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Abstract—Analysis of human brain development is a crucial
step for improved understanding of neurodevelopmental disor-
ders. We focus on normal brain development as is observed in
the multimodal longitudinal MRI/DTI data of neonates to two
years of age. We present a spatio-temporal analysis framework
using Gompertz function as a population growth model with
three different spatial localization strategies: voxel-based, data
driven clustering and atlas driven regional analysis. Growth
models from multimodal imaging channels collected at each voxel
form feature vectors which are clustered using the Dirichlet
Process Mixture Models (DPMM). Clustering thus combines
growth information from different modalities to subdivide the
image into voxel groups with similar properties. The processing
generates spatial maps that highlight the dynamic progression
of white matter development. These maps show progression
of white matter maturation where primarily, central regions
mature earlier compared to the periphery, but where more subtle
regional differences in growth can be observed. Atlas based
analysis allows a quantitative analysis of a specific anatomical
region, whereas data driven clustering identifies regions of
similar growth patterns. The combination of these two allows
us to investigate growth patterns within an anatomical region.
Specifically, analysis of anterior and posterior limb of internal
capsule show that there are different growth trajectories within
these anatomies, and that it may be useful to divide certain
anatomies into subregions with distinctive growth patterns.

Index Terms—Brain development, MRI, Diffusion tensor imag-
ing, Longitudinal analysis, Growth trajectory

I. INTRODUCTION

Magnetic Resonance Imaging (MRI), both structural and

diffusion tensor imaging (DTI), provide insight into brain

structure in vivo. Histological studies have described a

temporo-spatial brain maturation, which has been investigated

qualitatively by radiologists [1]. However, there is still a

lack of quantification of the normal brain maturation process.

Understanding of normal brain maturation is of a great clinical

importance and a crucial step in understanding developmental

abnormalities. Previous studies have shown rapid growth in

the first 2 years followed by more subtle changes [2].

In this study we focus on developmental changes of white

matter from neonatal period to 2 years of age as is reflected

in MRI/DTI parameters. The brain undergoes significant

changes during this period, and little is known about normal

developmental growth pattern for this age group. Previous

studies on brain development have been mainly focused on

the morphometric measures such as volume [3], [4], [5], and

shape [6]. There has also been studies of diffusion parameters

such as fractional anisotropy FA, mean diffusivity MD, axial

AD, and radial diffusivity RD [7], [8], [9], [10]. However,

quantification results of T1-weighted (T1W) and T2-weighted

images (T2W) are limited [10], [11]. In contrast to previous

work where the analysis of MRI/DTI parameters are done

through discrete time points, we propose a longitudinal data

analysis through continuous functions that preserve temporal

relationships. This longitudinal data analysis can be done

voxel-wise or based on regions of interests (ROI). In the

voxel-based approach, images are all aligned to a template,

and growth model trajectories are estimated for each voxel.

Voxel-based analysis assumes that the normalization procedure

(aligning all the images to the template) is accurate. An

alternative approach is to group voxels into regions, and model

growth trajectories for each regions. However, defining regions

of interest can be a time consuming and user dependent task.

To overcome these shortcomings, we use an expert defined

white matter label atlas [12] to automatically group voxels

into regions via registration of atlas labels to images. We

also propose a data driven approach to group voxels with

similar growth patterns into a region. This method does not

make use of prior anatomical knowledge, and such a region

defined by an atlas can include different growth patterns.

The data driven approach can also define ROIs by grouping

voxels that have similar growth trajectories. In this approach,

a given structure may be divided into many smaller regions,

where each subregion has a unique growth trajectory. Further,

different anatomical structures may be grouped into one region

if they have similar growth patterns. Both atlas-based and

data driven regional analysis can provide new insight into

the trajectory of early brain development as measured by

longitudinal neuroimaging.

II. METHOD

We characterize brain development through analysis of

contrast changes in MRI and DTI of children undergoing

healthy brain development. We discuss spatio-temporal brain

development using voxel-based analysis, atlas-based ROI anal-

ysis and data driven analysis to gain a better understanding at

this crucial developmental stage.
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Fig. 1. Graph of Gompertz function. Red: original curve. Blue: Left to right:
shows effect of varying parameters a, b, and c.

We assume that we have a set of longitudinal co-registered

multimodal MR data (T1W, T2W, PD, AD, and RD) from

infants scanned at approximately two weeks, 1 year, and 2

years. Co-registration of multiple image modalities and of

images over time has been accomplished by applying existing

nonlinear registration methodologies [10], [13].

A. Modeling of Longitudinal Intensity Changes by Gompertz
Function

Normal cognitive development follows a temporal sequence

that is assumed to be correlated with structural maturation

of underlying brain tissue. Different regions in the brain

reach maturity at different times, also the rate of maturation

varies among different regions. Our goal is to model these

longitudinal changes as observed in MRI/DTI to gain a better

understanding of growth trajectories. We are also interested in

finding regions of the brain with similar patterns of growth.

