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Abstract—One goal of statistical shape analysis is the discrimination between two populations of objects. Whereas traditional shape

analysis was mostly concerned with single objects, analysis of multi-object complexes presents new challenges related to alignment

and pose. In this paper, we present a methodology for discriminant analysis of multiple objects represented by sampled medial

manifolds. Non-euclidean metrics that describe geodesic distances between sets of sampled representations are used for alignment

and discrimination. Our choice of discriminant method is the distance-weighted discriminant because of its generalization ability in

high-dimensional, low sample size settings. Using an unbiased, soft discrimination score, we associate a statistical hypothesis test with

the discrimination results. We explore the effectiveness of different choices of features as input to the discriminant analysis, using

measures like volume, pose, shape, and the combination of pose and shape. Our method is applied to a longitudinal pediatric autism

study with 10 subcortical brain structures in a population of 70 subjects. It is shown that the choices of type of global alignment and of

intrinsic versus extrinsic shape features, the latter being sensitive to relative pose, are crucial factors for group discrimination and also

for explaining the nature of shape change in terms of the application domain.

Index Terms—Shape, size and shape, shape analysis.

Ç

1 INTRODUCTION

STATISTICAL shape modeling and analysis [1], [2], [3] is
emerging as an important tool for understanding

anatomical structures from medical images. Clinical applica-
tions favor a statistical shape modeling of multiobject sets
rather than one of single structures outside of their multi-
object context. Neuroimaging studies of mental illness and
neurological disease, for example, are interested in describ-
ing group differences and changes due to neurodevelopment
or neurodegeneration. These processes most likely affect
multiple structures rather than a single one. An analysis of
the structures jointly therefore should reveal more than
studying them individually. Applications of multi-object

analysis include segmentation and studying group differ-
ences. Litvin and Karl [4], for example, have proposed
methodology for building a multiobject shape prior with
application in 2D curve evolution segmentation. In this
manuscript, we will focus on studying group differences in
neuroimaging studies using discrimination analysis.

A fundamental difficulty in statistical shape modeling is
the relatively small sample size, typically in the range of
20-50 samples in neuroimaging studies, compared to a high-
dimensional feature space, commonly one to several orders
of magnitude larger than the sample size. Given that we are
describing the shape of several structures instead of a single
one, the dimension of our feature space tends to be even
higher. This difficulty must be considered when choosing
among different methods for discrimination analysis [5]. We
favor the distance-weighted discrimination (DWD) [6],
which is similar to Support Vector Machines (SVMs), but it
suffers less from data piling problems in high-dimensional
low samples size (HDLSS) settings. Previous work in
discriminating single anatomical objects has been done by
Golland et al. [7] using distance transforms for shape features
and SVM to discriminate populations. Yuschkevich et al. [8]
also used SVM to discriminate 2D m-reps of corpora collosa.

Another context-specific choice is what features to use as
input to the shape analysis. Most neurological studies focus
solely on volume for the sake of simplicity [9], [10], [11], [12],
[13], [14]. However, Styner et al. [15], [16] have shown that
the shape of an object can be more useful in discriminating
populations than volume for particular applications. In a
multiobject setting, there may be an additional feature of
interest: the relative pose of objects with respect to each
other. A statistical description of multiobject pose variability
was introduced in [17]. Since multiobject analysis of
subcortical structures is novel, we have chosen to evaluate
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several different features, namely, volume, pose, shape, and
the combination of pose and shape.

Several different geometric shape representations have
been used to model anatomy, such as landmarks [18], dense
collection of boundary points [19], or harmonic coefficients
[20], [21]. Unlike the above explicit description, Tsai et al. [22]
and Yang et al. [23] propose an implicit statistical object
modeling by level sets with its inherent difficulties of
topology preservation. Another shape analysis approach
focuses on the analysis of spatial deformation maps [24], [25],
[26], [27]. In this work, we employed explicit deformable
shape modeling with a sampled medial mesh representation
called m-rep, introduced by Pizer et al. [28]. Styner et al. [29]
have compared the use of boundary and medial representa-
tions in the analysis of subcortical structures.

