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Abstract

An important goal of statistical shape analysis is the
discrimination between populations of objects, exploring
group differences in morphology not explained by standard
volumetric analysis. Certain applications additionally re-
quire analysis of objects in their embedding context by joint
statistical analysis of sets of interrelated objects. In this
paper, we present a framework for discriminant analysis of
populations of 3-D multi-object sets. In view of the driving
medical applications, a skeletal object parametrization of
shape is chosen since it naturally encodes thickening, bend-
ing and twisting. In a multi-object setting, we not only con-
sider a joint analysis of sets of shapes but also must take into
account differences in pose. Statistics on features of medial
descriptions and pose parameters, which include rotational
frames and distances, uses a Riemannian symmetric space
instead of the standard Euclidean metric. Our choice of
discriminant method is the distance weighted discriminant
(DWD) because of its generalization ability in high dimen-
sional, low sample size settings. Joint analysis of 10 sub-
cortical brain structures in a pediatric autism study demon-
strates that multi-object analysis of shape results in a better
group discrimination than pose, and that the combination of
pose and shape performs better than shape alone. Finally,
given a discriminating axis of shape and pose, we can visu-
alize the differences between the populations.

1. Introduction
Statistical shape modeling and analysis [7, 18] is emerg-

ing as an important tool for understanding anatomical struc-
tures from medical images. Clinical applications favor a
statistical shape modeling of multi-object sets rather than
one of single structures outside of their multi-object con-
text. Neuroimaging studies of mental illness and neurolo-
cal disease, for example, are interested in describing group
differences and changes due to neurodevelopment or neu-
rodegeneration. These processes most likely affect multi-
ple structures rather than a single one. An analysis of the

structures jointly, therefore, should reveal more than study-
ing them individually. Applications of multi-object analy-
sis include both discrimination and segmentation. Litvin et
al. [13], for example, have proposed methodology for build-
ing a multi-object shape prior with application in 2D curve
evolution segmentation.

A fundamental difficulty in statistical shape modeling is
the relatively small sample size, typically in the range of 20
to 50 in neuroimaging studies. Given that we are describ-
ing the shape of several structures instead of a single one,
the dimension of our feature space tends to be much higher
than the number of data samples. This difficulty must be
considered when choosing among the different methods for
discrimination [8]. We use the distance weighted discrim-
ination (DWD) method [14], which is similar to Support
Vector Machines (SVM) but suffers less from data piling
problems in high dimensional low samples size (HDLSS)
settings. Previous work in discriminating single anatomical
objects has been done by Golland et al. [10] using distance
transforms for shape features and SVM to discriminate pop-
ulations. Yushkevich et al. [24] also used SVM to discrimi-
nate 2-D m-reps of corpus collosa.

Another context-specific choice is what features to use as
input to the discriminant method. Many neurological stud-
ies focus solely on volume for the sake of simplicity. How-
ever, Gerig et al. [20] have shown that the shape of an object
can be more useful in discriminating populations than vol-
ume for a particular application. In a multi-object setting,
there may be an additional feature of interest: the relative
pose of objects with respect to each other. A statistical de-
scription of multi-object pose variability was introduced in
Bossa et al. [2]. Since multi-object analysis of subcortical
structures is novel, we have chosen to evaluate several dif-
ferent features, namely pose, shape, and the combination of
pose and shape.

Several different geometric shape representations have
been used to model anatomy, such as landmarks [1], dense
collection of boundary points [4], or spherical harmonic
decompositions [12]. Another shape variability approach
focuses on the analysis of deformation maps [6, 5, 22].
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Whereas Yang et al. [23] describe statistical object mod-
eling by level-sets, we use explicit deformable shape mod-
eling with a sampled medial mesh representation called m-
rep, introduced by Pizer et al [16]. Styner et al. [21] have
compared the use of boundary and medial representations
in the analysis of subcortical structures.