We create a population model for the nonlinear contrast

changes as observed in longitudinal MRI and DTI data where

temporal growth is modeled using the Gompertz function:

Za,b,c(t) = aebe
ct

(1)

where a is the asymptote, b is the displacement in time t, and

c is the growth rate. Fig. 1 shows the effect of varying one

parameter, while keeping the other two parameters fixed. The

parameter a corresponds to the final values of a region/voxel

at the end of time period. The parameter b can be thought of

as a shift in time, and parameter c indicates a given region

to mature faster/slower compared to others. The Gompertz

function is appropriate for time series data where growth is

slow at the later stages, which is the case for the human brain

in early development that undergoes rapid changes in the first

year and stabilizes after 2 years. In analysis of growth patterns,

either a logistic model or the Gompertz model is typically

chosen. Both of these functions have asymptotic behavior at

the beginning and end of the time interval, however the logistic

model is symmetric around its inflection point. We choose the

Gompertz model as we assume that the rate of change may

vary around the inflection point and thus growth may not be

symmetric.

Specifically, the temporal growth model for the population

is created by computing the least squares fit of the Gompertz

function to temporal data points extracted from different

subjects, which can be done for each voxel or within an

ROI. Given a collection of data points (image intensities) yi,j
observed at time points ti,j where i indexes the different

locations and subjects, and j indexes the number of time

measurements (j = 1, 2, 3), the Gompertz function parameters

that represents the data is computed as follows:

(a, b, c) = argmin
(â,b̂,ĉ)

∑

i,j

||Zâ,b̂,ĉ(ti,j)− yi,j ||2. (2)

We use nonlinear optimization 1 to fit the Gompertz function

Za,b,c to the observed data.

B. Atlas Based Region Analysis

In this study we use a stereotactic white matter atlas (ICBM-

DTI-81) which is in the space of ICBM-152 [12] datasets

for definition of anatomical regions of interest. This atlas was

created by manual segmentation of a standard space average

of diffusion MRI tensor maps of 81 subjects. By using an

expert defined atlas and mapping it to the space of pediatric

subjects, we remove the need for manual segmentation of each

scan and thus reduce errors due to limited reproducibility.

We apply the unbiased atlas building framework [14] to a

set of T2W images of eight 1-year old subjects to build a T2W

atlas at the reference age of 1-year and the required mappings.

The mappings are subsequently used to create a corresponding

T1W atlas from the T1W images of each subject. The adult

ICBM-152 T1W atlas is registered to this 1-year T1W atlas,

by cascading linear and nonlinear transformations [15]. Even

though the brain goes through significant changes during the

early years of life, the shape and contrast in T1W and T2W

regions of brain appear well defined at 1-year which allows

us to register the adult brain to infant brain and at the same

time to register the white matter atlas to the infant images.

Subjects’ scans including all modalities and time points are

registered to the 1-year atlas space, which also includes the

labeled white matter atlas. This allows automatic partitioning

of white matter of each subject into different anatomical

regions, that are used in modeling of growth trajectories by

Gompertz functions for each region and each modality.

C. Data Driven Region Analysis

An alternative approach to studying brain development is a

data driven approach, where we do not make use of prior

anatomical knowledge. Here, we are interested in finding

spatial regions with similar patterns of growth as is represented

by Gompertz parameters. As mentioned in Sec. II-A, each pa-

rameter of the curve has an intuitive description of growth. The

parameter a is the asymptote value, while b and c are growth

parameters governing delay and speed. We propose the use of

a nonparametric Bayesian framework to cluster brain voxels

into regions that have similar Gompertz parameters. Clustering

is performed in the parameter space of the Gompertz functions

in each modality, with M modalities then there would be 3×M
values in our feature space.

Nonparameteric Bayesian models using Dirichlet processes

as priors have been widely used due to their capability to

capture the inherent number of clusters from the data. They

have been used in brain tissue classification [16], and brain

1http://www.r-project.org/
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Fig. 2. Top, left to right: Co-registered T1W scans of a subject at 2 weeks, 1
year and 2 years of age. Bottom, left to right: spatial maps of parameter a, b,
and c of the Gompertz functions fitted to T1W data. Areas with high intensity
in a correspond to higher maturity level at 2-years of age. Areas with high
intensity in b correspond to areas with a delayed onset in maturation. Areas
with high intensity in c correspond to areas with higher growth rate.

image analysis [13]. We use the Dirichlet Process Mixture

Models (DPMM) [17] to automatically determine the number

of clusters, and estimate the representative parameters using a

publicly available code2. We assume that the feature vectors

are drawn from mixtures of Gaussian distributions. Specifi-

cally, each feature vector θ in �3×M is distributed following

p(θ) =
N∑

k=1

GΣk
(||θ − μk||) (3)

where N is the estimated number of mixtures of different

Gaussians parametrized by means μk and covariances Σk. This

model uses Euclidean distances between the feature vectors,

which is an approximation of the non-Euclidean distances.