The work in this paper could be applied well to other
shape descriptions, but we chose a medial description for
several reasons. First, it gives a more intuitive representa-
tion of the interior of the object. The radius, which describes
the distance from the medial axis to the boundary, serves as
a localized measure related to the object’s volume. This is
particularly interesting for neuroimaging work because of
the widespread use of volume data. Bouix et al. [30] studied
hippocampi using the radius function defined on a
flattened 2D medial sheet. Medial representations are also
advantageous when attempting to describe certain non-
linear shape deformations such as bending and twisting
[31]. Simple boundary representations are less suited to
account for this type of variability. The sampled m-rep
description is also relatively compact when compared to
other shape representations. We can describe 10 subcortical
structures using 210 medial atoms for a total of 1,890
features. While this is much higher than the number of data
samples we typically have, it is less than the spherical
harmonic representation that we have also computed and
which uses about 10,000 features. The results of the study
presented will show that the choice of a medial description
was crucial to find relevant shape differences.

In summary, this paper presents a methodology for
discriminant analysis on sets of objects. We choose the
DWD method and feature sets of volume, pose, and shape.
The latter is given by the sampled medial m-rep shape
representation, requiring noneuclidean metrics to deter-
mine shape alignment and shape distance. The driving
application is a longitudinal pediatric neuroimaging study.

2 METHODS

In this section, we first present the motivating clinical data
and discuss the methodology of the different features used
in our discrimination analysis. These are the m-rep shape
features and the local pose change features. We then
summarize distance-weighted discrimination, along with
the transformation of our raw data. Finally, our unbiased
estimator for computing classification rates is presented.

2.1 Motivation and Clinical Data

The driving clinical problem of this research is the need for
a joint analysis of the set of 10 subcortical brain structures
(see Fig. 2b). These structures include the left and right
hemispheric hippocampus, amygdala, caudate, putamen,
and pallide globe. The image data used in this paper are

taken from an ongoing clinical longitudinal pediatric

autism study [32]. This study includes autistic subjects

(AUT) and typically developing, healthy controls (CONT)

with baseline at age 2 and follow-up at age 4. For the study

in this paper, we have selected 23 subjects from the autism

group and 10 from the control group. For all of the autism

subjects and 6 of the 10 controls, we have successful scans at

age 2 and age 4. For the other four controls, we paired an

age 2 scan of one subject with an age 4 scan of another

unrelated subject. We also have four additional control

age 2 scans that have no matching age 4 scan. This gives us

a total of 70 samples: 46 autism and 24 control.

2.2 M-rep Shape Description

The m-rep shape description for a 3D object consists of a

sheet of medial atoms, each of which is defined by a position,

radius, and two unit-length normal vectors to the boundary

(spokes). The radius represents the distance from the atom

position to the corresponding point on the boundary of the

object along the two normal vectors. The medial atom, as

shown in Fig. 1, is defined as m ¼ fp; r;Uþ1;U�1g 2 M,

withM¼ IR3 � IRþ � S2 � S2.
To obtain m-reps describing the subcortical structures in

our study, we started with binary image segmentations from

well-trained experts using semiautomated procedures.1 We

also needed an initial m-rep that would be deformed to fit

the binary image. We constructed these initial medial models

using the modeling scheme developed by Styner et al. [31] to

determine the minimum sampling required for each model.

Given a binary segmentation and initial model, the initial

model is deformed through an optimization process such

that the model best fits the image without becoming too

irregular in its geometry [33]. This process is applied

individually to each of the 10 anatomical objects using the

Pablo tool [34], while the correspondence across samples is

implicitly established by the deformation process on the

template model. Figs. 2a and 2b show the medial atoms for a

set of objects and the implied surfaces.
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Fig. 1. Medial atom: position (p), radius (r), and two normals to
boundary (U).

