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ABSTRACT
Traumatic brain injury (TBI) due to falls, car accidents, and

warfare affects millions of people annually. Determining per-

sonalized therapy and assessment of treatment efficacy can

substantially benefit from longitudinal (4D) magnetic reso-

nance imaging (MRI). In this paper, we propose a method

for segmenting longitudinal brain MR images with TBI us-

ing personalized atlas construction. Longitudinal images with

TBI typically present topological changes over time due to the

effect of the impact force on tissue, skull, and blood vessels

and the recovery process. We address this issue by defining

a novel atlas construction scheme that explicitly models the

effect of topological changes. Our method automatically esti-

mates the probability of topological changes jointly with the

personalized atlas. We demonstrate the effectiveness of this

approach on MR images with TBI that also have been seg-

mented by human raters, where our method that integrates 4D

information yields improved validation measures compared

to temporally independent segmentations.

Index Terms— 4D pathology segmentation, longitudinal

MRI, topological change estimation, atlas construction.

1. INTRODUCTION

Improved therapy in traumatic brain injury (TBI) is an im-

portant driving biological problem for the medical commu-

nity as TBI is a major cause of death and disability world-

wide, especially in children and young adults. It is a sig-

nificant problem in health care as it affects about 1.7 mil-

lion people in the United States every year [1]. Robust, re-

producible segmentations of longitudinal magnetic resonance

(MR) images with TBI are crucial for quantitative analysis

of pathology and of recovery to measure treatment efficacy.

A challenging problem for longitudinal segmentation of TBI

images is the change of brain structure due to lesions (primar-

ily swelling/edema and bleeding). At different time points
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and stages, lesions may deform and they can also disappear

or appear due to intervention, recovery or formation of new

injuries. Thus, 4D segmentation methods for TBI need to be

able to map images over time and handle topological changes.

Longitudinal segmentation algorithms [2, 3] use informa-

tion from all time points to achieve optimal results. This re-

quires registration of each image to a reference time point

or an atlas. Many image registration methods assume that

there are no topological changes between images and use dif-

feomorphic (smooth and invertible) mappings. However, for

longitudinal images with TBI this assumption no longer holds

and it is necessary to model topological changes (Fig. 1).

Fig. 1. Illustration of topological changes in longitudinal MR

images with TBI. Left is the acute baseline T2 image, right

the chronic followup T2 image, each overlaid with a sketch

mock figure. Red indicates lesions with topological changes

over time (either disappearing or appearing lesions). Green

indicates lesions that deform without topological changes.

Several researchers have proposed methods [4, 5, 6, 7, 8]

for registering images with topological changes due to miss-

ing or newly appearing structures. Periaswamy and Farid

proposed a registration method for images with missing cor-

respondence in which topological changes were detected

through difference of image intensities [4]. Li et al. pro-

posed a registration method using Riemannian embedding

that accounts for deformation and intensity changes [5].

Chitphakdithai and Duncan proposed a postresection inten-

sity prior for alignment of preoperative and postresection
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brain images [6]. Niethammer et al. proposed a registra-

tion method for TBI images using geometric metamorphosis

that maps known lesion boundaries over time [7]. Ou et al.

proposed a generic deformable registration method using at-

tribute matching and mutual-saliency weighting [8]. These

image registration methods do not provide anatomical infor-

mation unlike segmentation and atlas construction methods.

In this paper, we propose a longitudinal segmentation

method that relies on personalized atlas construction and

topological change estimation. The method iteratively esti-

mates the image appearance model and the spatial anatomical

model that undergoes diffeomorphic deformation and non-

diffeomorphc/topological changes. We define a novel objec-

tive function for personalized atlas construction with topo-

logical changes. This objective function gives rise to joint

estimation of anatomical priors, diffeomorphic mappings,

and the probability of topological changes for a longitudinal

MR image sequence.