This approximation will still yield distinct growth patterns

within the data, although with reduced accuracy.

III. ANALYSIS OF WHITE MATTER MATURATION

IN EARLY BRAIN DEVELOPMENT

A. Dataset and Image Preprocessing

We used a subset of data that was obtained as part of a large

longitudinal infant neuroimaging study [3], [11]. This subset

includes repeated scans of eight subjects scanned at approxi-

mately 2 weeks, 1 year and 2 years of age. The images include

T1W, T2W, PD, and diffusion tensor images. The intensity

inhomogeneity of the structural images were corrected using

the N3 software [18]. We apply the unbiased atlas building

procedure of Joshi et al. [14] to the set of T2W images at 1-

year to obtain spatial mappings between each subject. Scans of

other modalities and time points of each subject are registered

to this atlas via linear and nonlinear transformations. Tensor

maps are calculated for each DTI scan, and are registered

to the atlas using transformations obtained by registering

2http://www.kyb.tuebingen.mpg.de/bs/people/dilan/dpcode/

Fig. 3. Voxel-based analysis, where parameters of Gompertz functions
representing the population growth are displayed at each voxel. Top to bottom:
a, b, and c parameters of Gompertz function. Left to right: Gompertz function
parameters obtained from nonlinear regression of T1W, TW2, PD, AD, and
RD. Areas with high intensity in a for T1W and AD and low intensity in T2,
PD, and RD correspond to higher maturity level at 2-years of age. Areas with
high intensity in b correspond to areas with a delayed onset in maturation.
Areas with high intensity in c correspond to areas with higher growth rate.

the DTI baseline (B0) image to T2W images. Tensors are

resampled using finite strain reorientation and Riemannian

interpolation strategy. Scalar diffusion measurements such as

axial diffusivity (AD=λ1 ) and radial diffusivity (RD=λ2+λ3

2 )
were computed for each scan. Intensity levels of T1W scans

were normalized using the fat region which has high intensity,

and T2W intensities were normalized using CSF region which

has high intensity.

B. Results

1) Voxel-based Analysis: The Gompertz function at each

voxel was calculated as described in Sec. II-A. Fig. 2 shows

contrast changes of T1W images of one subject that was

scanned at approximately 2 weeks, 1 year, and 2 years of age,

and the corresponding Gompertz parameters from regression

of population longitudinal changes through this period.

Fig. 3 shows parameters a, b, and c of Gompertz functions

for all the modalities that we used in this study: T1W, T2W,

PD, AD, and RD. Areas with high intensity in parameter

a of T1W and AD images, and low intensity in T2 and

RD images (splenium, genu, anterior and posterior internal

capsule) confirms previous findings that the central white

matter tracts are more mature compared to the peripheral tracts

at this age. Parameter b of Gompertz function, which can be

interpreted as the delay in maturation have high intensity in

frontal and occipital white matter regions compared to the

central regions of white matter, and these areas are known to

be myelinated after central white matter regions [1]. Parameter

c corresponds to the speed of the Gompertz function, areas

with high intensity are maturing faster compared to regions

with lower intensity values. Most of areas with high speed

correspond to the regions that were identified with the b
parameter as having a late start, although there are exceptions.
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Fig. 4. Atlas-driven analysis, where Gompertz population models are
generated within anatomical regions defined by the atlas. Top to bottom:
spatial maps of the parameters a, b, c of the Gompertz functions. Left to
right: Gompertz function parameters obtained from nonlinear regression of
T1W, TW2, PD, AD, and RD modalities. Areas with high intensity in a for
T1W and AD and low intensity in T2W, PD, and RD correspond to higher
maturity level at 2 years of age. Areas with high intensity in b correspond to
areas that have a delayed onset in maturation. Areas with high intensity in c
correspond to areas that have higher growth rate.

Fig. 5. Growth trajectories of PLIC and ALIC.

2) ROI Analysis: Fig. 4 displays the estimated parameters

of Gompertz function for atlas-based ROI selection of different

modalities as was described in Sec. II-B. Our result show

asynchronous contrast changes of white matter in different

modalities, which might underlie the complex white matter

maturation such as dendritic growth and myelination. As a

proof of concept, we focus on two regions for further analysis.