1. See https://www.ia.unc.edu/dev/tutorials for a detailed description
of protocols and reliability results.



2.3 Alignment and Pose

In a multi-object setting, it must be decided how to remove
unimportant shape variability through alignment. We call
aligning the object set as a whole, where transformations are
applied to all objects jointly, a global alignment. As shown in
Figs. 3a and 3b, after this global alignment, there are still local
pose differences among the individual objects. In our case,
we assumed that these single object pose differences were
important because they represent the interobject changes
within the multiobject set. Therefore, after the global
alignment, we perform a second step referred to as the local
alignment. In this step, we take the globally aligned object
sets and align objects individually as would be done in a
single-object setting. It is these local pose changes that we
include as part of the overall variability of the objects. The
resulting m-reps after the local alignment are what we refer
to as pure shape and can be seen in Fig. 3c. For the purposes
of this paper, the global alignment included translation and
rotation. This accounted for any pose differences between the
original images. The local alignment included translation,
rotation, and scale to remove all remaining pose. When we

use the local pose changes as features for discriminant
analysis, we have an 8D vector consisting of three elements
for the translation, four for the orientation (stored as a
quaternion), and one for the scale. After both global and local
alignments have been finished, the final m-reps are in the
mean pose position and used as the pure shape features.

To align m-reps, we use a variation of the standard
Procrustes method [35]. In a standard Procrustes alignment

on a set of boundary points, the sum-of-squared euclidean
distances between corresponding points are minimized. For
our purposes, we instead minimize the geodesic distance
between m-reps because they do not lie in a euclidean space

[36]. The distance between two m-reps is then the sum of
geodesic distances over all m-rep features m ¼ fp; r;
Uþ1;U�1g. The geodesic distance dðma;mbÞ between two

medial atoms ma and mb equals kpb � pa;
rb
ra
;RðUþ1

b Þ �Uþ1
a ;

RðU�1
b Þ �U�1

a k, where RðxÞ is the rotation of x to ð1; 0; 0Þ. The
corresponding Procrustes error metric is dðS1; . . . ; SN ;

M1; . . . ;MNÞ ¼
PN

i¼1

Pi
j¼1 dðSi �Mi; Sj �MjÞ2, where Si;Mi

are the ith transformation and the m-rep models. For more
details, see [36]. This procedure results in the following steps:

1. Translations: First, the translational part of the
alignment Si is minimized once and for all by
centering each m-rep model. That is, each model is
translated so that the average of its medial atoms
positions is the origin.

2. Rotations and Scalings: The ith m-rep model Mi is
aligned to the mean of the remaining models,
denoted as �i. The alignment is accomplished by a
gradient descent algorithm on SOð3Þ �Rþ to mini-
mize dð�i; Si �MiÞ2. The gradient is approximated
numerically by a central differences scheme. This is
done for each of the models.

3. Iterate: Step 2 is repeated until the error metric
cannot be further minimized.

2.4 Distance-Weighted Discrimination

Discriminant analysis is concerned with finding the axis
which best separates two populations. An optimization must
be performed that somehow maximizes the distance between
the discriminating axis and the data points while separating

the two classes. It is formulated in a general way as follows
(see Fig. 4): Given points xi, class indicators yi 2 fþ1;�1g,
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Fig. 3. Multi-object alignment. (a) Global translation and rotation.
(b) Global translation, rotation, and scale. (c) Local translation, rotation,
and scale after global translation and rotation.

Fig. 2. M-reps of a multiobject complex. (a) Medial atoms. (b) Implied
boundary surfaces of medial description.

Fig. 4. Illustration of two-class discrimination with separating hyperplane
and residuals. The support vectors that determine the discrimination
direction computation in SVM are highlighted with an additional box
marker. In DWD, all samples are included in the discrimination direction
computation.



and w the normal to the separating hyperplane, the distance
or residual r from the points to the hyperplane is

ri ¼ yiðw � xi þ �Þ; ð1Þ

where � determines the position of the hyperplane. One of
the popular methods of discriminant analysis is SVMs. It
attempts to maximize the minimum ri. The main problem
with this method is that it tends to use only a small subset of
the population, those near the opposite class, to completely
define the discriminating axis. It is manifested in the
problem of “data piling” (see Fig. 5), where most of the
samples from the same population group, when projected
onto the normal of the discriminating axis, end up very
close to each other. This leads to poor generalization
performance when tested on new samples that were not
included in the calculation of the discriminating axis: It is
too specific to the samples from which it was computed.

