. In contrast to previous studies, we ana-

lyze growth trajectories based on an explicit growth function

and a nonlinear mixed effect modeling scheme [8]. Diffu-

sion changes are modeled in a hierarchical fashion, with the

global population trend as a fixed effect and individual trends

as random effects. Mixed effect models are well suited for

longitudinal data, where each time series constitutes an in-

dividual curve. Classical statistical approaches assume each

observation is independent and identically distributed (i.i.d.),

which are not appropriate for repeated measures. We apply

our framework to compare a set of white matter regions that

are known to have different growth patterns and myelinate at

different time periods. Quantitative analysis of these regions

will provide further insight into brain maturation process and

allow us to predict subject-specific growth trajectories with

the potential of detecting pathological brain development
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related to brain disorders. We show that the statistical quan-

titative analysis results in parameters that use the clinician’s

vocabulary for assessment of growth trajectories.

2. METHOD

Non-linear Mixed Effects Modeling: We use a non-linear

mixed effects (NLME) model to analyze the longitudinal DTI

data. Compared to cross-sectional regression analysis which

uses least-squares fitting, this is a true longitudinal model

where the average of all individual trajectories is the esti-

mated population mean. As is shown in (Fig. 1) the cross-

sectional model does not capture any individual trends and

can give misleading estimates if interpreted as the ”average”

trend. The mixed effect model is also robust to outliers as it

accounts for the variabilities within individuals. In this sub-

section, we present a review of the non-linear mixed effects

model. We will present our approach for analyzing longitudi-

nal DTI data using NLME in the next subsection. In the mixed

effects model, the observed data is assumed to be a combina-

tion of both fixed effects, parameters associated with the entire

population or at least within a sub-population, and random
effects that are specific to an individual drawn at random. In

non-linear mixed effects models, some or all of the fixed and

random effects parameters present nonlinear responses. This

makes nonlinear mixed effects model a natural and common

choice for longitudinal data. We use the NLME model pro-

posed by Lindstrom and Bates [8], where the jth observation

on the ith individual is modeled as:

yij = f(φi, tij) + eij i = 1, · · · ,M ; j = 1, · · · , ni (1)

where M is the number of individuals, ni is the number of

observations on the ith individual, f is a nonlinear function

of the covariate vector tij and parameter vector φi, and eij ∼
N(0, σ2) is an i.i.d. error term. The parameter vector can

vary among individuals. This is incorporated into the model

by writing φi as

φi = Aiβ +Bibi bi ∼ N(0,Ψ) (2)

β is a p-vector of fixed effects, and bi is a q-vector of random

effects associated with individual i with variance-covariance

Ψ. Ai and Bi are design matrices.

Regional Analysis of Longitudinal DTI Patterns: We per-

form quantitative analysis on a population of longitudinal DTI

data within anatomical regions. We model DTI features as

non-linear mixed effects, which combines regional popula-

tion trends and individual subject trends. For this section, we

assume that DT MR images have been registered to a stan-

dard reference space. The primary goal for our analysis of

growth trajectories is to determine whether patterns of growth

are different among different regions, and if we can provide a

descriptive, intuitive parametrization for each region that can

be compared to other regions of brain. As the human brain
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Fig. 1. Population growth models, represented as black

curves, obtained using nonlinear least squares (nls) on left and

nonlinear mixed effect model (nlme) on right. Colored points

represent data observations, and colored curves represent the

individual growth trajectories.
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Fig. 2. Effect of varying the parameters of the Gompertz func-

tions. The red curve show the reference curve that is held

fixed. Left to right: the dashed blue curves show the effect of

increasing values of β1, β2, and β3 respectively.

undergoes rapid changes in the first year of development and

slows considerably in later years, we model early develop-

ment patterns in DTI using the Gompertz function. Specif-

ically, we model temporal growth for an individual i, time

points tij , and region r by nonlinear mixed effect model of

the Gompertz function

yrij = f(φr
i , tij) + eij = φr

1i exp{−φr
2iφ

r
3i

tij}+ eij (3)

where the mixed effects are φr
i = [φr

1i φ
r
2i φ

r
3i]

T = βr + bri ,

the fixed effects, βr = [βr
1 βr

2 βr
3 ]

T , for region r represent

mean values of parameter φr
i in the population and the ran-

dom effects for each subject i, bri = [br1i br2i br3i]
T , explains

individual variation from the mean. In this model, p and q are

same size vectors, and the design matrices A and B are iden-

tity. We note that an alternative representation for Gompertz

function is

y = asymptote exp(−delay exp(−speed t)).