2. METHOD

2.1. Estimation of Image Appearance Model

Given multimodal images at time point t denoted by It =
{I(x1), . . . , I(xN )}t with N voxels indexed by positions x
and Mt number of channels, we use mixtures of Gaussians

to model the data following van Leemput et al. [9]. We esti-

mate the Gaussian mixture parameters that maximizes the log

likelihood function for each time point t:

∑

x

log

Ct∑

c=1

p(It(x)|μt
c,Σ

t
c)Π

t
c(x) (1)

where p(It(x)|μt
c,Σ

t
c) is the multivariate Gaussian probabil-

ity distribution with mean μt
c and covariance Σt

c, Ct is the

number of classes at time point t, and Πt
c is the spatial prior

for class c at time t.
The number of classes Ct at different time points in longi-

tudinal images with TBI typically varies because hemorrhagic

lesions (bleeding) and non-hemorrhagic lesions (swelling /

edema) may disappear in follow-up scans due to recovery. We

address the problem of mapping variable numbers of lesion

classes by combining the posteriors of lesion classes (bleed-

ing and edema) into one. The combination of lesion poste-

riors yields a unified class posterior for all lesions and thus

gives us equal number of classes C for the posteriors P t
c =

p(It|μt
c,Σ

t
c)Π

t
c∑

c′ p(It|μt
c′ ,Σ

t
c′ )Π

t
c′

at each time point t that is used to con-

struct personalized atlases.

2.2. Personalized Atlas Construction

We use the posteriors P t = {P t
c=1 · · ·P t

c=C} to build a per-

sonalized atlas At at each time point t. We smoothly sub-

divide the image into diffeomorphic and non-diffeomorphic

Fig. 2. Construction of a personalized spatiotemporal at-

las using diffeomorphic and non-diffeomorphic components.

The diffeomorphic component is the temporally global atlas

P̄ that is mapped to each time point while preserving topol-

ogy of P̄ . The non-diffeomorphic components are the tempo-

rally local pdfs Qt at each time point t that may change the

topology between different time points. Regions that change

diffeomorphically are colored in green, while regions that

change topology are colored in red.

regions using the probability of topological change denoted

by Γt ∈ [0, 1]. We define the personalized atlas at time point

t using Γt as

At = (1− Γt)P̄ ◦ ht + ΓtQt. (2)

The personalized atlas At is a combination of an atlas P̄ that

has been mapped using the diffeomorphic mapping ht and a

temporally specific atlas Qt (Fig. 2). The parameters that de-

fine the personalized atlas is chosen such that the diffeomor-

phic component (weighted by (1−Γt)) matches P̄ to P t, and

the non-diffeomorphic component (weighted by Γt) matches

Qt to P t. Thus, personalized atlas construction is formulated

as a minimization of the energy function,

Ψ = ‖ (1− Γt)(P t − P̄ ◦ ht) ‖2 + ‖ Γt(P t −Qt) ‖2
+ w ‖ Γt ‖2 + R(ht). (3)

where R(·) denotes the regularization term that enforces ht to

be diffeomorphic mappings and w is the scalar weight for the

regularization term for Γt that enforces sparsity.

We take the derivative with respect to Qt and Γt and set

the derivatives as zero to get the updates for Qt and Γt. The

temporally specific atlas Qt is estimated from

∇QtΨ(x) = − 2 Γt(x)(P t(x)−Qt(x)) = 0, (4)

Obtaining Qt = P t. The probability of topological change

Γt is estimated using∇ΓtΨ(x) =

− 2 (1− Γt(x)) ‖ P t(x)− P̄ t(x) ‖2
+ 2 Γt(x) ‖ P t(x)−Qt(x) ‖2 + 2w Γt(x). (5)
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where P̄ t is P̄ ◦ ht. Setting∇ΓtΨ(x) = 0, we get

Γt(x) =
‖ P t(x)− P̄ t(x) ‖2

‖ P t(x)− P̄ t(x) ‖2 + w
. (6)

The intuition for Γt update is that when correspondence exists

between two time points (no topological change), the tempo-

ral difference ‖ P t(x) − P̄ t(x) ‖2 is small, so Γt(x) → 0;

when there is no correspondence, the temporal difference is

large, so Γt(x) → 1/(1 + w). Our topological change es-

timation Γt based on optimization of Ψ provides a justifica-

tion for the weight function in [4]. The estimation of the dif-

feomorphic atlas P̄ and the diffeomorphic mapping ht yields

a method identical to standard computational anatomy algo-

rithms [10], where we use modified gradient equations con-

cerning the diffeomorphic component.

2.3. Segmentation Algorithm

The segmentation algorithm that combines the estimation of

the image appearance model and the construction of personal-

ized atlas is presented below. We use user input that indicates

the areas showing major lesions and lesion types as spheres

to initialize the algorithm. These spheres function as rough

estimates of the segmentations that will be refined by our al-

gorithm by adding or removing lesions as necessary.