Distance-weighted discrimination [6] is a method
similar to SVM, but uses all sample points in the
calculation of the discriminating axis.2 It attempts to
minimize the sum of the reciprocals of ri. Thus, each
point’s contribution to the calculation is weighted inverse
proportionally to the distance from that point to the
opposite population. In this way, the DWD achieves a
higher robustness when presented with new, untrained
samples. This advantage is heightened further in the
context of high-dimensional feature spaces with low
sample sizes where it is best to use all information
available from the low number of samples. A detailed
discussion of DWD was published by Marron et al. [6].

DWD was specifically developed for the HDLSS. The
shape analysis study presented in this paper is a good
example of an HDLSS problem, as the dimensionality
(1,890D data, joint m-rep shape description of 10 subcortical
structures) is much larger than the number of samples (i.e.,
70). Classical discrimination methodology based on Fisher
Linear Discriminant is often not appropriate in such a
setting due to data overfitting and is usually outperformed
by SVM or DWD [6], [37].

2.5 Transformation of Raw Input Data

The m-rep shape description as well as the pose features
contain rotational elements that are not part of a euclidean
space. This can lead to reduced the performance of
methods such as DWD that attempt to find a linear
discriminant. Likewise, combining features with different
units into one long feature vector can bias results toward
features with larger variance. Finally, our data samples

have unequal gender distributions within the two popula-
tions. We must first account for each of these issues before
running DWD analysis.

While the application of DWD to nonlinear features
may give a reasonable solution, we found through
experimentation that the linearized form of the m-rep
features gives a better discrimination result (see Fig. 6). To
obtain a linear instance of our curvilinear m-rep and pose
features, we project them into the tangent space at the
geodesic mean point [36]. This involves taking the log map
of each of the noneuclidean features. For the pose rotation,
the log map of a unit-length quaternion q ¼ ðw;vÞ is
defined as

log q ¼ �

sinð�=2Þ � v; � ¼ 2arccosðwÞ: ð2Þ

For the m-rep normal directions U ¼ ðx; y; zÞ, the spherical
log map is

log U ¼ x � �

sinð�Þ ; y �
�

sinð�Þ

� �
; � ¼ arccosðzÞ: ð3Þ

For the pose scale and m-rep radius factors, it is a simple
logarithmic transformation.

As a next step, we want to concatenate all linearized, log-
map transformed m-rep features into a singe vector. In order
to do so, we first must make them commensurate to avoid
unwanted bias. For our purposes, we have chosen to
normalize each feature by subtracting the mean and
dividing by the standard deviation. This makes the weight-
ing of points equal among separate features in the DWD
calculation. So, for each feature, the final input to the DWD
routine is of the form

Y ¼ X �X
�
8X 2 IRk; ð4Þ

Y ¼
log X �X
� �
�

8X 62 IRk: ð5Þ

The mean X, however, is computed for each gender. By
subtracting a gender-specific mean, we eliminate any
disproportion in the gender sampling within our two
populations. To build a gender-specific mean, we start with
the lowest level of subcategories within our data and
compute the mean of the samples in each. We then compute
the mean of the subcategory means which are of the same
gender. This gives us a gender-specific mean. Fig. 7 shows
the process with subcategories according to the three
criteria of gender, group, and time.
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Fig. 5. (a) Projection onto normal of optimal separating hyperplane.
(b) Projection onto normal of separating hyperplane which exhibits
data piling.

Fig. 6. Separation of 70 multiobject m-reps into two populations given by
DWD axis. (a) Raw, nonlinear medial atom data. (b) Atom data after
projection into tangent space and subtraction of mean.