This parametrization intuitively decomposes the mean of tem-

poral changes of a population as saturation (β1), delay (β2),

and speed (− log β3) as shown in Fig. 2.

We obtain mixed effect model parameters using maxi-

mum likelihood estimation (MLE) on the marginal density

of the response y: p(y|β,Ψ, σ2) =
∫
p(y|β, b, σ2)p(b|Ψ)db

There is generally no closed form solution, so we use the ap-

proximation method proposed by Lindstrom and Bates [8],

using the nlme function in R1, to obtain model parameters,

1http://r-project.org
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βR1 : [0.98,-1.92,.988] [.98,-1.93,.988] [.99,-1.99,.988]

βR2 : [1.08,-1.94,.988] [.98,-1.03,.988] [.99,-1.98,.991]

β1 : |R1| < |R2| β2 : |R1| > |R2| β3 : |R1| < |R2|

Fig. 3. Example of randomly generated synthetic longitudinal

data for two different regions colored blue (R1) and red (R2).

Three different tests were performed. Left to right: varying

β1, β2 and β3 between two regions. Estimated β parameters

for regions R1 and R2 along with Gompertz parameters with

significant differences (p < 0.001) are shown.

β, b, Ψ,σ. Once all the model parameters are estimated, we

can conduct hypothesis testing and determine the significant

modes of longitudinal changes in terms of asymptote, delay,

and speed between regions. With N number of regions, we

accomplish this through
N(N−1)

2 pairwise fitting of nonlin-

ear mixed effect model and test for fixed effect significance

through t-test; corrected for multiple comparisons using Bon-

ferroni correction. The parameters that are found to be sig-

nificant can then be interpreted as the distinguishing feature

between the longitudinal patterns of the two regions.

3. RESULTS AND CONCLUSIONS

Validation on Synthetic Data: We generated synthetic lon-

gitudinal data to ensure our analysis methodology can cap-

ture underlying differences as presented in the synthetic data.

Random data representing two regions is generated, and we

verify that the overall trend of the subjects and each sub-

ject’s specific growth trajectory matches the known ground

truth. We also verify that the Gompertz parameters are sig-

nificantly different between the two regions in a way that

matches the synthetic model. Synthetic longitudinal data are

generated following equation 3 where βR1 = [1,−2, .989],
Ψ = diag(0.042, 0.022, .0022) and σ2 = 0.0012. Values for

four time points of three subjects are generated while keep-

ing some of the fixed parameters of βR2 the same as βR1 .

We then vary one of the fixed parameters of R2 and per-

form three tests: βR2 = [1.1,−2, .989], βR2 = [1,−1, .989],
βR2 = [1,−2, .992], and test for significant differences be-

tween two regions. Fig. 3 summarizes our experimental re-

sults. The results demonstrate that our approach can detect

significant discriminatory features of growth patterns in a pair

of regions in terms of Gompertz parameters.

Analysis of Clinical Data: We perform analysis on a set of

repeated scans of eight healthy subjects scanned at approxi-

mately 2 weeks, 1 year and 2 years of age. The images in-

clude T2W and DTI. We apply the unbiased atlas building

framework [9] to the set of T2W images at 1 year to ob-

tain spatial mappings between each subject through the es-

timated atlas. Scans of other time points of each subject are

registered to this atlas via linear and nonlinear transforma-

tions 2. Tensor maps are calculated for each DTI scan, and

are registered to the atlas using transformations obtained by

registering the DTI baseline (B0) images to T2W images.