P t ← temporally independent segmentation with user input

Γt ← 0.5
Repeat until convergence

P̄ t ← P̄ t − ε∇P̄ tΨ
ht ← ht − ε∇htΨ
Qt ← P t

Update Γt using Equ. (6)

At ← (1− Γt)P̄ ◦ ht + ΓtQt

P t ← segmentation using prior Πt = At

3. RESULTS AND VALIDATION

We apply our framework to multimodal image data of three

subjects with TBI. Each subject was scanned at two time

points: acute scan at ≈ 3 days and chronic scan at ≈ 6

months. The image data of each subject include T1, T2,

FLAIR, and GRE modalities. Acute and chronic images

of Subject I is shown in Fig. 3 where non-hemorrhagic le-

sions (edema / swelling) are shown as hyperintense regions

in FLAIR while hemorrhagic lesions (bleeding) are shown as

hypointense regions in T2 and GRE.

We validate our method by comparing our results to man-

ual segmentations by a human expert that act as ground truth.

For comparison, we also show results of independent 3D seg-

mentations at each time point. We use the Dice coefficient

as our comparison measure, which measures the volumetric

overlap of two binary segmentations and lies in [0, 1]. Table. 1

Fig. 3. Axial views of acute and chronic images of Subject I.

Subject Dice values

Lesion types ANHL AHL CL

Indepedent analysis

I 0.5311 0.5135 0.2576

II 0.2444 0.5107 0.1367

III 0.4747 0.2940 0.1963

Joint analysis

I 0.6069 0.5683 0.3383

II 0.5009 0.5194 0.5578

III 0.6563 0.3557 0.1999

Table 1. Dice values comparing semi-automatic segmenta-

tion to ground truth, using temporally independent segmen-

tations and our approach. AHL and ANHL are acute hemor-

rhagic and non-hemorrhagic lesions, CL is chronic lesion.

Fig. 4. Segmentations of our method for acute images of

Subject I. AHL and ANHL are acute hemorrhagic and non-

hemorrhagic lesions (edema), CL is chronic lesion (necrosis).

shows the comparisons of both methods against the ground

truth. In this experiment, initial Γt is 0.5 and w is 1.0. The

Dice coefficient values are relatively low due to the complex

shapes of the small lesions, but important are the differences

between independent and joint analysis of the two time points.

Coronal view of the final posteriors of subject I using

our framework are shown in Fig. 4. The evolving posteri-

ors P t of subject I are shown in Fig. 5. The initial posteriors

for both non-hemorrhagic and hemorrhagic lesions are sub-

optimal, and the posteriors are improved at each iteration of

our algorithm. In particular, the initial posteriors for hemor-

rhagic lesions are incorrect as the user initialization covers the
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Fig. 5. The evolving posteriors P t of the lesion classes for the

acute images of Subject I. Top left is acute T2 image followed

by the posteriors of non-hemorrhagic lesion from iteration 1

to 4, bottom left is acute FLAIR image followed by the pos-

teriors of hemorrhagic lesion from iteration 1 to 4.

Fig. 6. The evolving personalized atlas At generated by our

method for the acute (t = 1) and chronic (t = 2) images

of Subject II. Top left is acute FLAIR image followed by the

A1 from iteration 1 to 4, bottom left is chronic FLAIR image

followed by the A2 from iteration 1 to 4.

boundary between lesion and white matter. However, the final

posteriors of hemorrhagic lesions provides segmentation that

matches the observed image data. Fig. 6 shows the evolving

personalized atlas At of lesion class of subject II. At changes

gradually to match P t because we estimate personalized at-

lases that are similar to the segmentations at each time point.

4. CONCLUSIONS

We have presented a segmentation method for longitudinal

MR images of TBI patients that uses personalized atlas con-

struction and topological change estimation. Our method

combines 4D information through the creation of person-

alized atlas that explicitly handles diffeomorphic and non-

diffeomorphic temporal changes. The method is robust to

topological changes caused by the injury and the recovery

process in TBI. We have shown that the method provides im-

proved results compared to temporally independent analysis

which ignores temporal relationships.

Our proposed approach relies on user input to localize

samples of various lesion types. In the future, we plan to au-

tomate this process using prior knowledge on the appearance

of lesions in different MR modalities. The method generates

complete 4D segmentations of healthy structures as well as

lesions which has potential for quantifying changes over time

due to recovery under individually chosen treatment. Auto-

mated segmentation and quantitative analysis of longitudinal

changes of brain tissue and lesions may give clinicians the

highly valuable information about future improved treatment

and therapeutic interventions for TBI patients.
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