2. Available at http://www.stat.unc.edu/faculty/marron/marron_
software.html.



2.6 Unbiased Classification Using Leave-Many-Out
Experiments

To test the performance of the DWD, we chose to

implement a leave-many-out, cross-validation experiment.

We first divided our data samples into a training set and a

testing set. The discriminating axis was computed using the

training set. Each sample from the test set was then

projected onto the DWD axis with the resulting 1D

projected value serving as the classification score (hence,

known as the DWD score). The DWD method produces

both a discriminating axis and a threshold �. The threshold

value is the amount by which the training data, after

projected onto the DWD, must be shifted such that zero

becomes the best dividing point between populations.

Therefore, given a DWD axis w and a test sample feature

vector x, the DWD score becomes s ¼ w � xþ �. The discrete

classification into one of the diagnosis groups is then simply

the sign of the DWD score.
In order to make the training set unbiased, we used the

following selection strategy (see Algorithm 1): We alter-

nately choose a single random autism or control sample g1

over both timepoints. With this sample from one group, we

chose the sample g2 from the other group that was the

closest match according to the subject’s age and was of the

same gender as the subject from the first group. This results

in samples g1 and g2, one from each group at the same

timepoint. Since our data are longitudinal, i.e., we have two

data sets for each subject, one at age 2 and one at age 4, we

also included for each of the samples their corresponding

data g10, g20 at the other timepoint. This process was

repeated but starting with a random sample from the

opposite group than in the previous iteration.

Algorithm 1. Training Set T Selection

T ¼ �; size ¼ 0; i ¼ 0

while size < n do

if i mod 2 ¼ 0 then

g1 ¼ random sample from autism group

g2 ¼ closest matching sample to g1 from control group

else

g1 ¼ random sample from control group

g2 ¼ closest matching sample to g1 from autism group

end if

g10 ¼ corresponding, other sample of g1

g20 ¼ corresponding, other sample of g2

T ¼ T [ g1; g10; g2; g20f g
size ¼ sizeþ 4

i ¼ iþ 1

end while

After several runs, all of the data samples are included in
the testing set of at least in a few runs. From the results of
these experiments, an unbiased estimate of each sample’s
classification is built by computing its mean DWD score
over only those runs for which it was in the test set. In this
way, we calculate a classification for a sample only when
the discriminating axis is computed without any knowledge
of that sample. The box plots in the following sections show
these unbiased mean DWD scores.

As mentioned before, the study presented in this paper is
based on a total of 70 samples with 46 autism and 24 control
with information at ages 2 and 4 including four unpaired
control samples, which were always left out of the training
set. We chose the training set consisting of 32 out of the
70 available samples with 16 samples in each group. The
remaining 38 samples served as the test set. The experiment
was then run 100 times. The number of runs was chosen
heuristically such that each of the 70 samples was included in
the test set at least in a few runs; the minimum number of runs
in the test set for any sample was 4. From test set results, we
then calculated an unbiased mean DWD score. As the two
groups are not equally represented in the test set (30 autistic
cases and 8 controls), we assess the discrimination accuracy of
an individual test by averaging the discrimination accuracy
of the two subgroups. Without averaging of the subgroups, a
classifier that would always guess “autism” would result in a
classification accuracy of 30=38 ¼ 78:9%. Our average dis-
crimination accuracy results for such a simple classifier in
50 percent classification accuracy.

3 RESULTS

In this section, we describe the results of our discrimination-
based shape analysis experiments divided into five sections
corresponding to the analyzed features: volume, pose,
shape, shape and pose, and m-rep radii. All statistical
p-values reported in this section are computed via standard,
nonparametric permutation tests.