In this study, we extract the mean, axial, radial diffusivity,

and fractional anisotropy features from the registered tensors,

MD = λ1+λ2+λ3

3 , AD = λ1, RD = λ2+λ3

2 and FA =√
1
2

√
(λ1−λ2)2+(λ1−λ3)2+(λ2−λ3)2√

λ2
1+λ2

2+λ2
3

where λi are the sorted

eigenvalues of the tensor. For regional analysis, we select

four anatomical regions in the unbiased atlas that are known to

mature in distinctly different patterns and determine the char-

acteristics of these differences. Since all DT images are reg-

istered to a common coordinate space, regions determined in

this space can be automatically transferred to each individual

image. We use regions defined by Mori et al. [10] that were

registered to our unbiased atlas and modified through binary

erosion for improved accuracy. The selection of regions in

the atlas space allows automatic partitioning of the subjects’

scans into different anatomical regions. Fig. 4 show a sum-

mary of pairwise comparisons of estimated population means

for Genu, Splenium, ALIC, and PLIC regions. We character-

ize the differences in an intuitive way using Gompertz asymp-

tote, delay and speed parameters. When β1 : |R1| > |R2|, ex-

pected value of diffusion parameter for R1 is higher than R2

after early development. When β2 : |R1| > |R2|, region R1

is delayed in maturation compared to R2. β3 : |R1| > |R2|
indicates accelerated growth for R2 compared to R1.

Conclusions: This paper presents a statistical methodology

for characterizing longitudinal patterns of tissue properties

in white matter regions. Our approach provides descriptions

of the significant discriminating features of growth patterns,

within a pair of regions or across patient groups, in terms of

the Gompertz asymptote, delay, and speed parameters; a rep-

resentation where maturation changes and differences can be

interpreted in natural language terms. This provides an intu-

itive description of longitudinal trends, with potential for ana-

lyzing biological progression and change from normal in neu-

rodevelopment, aging, disease progression or recovery. This

is in contrast to current modeling and analysis of develop-

mental and degenerative processes where testing for regional

or group differences does not directly reveal the type, nature

and time course of differences. The proposed analysis can be

extended to arbitrary number of regions, performed on other

measurements such as tissue property features extracted from

structural MRI, and be extended to multivariate growth func-

tions similar to a strategy described in [4]. Since the analysis

is based on the regions of interest, we expect the method to

be robust to misregistration, but future validation of the reg-

istration framework is needed. We also plan to estimate the

p-value based on Markov chain Monte Carlo sampling from

the posterior distribution of the parameters rather than t-test.

The experimental results from early development of white

2http://www.doc.ic.ac.uk/˜dr/software
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RD (above diagonal) and AD (below diagonal)

FA (above diagonal) and MD (below diagonal)

Fig. 4. Pairwise testing of different white matter regions,

shown in the diagonal. Gompertz parameters with signifi-

cant differences (p < 0.001) are denoted. Curves represent

the population trajectory of a region represented by the rows

(blue), columns (red). The range of values are the following:

x-axis: newborn to 2-years of age. y-axis: RD: [0.003,.009],

AD: [0.01, .018], FA: [0,0.8], and MD: [0.004,0.012]

matter reveal developmental patterns of individual subjects,

whole groups and differences across anatomical locations and

across groups (not shown in this paper). E.g., FA of ALIC is

delayed if compared to PLIC at birth, mostly explained by

larger RD at birth but both converging at 2 years (Fig. 4). FA

of splenium is higher than genu throughout the observed time

interval, presenting same MD but explained by lower RD and

higher AD. Delay parameter of RD best explains the tempo-

ral sequence of myelination in these selected regions and con-

firms previous histological findings [11]. Coupled with cog-

nitive and behavioral scores, such quantitative analysis might

give new insight into developmental processes in healthy and

disease, and may even lead to prediction of onset of disease

and eventual planning of early therapeutic intervention. Using

the proposed framework, population models obtained from

healthy subjects will serve as normative data for comparisons

of developmental trajectories of at risk individuals.
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