The work in this paper could be applied equally well to
other shape descriptions, but we chose a medial description
for several reasons. First, it gives a more intuitive repre-
sentation of the interior of the object. The radius, which
describes the distance from the medial axis to the boundary,
serves as a localized measure related to the object’s vol-
ume. This is particularly interesting for neuroimaging work
because of the widespread use of volume data. Bouix et
al. [3] studied hippocampi using the radius function defined
on a flattened 2-D medial sheet. Medial representations
are also advantageous when attempting to describe certain
nonlinear shape deformations such as bending and twisting
[19]. Simple boundary representations struggle to account
for this type of variability. The sampled m-rep description
is also relatively compact when compared to other shape
representations. We can describe 10 subcortical structures
using 210 medial atoms for a total of 1890 features. While
this is much higher than the number of data samples we
typically have, it is less than the spherical harmonic repre-
sentation that we have also computed and which uses about
10,000 features.

This paper summarizes results of discriminant analy-
sis on sets of objects. We choose the distance weighted
discriminant (DWD) method and feature sets of pose and
shape. The latter is given by the sampled medial m-rep
shape representation. The driving application is a longitu-
dinal pediatric neuroimaging study.

2. Methods

In this section, we first discuss the methodology of
the different features we use in our discrimination anal-
ysis. These are the m-rep shape features and the local
pose change features. We then summarize the method of
distance-weighted discrimination, along with the transfor-
mation of our raw data before inputting it into the DWD.
Finally, we explain our method for building an unbiased
estimator of the classification of untrained samples using
DWD.

2.1. M-rep Shape Description

The m-rep shape description for a 3-D object consists
of a sheet of medial atoms, each of which is defined by
a position, radius, and two unit-length normal vectors to
the boundary (spokes). The radius represents the dis-
tance from the atom position to the corresponding point
on the boundary of the object along the two normal vec-

tors. The medial atom, seen in Fig. 1a, is defined as m =
{p, r,U+1,U−1} ∈ M, with M = R3 × R+ × S2 × S2.

a) b)

Figure 1. a) Medial atom: position (p), radius (r), two normals
to boundary (U). b) M-rep figure composed of sheet of medial
atoms. Implied boundary points displayed in blue.

To obtain m-reps describing subcortical structures, we
started with binary image segmentations from well-trained
experts using semi-automated procedures. We also needed
an initial m-rep that would be deformed to fit the binary
image. We constructed these initial medial models using
the modeling scheme developed by Styner et al. [19] to de-
termine the minimum sampling required for each model.
Given a binary segmentation and initial model, the initial
model is deformed through an optimization process such
that the model best fits the image while being penalized for
becoming too irregular in its geometry [15].

2.2. Alignment and Pose

In a multi-object setting, it must be decided how to re-
move unimportant shape variability through alignment. We
call aligning the object set as a whole, where transforma-
tions are applied to all objects at once, a global alignment.
As seen in Fig. 2a and b, after this global alignment there
are still local pose differences among the individual ob-
jects. In our case, we assumed these single object pose
differences were important because they represent the inter-
object changes within the multi-object set. Therefore, after
the global alignment, we perform a second step referred to
as the local alignment. In this step, we take the globally
aligned object sets and align objects individually as would
be done in a single object setting. It is these local pose
changes that we include as part of the overall variability of
the objects. The results after the local alignment are what
we refer to as pure shape and can be seen in Fig. 2c. For the
purposes of this paper, the global alignment included trans-
lation and rotation. This accounted for any pose differences
between the original images. The local alignment included
translation, rotation, and scale to remove all remaining pose.



When we use the local pose changes as features for discrim-
inant analysis, we have an 8-dimensional vector consisting
of three elements for the translation, four for the orientation
(stored as a quaternion), and one for the scale. After both
global and local alignments have been finished, the final m-
reps are in the mean pose position and are used as the pure
shape features.