3.1 Discrimination by Diagnosis

3.1.1 Volume

Because of its prevalence in neuroimaging studies, we first
assessed the ability of object volumes to discriminate
between the autism and control groups. The volumes were
computed from the implied surface boundary of the m-reps.
The 10 subcortical structures gave us a 10D feature space for
the discriminant analysis. We computed the mean DWD
score for each sample over the runs in which that sample was
in the test set. This gives us an unbiased average classification
score for each sample. Fig. 8 and Table 1 show that there is a
clear, significant difference (p < 0:001) between the median
score of the autism group and control group with an average
classification performance of 74 percent.

3.1.2 Pose

The next step was to explore the significance of local pose
changes. For each sample, there were 70 features (10 objects�
3 translation, 3 rotation, 1 uniform scale) transformed to the
log-map. Similarly to the volume discrimination, the pose
analysis, which includes uniform object scale factors, showed
significantly different (p ¼ 0:03) mean DWD scores (Fig. 9).
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Fig. 7. Illustration of gender-specific mean calculation given gender,
group, and time. The same process is applied to obtain a female mean.



However, the test sample classification accuracy was con-

siderably lower than volume as illustrated in Table 1. There

were also 20 individual runs in which the classification

accuracy was at or below 50 percent, a result that would be

outperformed by a random coin flip. The translation and

rotation components of the pose seemed to be adding mostly

noise and instability to the DWD calculation because the same

experiment run with only the scale factors gave an average

classification rate of 64 percent and p ¼ 0:002 as opposed to

54 percent and p ¼ 0:1 using the translations and rotations.

From these results, we conclude that the pose does include

some relevant information for discrimination but it is likely in

the uniform scale factors. The classification rate of volume

(74 percent) compared with the scale factors (64 percent) is

illustrative of shape-based uniform scaling factors not

capturing full information of volumetric measurements.

3.1.3 Shape

Fig. 10 shows the results of using only the m-rep shape
features for the DWD calculations. As with volume and
pose, the mean DWD scores for the test samples were
significantly different (p ¼ 0:01, Fig. 10). The classification
accuracy of shape was equal to that of pose at 56 percent.
The DWD methodology proved its usefulness and stability
in high-dimensional low sample size settings because the
shape features numbered about 2,000 in total, whereas the
volume and pose were 10 and 70, respectively. Even in this
high-dimensional space, the DWD still generalized well
enough to equal the performance of the pose features.

3.1.4 Shape and Pose

Finally, the high classification accuracy of the volumes
compared with both the shape and pose features led us to
combine the latter two. This gave us the most complete
description of the variability of the multiobject complex.
The differences between the mean DWD scores were not
significant (p ¼ 0:38, Fig. 11). Once again, the pose features
seem to be mostly noise since combining them with shape
produced a nonsignificant result while shape alone was
significant. The classification accuracy (55 percent) was
similar to the shape and pose features individually, as
shown in Table 1.
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TABLE 1
Classification Accuracy over 100 Runs

Fig. 9. Pose features: Box plot (median, 25 and 75 percentiles,
minimum/maximum) of mean DWD scores of each group over those
runs in which the samples were in the test set. Greater than zero
classified as autism, and less than zero classified as control. p ¼ 0:03.

Fig. 10. Shape features: Box plot (median, 25 and 75 percentiles,

minimum/maximum) of mean DWD scores of each group over those

runs in which the samples were in the test set. Greater than zero

classified as autism, and less than zero classified as control. p ¼ 0:01.

Fig. 11. Shape and pose features combined: Box plot (median, 25 and
75 percentiles, minimum/maximum) of mean DWD scores of each group
over those runs in which the samples were in the test set. Greater than
zero classified as autism, and less than zero classified as control.
p ¼ 0:38.

Fig. 8. Volume features: Box plot (median, 25 and 75 percentiles,
minimum/maximum) of mean DWD scores of each group over those
runs in which the samples were in the test set. Greater than zero
classified as autism, and less than zero classified as control. p < 0.001.