Fig. 5 displays the growth trajectories of posterior limb of

internal capsule (PLIC) and anterior limb of internal capsule

(ALIC). PLIC is known to myelinate earlier compared to ALIC

[1], and this is evident from growth trajectories represented by

different modalities, except AD. Axial diffusivity (AD) may

not be a good indicator for the degree of myelination but of

a more general structuring of axonal bundles.

In the data-driven approach, spatial regions with similar

Fig. 6. Axial and coronal views of data-driven clustering.

Fig. 7. Data-driven analysis using clustering, where we estimate the
Gompertz population growth model from the data without the use of a spatial
anatomical prior. Top to bottom: spatial maps of the parameters a, b, c of the
Gompertz functions. Left to right: Gompertz function parameters obtained
from nonlinear regression of T1W, T2W, PD, AD, and RD modalities.

Gompertz parameters of multimodal data are clustered to-

gether without regard for anatomical partitioning. Fig. 6 shows

the axial and coronal views of the data clusters. The data

driven approach converges to 21 clusters. Fig. 7 displays

the parameters of Gompertz function corresponding to these

clusters. Growth trajectories of 2 data driven clusters explain

Fig. 8. Comparison of data-driven vs. user-driven estimation of growth
trajectory of ALIC. Color trajectories display four data-driven clusters. 78%
of ALIC is part of these four clusters. The dashed black trajectory is the
growth trajectory of the ALIC based on the atlas defined region.
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Fig. 9. Comparison of data-driven vs. user-driven growth trajectory of ALIC
and PLIC shown for the T1 modality. Left: Trajectories of ALIC and PLIC
based on the atlas driven approach. Middle: Trajectories of four data driven
clusters that represent 78% of ALIC, shown in color, with overlay of the
ALIC growth pattern calculated from the atlas region. Right: Trajectories of
two data driven clusters that represent 95% of PLIC, shown in color, with
overlay of the PLIC growth pattern calculated from the atlas region. Note
that the two clusters which include PLIC are shared with the ALIC set of
clusters.

about 95% of growth pattern that is observed in PLIC, whereas

more clusters are needed to explain ALIC as is shown in Fig.

8 and 9. Fig. 8 displays the growth trajectories of 4 different

clusters that explain 78% of growth trajectories within ALIC.

There are distinct patterns of growth within ALIC, where one

growth pattern may not be sufficient to explain the underlying

white matter changes.

IV. CONCLUSIONS

In this work, we have presented a method for estimating

Gompertz population growth models through nonlinear re-

gression of longitudinal multi-modality MR data. We have

also presented three different spatial localization strategies for

analyzing and visualizing dynamic progression of white matter

development. The resulting maturation maps of white matter

shows that different MR modalities capture different properties

of the maturation process, however they all highlight a growth

pattern that decreases from central to peripheral regions.

Voxel-based approaches can highlight more detailed changes

with age, however they need to be smoothed and corrected

for multiple test comparison if voxel-based hypothesis testing

would be applied. Regional based approaches overcome some

of the voxel-based shortcomings by creating a single statistic

for a defined region. Some of the drawbacks of ROIs are

the time consuming manual segmentation of regions, however

by using a predefined atlas we can overcome this issue as

demonstrated in this paper. Another short coming of atlas

ROIs is that a selected region may not have similar patterns of

growth and obtaining one measurement for the whole region

may not be correct. On the other hand, data driven approach

may be better suited for defining regions that have similar

patterns of growth.

There are some limitations to our proposed analysis frame-

work. We assume a correct registration and intensity normal-

ization across all subjects, which may be difficult to obtain

for some outlier cases. Another limitation is that the nonlinear

regression of Gompertz function is sensitive to the choice

of the initial parameters. This may be problematic as it is

not guaranteed to converge to the true underlying model. In

our future research, we will develop a strategy to combine

the complex set of change patterns across several imaging

modalities (here five) into a small set that will inform clinical

researchers about regional maturation patterns, its associations

with cognitive development, and differences of such patterns

in neurodevelompmental disorders.

V. ACKNOWLEDGMENT

Supported by NIH grants: MH070890 (JHG, GG), Conte

Center MH064065 (JHG,WL,GG), National Alliance for Med-

ical Image Computing (NA-MIC) U54 EB005149 (GG), and

BRP R01 NS055754 (WL,GG).

REFERENCES

[1] Mary Rutherford, Ed., MRI of the Neonatal Brain, W.B. Saunders,
2002.

[2] A. V. Faria et al., “Atlas-based analysis of neurodevelopment from
infancy to adulthood using diffusion tensor imaging and applications
for automated abnormality detection,” NeuroImage, vol. 52, no. 2, pp.
415 – 428, 2010.

[3] R. C. Knickmeyer et al., “A structural MRI study of human brain
development from birth to 2 years,” J. Neurosci., vol. 28, pp. 12176–
12182, Nov 2008.
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