To align m-reps, we use a slight variation of the stan-
dard Procrustes method [11]. In a normal Procrustes align-
ment on a set of boundary points, the sum-of-squared dis-
tances between corresponding points is minimized. The
standard Euclidean distance serves as the metric. For our
purposes, we instead minimize the geodesic distance be-
tween m-reps because they do not lie within a Euclidean
space. The geodesic distance d(ma,mb) between two me-
dial atoms ma and mb equals

||pb − pa,
rb

ra
,R(U+1

b ) ·U+1
a ,R(U−1

b ) ·U−1
a || (1)

where R(x) is the rotation of x to (1,0,0). For more details,
see [9]. The distance between two m-reps is then the sum
of geodesic distances between their corresponding atoms.

a) b) c)

Figure 2. Multi-object alignment. a) Global translation and rota-
tion. b) Global translation, rotation, and scale. c) Local translation,
rotation, and scale after global translation and rotation.

2.3. Distance Weighted Discrimination

Discriminant analysis is concerned with finding the axis
which best separates two populations. An optimization
must be performed that somehow maximizes the distance
between the discriminating axis and the data points while
separating the two classes. It is formulated in a general way
as follows (see Fig. 3): given points xi, class indicators
yi ∈ {+1,−1}, and w the normal to the separating hy-
perplane, the distance or residual, r, from the points to the
hyperplane is

ri = yi(x′iw + β) (2)

where β determines the position of the hyperplane. One
of the popular methods of discriminant analysis is Support
Vector Machines (SVM). It attempts to maximize the min-
imum ri. The main problem with this method is it tends
to use only a small subset of the population, those near the
opposite class, to completely define the discriminating axis.

It is manifested in the problem of “data piling” (see Fig. 4)
where most of the samples from the same population group,
when projected onto the normal of the discriminating axis,
end up very close to each other. This leads to poor general-
ization performance when tested on new samples that were
not included in the calculation of the discriminating axis: it
is too specific to the samples from which it was computed.

Figure 3. Illustration of two-class discrimination with separating
hyperplane and residuals.

Distance weighted discrimination is a method similar to
SVM, but uses all sample points in the calculation of the
discriminating axis. It attempts to minimize the sum of the
reciprocals of ri. Through this, each point’s contribution to
the calculation is weighted proportionally to the distance
from that point to the opposite population. In this way,
the DWD achieves a higher robustness when presented with
new, untrained samples. This advantage is heightened fur-
ther in the context of high dimensional feature spaces with
low sample sizes where it is best to use all information avail-
able from the low number of samples.

Figure 4. Left: Projection onto normal of optimal separating hy-
perplane. Right: Projection onto normal of separating hyperplane
which exhibits data piling.

2.4. Transformation of Raw Input Data

The m-rep shape description as well as the pose features
contain rotational elements that are not part of a Euclidean
space. This can lead to reduced performance of methods
such as DWD that attempt to find a linear discriminant.
Likewise, combining features with different units into one
long feature vector can bias results towards features with



larger variance. Therefore, we must first account for each
of these issues before running DWD analysis on m-rep and
pose features.

While the application of DWD to nonlinear features may
give a reasonable solution, we found through experimenta-
tion that the linearized form of the m-rep features gives a
better discrimination result (see Fig. 5). To obtain a lin-
ear instance of our curvilinear m-rep and pose features, we
project them into the tangent space at the geodesic mean
point [9]. This involves taking the log map of each of the
non-Euclidean features. For the pose rotation, the log map
of a unit-length quaternion q = (w, v) is defined as

log q =
θ

sin(θ/2)
· v , θ = 2arccos(w) (3)

For the m-rep normal directions U = (x, y, z), the spherical
log map is

log U =
(

x · θ

sin(θ)
, y · θ

sin(θ)

)
, θ = arccos(z) (4)

For the pose scale and m-rep radius factors it is just the log-
arithm function.

To concatenate features of differing units, we first must
make them commensurate to avoid unwanted bias. For our
purposes, we have chosen to normalize each feature by sub-
tracting the mean and dividing by the standard deviation.
This makes the weighting of points equal among separate
features in the DWD calculation. So for each feature, the
final input to the DWD routine is of the form

Y =
X −X

σ
∀X ∈ Rk (5)

Y =
log

(
X −X

)
σ

∀X 6∈ Rk (6)

a) b)

Figure 5. Separation of 70 multi-object m-reps into two popula-
tions given by DWD axis. a) Raw, nonlinear medial atom data. b)
Atom data after projection into tangent space and subtraction of
mean.