3.1.5 Shape and Scale: M-rep Radii

One of the ongoing research questions with a discretely
sampled m-rep shape description is whether information
about spokes and atom positions are sufficiently stable based
on the method to establish correspondence. Out of this arises
the question of whether statistics on these features, which we
used as part of our shape analysis above, could be tighter by
focusing on the medial radii features that are considered
more stable. A small change in the atom position or spoke
directions will generally not cause a large change in the
radius. It is also invariant to any object-level translation and
rotation, while encoding both local shape and scale
information. This makes it a more intrinsic measure than
the other medial atom features. Compared to the other
features in Table 1, the mean classification accuracy is the
best when using only the atom radii at 76 percent. Fig. 12
shows the mean DWD scores using only the radii. While the
radii give the best classification rate of any feature we
studied, it is difficult to say outright that they are the best
features to use. First, it may be our specific application that
lends itself to a local measure that is related to volume like
the radii. It is known and evidenced above that there are
volume differences between autistic and typically develop-
ing brains. Also, Fig. 12 shows that the overlap between the
populations is not drastically better than with volume.
However, the jump in classification accuracy from using all
of the medial atom features to only the radii suggests that
there is a certain amount of noise in the other features which
ends up being correlated to the detriment of the DWD
calculation. At the same time, witnessing the radii outper-
form volume as a discriminating feature adds validation to
our general choice of the medial shape representation.

3.2 Evaluation of Bias

To verify that the mean classification scores were unbiased,
we employed random, normally distributed input data with
the same random number seeding and the exact same
training and testing sets. The random data were generated
with the same mean, variance, and dimension as our actual
data. The p-value of the mean DWD scores was 0.22 and the
classification accuracy was 49 percent.

3.3 Discrimination by Age

To complete our analysis, we ran the same experiments as
above, with precisely the same gender-corrected data, but

discriminating according to age instead of diagnosis. Not
surprisingly, most features show improved performance
when discriminating by time (Table 2) rather than by
diagnosis (Table 1), as a size differences across time are
expected to be larger. Especially noteworthy is the pose,
which does marginally better than the volume, m-rep radii,
and scale factors. Our previous work [38] has shown that
the first principal mode of our pooled data (both time
points) aligned very closely with age encoding mainly a
large global scaling effect. This age-related change mainly
affects the local translation parameters, which helps to
explain why the entire local pose performs slightly better
than scale or volume alone. Our conclusion is that since
pose does well at discriminating by age, removing pose for
the analysis of diagnosis groups leaves us with discriminat-
ing differences that are not heavily influenced by having
pooled data across time and sufficient sample size.
However, a direct method of correcting for age would be
preferable.

3.4 Visualization

To visualize the changes in shape along the DWD direction,
we start with the mean m-rep of the autism group, which is
deformed along the unit-length DWD toward the control
group. The distance along the DWD direction by which the
autism mean is deformed is defined as the distance between
the mean of each group’s projections onto the DWD
direction. The final m-rep which has been deformed by
this full distance is then used to represent the control group.

For robustness, we chose to use the mean DWD direction
over all the runs instead of using a single run from the
leave-many-out experiment. Fig. 13a shows colormaps of
surface distances between the two object sets representing
the diagnosis groups using shape only. The measurement is
the distance from the autism to the control group. In this
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Fig. 12. M-rep radii features: Box plot (median, 25 and 75 percentiles,
minimum/maximum) of mean DWD scores of each group over those
runs in which the samples were in the test set. Greater than zero
classified as autism, and less than zero classified as control. p < 0:001.

Fig. 13. Colormap of surface distances from autism mean m-rep to
deformed m-rep along DWD direction using (a) shape only and (b) m-rep
radii only. Red = inward distance, green = zero distance, and blue =
outward distance.

TABLE 2
Classification Accuracies for Discrimination by Age



figure, we see that the amygdala and hippocampus under-
go strong shape changes between the groups relative to the
other three structures. There is a distinct inward deforma-
tion of the hippocampus tail as well as an outward change
in the midsection. A large portion of each amygdala also
presents a difference in shape.

Given that the m-rep radii performed best as a
discriminating feature, we also wanted to visualize these
differences. We used the same procedure as above to obtain
a representative set of radii for each diagnosis group.
Fig. 13b shows the surface distance between m-reps of each
group with only the radii modified. The strongest indivi-
dual radii changes appear to be in the hippocampus and
the caudate. To assess the overall radii differences between
groups, we calculated 4r ¼ logðrc=raÞ for all atoms with rc
the radius of the control group and ra the radius of the
autism group. Fig. 14 shows spheres plotted at the mean
atom positions with size and color illustrating 4r. We see a
clear increase in local widths when deforming from
controls to autism at almost all positions across the three
structures. Both the hippocampus and caudate show
increases in the posterior head with slight decreases in
the body section. These overall radii decreases are
supported by Table 3 which lists the percent volumetric
change from autism to control. All structures show a larger
volume in the autism group.

4 DISCUSSION AND CONCLUSION

This research demonstrates work in progress toward shape
analysis and group discrimination of multi-object com-
plexes. Traditionally, shape analysis is concerned with
single objects following a well-developed mathematical
framework employing linear alignment. In a multi-object
setting, linear alignment will remove global translation,
rotation, and scale, but will not account for relative object
pose. A joint analysis of only globally aligned sets of shapes
will therefore include residual pose differences. Here, we
discuss and explore the various options for global and local
alignment of sets of shapes. We propose an initial global
alignment to map each data set into a common coordinate
frame. This step is followed by a local alignment for each
object, and the alignment parameters are kept as pose
information. Joint shape analysis will thus use pure shape
features not affected by residual pose. Our features are
mapped into Riemannian symmetric space, the appropriate

choice for pose, and medial m-rep features that include
rotational frames and positive reals. It is then straightfor-
ward to perform separate analyses for pose, shape, or pose
and shape. Alternatively to the stepwise feature selection
procedure, one could also use an automatic feature selection
approach. The focus here though is mainly on under-
standing the interaction of pose and shape features in the
multiobject settings.

Our results show that, in this specific application, pose
features do not give statistically significant discrimination.
Shape features also did not show significance, except when
isolating a particular feature of the m-rep shape description,
namely, the radius measure, which combines locality and
local scale. Although sampled medial representations use a
lower number of features than densely sampled surfaces,
we still face the problem of HDLSS. In typical shape
discrimination applications, two populations of less than
50 samples are represented by thousands of features. This
problem is even more pronounced with sets of objects. For
classification, we applied the DWD method, which is
designed to be robust for HDLSS data analysis problems.
Unbiased analysis by repeated leave-many-out experiments
resulted in classification rates and significance values.
Other classifiers suited for the HDLSS setting could be
chosen as well, and we make no claim that the best
classification method was chosen here.

The driving application is a pediatric autism study with
autistic and normal children imaged at 2 and 4 years of age.
We focus on a joint analysis of five left and right subcortical
structures represented as sampled medial representations.
Note that the relatively low classification rates can be
explained by the nature of the underlying clinical problem.
Morphologic neurodevelopmental phenotypes are often
reflected by only subtle differences. Discrimination rates
in psychiatric pathology are commonly low with consider-
able overlap between normal anatomy and pathology. Near
perfect discrimination rates would be very suspicious of
overfitting. Furthermore, our results fit well with the
current literature on autism [32]. Prior shape analysis
results in the hippocampus [39] correlate well with our
findings (enlargement in the head and tail sections and
reduction in the body section).

In the future, we will explore multivariate classification
by selection of a best-separating subspace rather than a
single axis. Further, we will develop a technique to explore
the covariance structure of sets of shapes. This will help
clinicians to explore links between morphological changes
and underlying biological processes.
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Fig. 14. Visualization of radii change from controls to autism in (a) right
amygdala, (b) right hippocampus, and (c) right caudate. The size of the
ball at an atom position is proportional in size to the log of the control’s
radius minus the log of the autism’s radius. Red is an increase in radius
from control to autism and blue is a decrease.

TABLE 3
Volume Percent Change from Autism to Control

%4A ¼ V olcont�V olaut
V olcont

� 100, at age A.
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