2.5. Unbiased Classification using Leave-Many-Out Ex-
periments

To test the performance of the DWD, we chose to im-
plement a leave-many-out, cross-validation experiment. We

first divided our data samples into a training set and a testing
set. The discriminating axis was computed using the train-
ing set. Each sample from the test set was then projected
onto the DWD axis with the resulting one-dimensional
projected value serving as the classification score (hence
known as the DWD score). The DWD method produces
both a discriminating axis and a threshold β. The thresh-
old value is the amount by which the training data, after
projected onto the DWD, must be shifted such that zero be-
comes the best dividing point between populations. There-
fore, given a DWD axis w and a test sample feature vector
x, the DWD score becomes

s = x′w + β (7)

The discrete classification into one of the diagnosis groups
is then simply the sign of the DWD score.

In order to make the training set unbiased, we used the
following strategy for selecting training samples (see Algo-
rithm 1). We would alternately choose a random autism or
a random control sample. With this sample from one group,
we chose the sample from the other group that was a best
match according to age and gender to the subject from the
first group. This gave us one sample from each group. Since
our data is longitudinal, we always included each sample’s
counterpart across time. From here, the process was re-
peated but starting with a random sample from the opposite
group than in the previous iteration. After several iterations,
we would have a training set with an equal number of sam-
ples from each group.

Algorithm 1 Training Set T Selection
T = ∅, size = 0, i = 0
while size < n do

if i mod 2 = 0 then
s = random sample from autism group
t = closest matching sample to s from control group

else
s = random sample from control group
t = closest matching sample to s from autism group

end if
s′ = counterpart of s across time
t′ = counterpart of t across time
T = T ∪ {s, s′, t, t′}
size = size + 4
i = i + 1

end while

This experiment was then run many times resulting in
different training sets. After several runs, all of the data
samples were included in the test set at least a few times.
From the results of these experiments, we could then build
an unbiased estimate of each sample’s classification. For
each sample, we computed it’s mean DWD score over those



runs of the experiment for which it was in the test set. In this
way, we calculate a classification for a sample only when
the discriminating axis was computed without any knowl-
edge of that sample. The box plots in the following sections
are of these unbiased mean DWD scores.

3. Results

In this section, we describe our data set and the results
of our leave-many-out experiment. We have divided the re-
sults into three sections corresponding to the features used
in the discriminant analysis: pose, shape, shape and pose
combined. We then finish with some visualizations of the
discriminating features.

3.1. Motivation and Clinical Data

The driving clinical problem of this research is the need
for a joint analysis of the set of subcortical brain structures,
over and above that of individual structures. The image data
used in this paper is taken from an ongoing clinical longi-
tudinal pediatric autism study. This study includes autistic
subjects (AUT) and typically developing, healthy controls
(CONT) with baseline images at age 2 and follow-up at age
4. For the results shown here, we have selected 23 subjects
from the autism group and 10 from the control group. For
all of the autism subjects and 6 of the 10 controls, we have
successful scans at age 2 and age 4. For the other 4 controls,
we paired an age 2 scan of one subject with an age 4 scan of
another unrelated subject. We also have 4 additional control
age 2 scans that have no matching age 4 scan. This gives us
a total of 70 samples: 46 autism and 24 control.

In the classifier experiments, we always included both
time points of a selected training subject for inclusion in the
training set. Thus, the four control samples with only one
time point were always left out of the training set. From
our specific data, we chose a training set, in the manner de-
scribed above, consisting of 32 out of the 70 available sam-
ples. Thus, it included 16 samples from the control group
and 16 from the autism group. The remaining 38 samples
served as the test set. The experiment was then run 100
times. The number of runs was chosen heuristically such
that each of the 70 samples was included in the test set for
at least a few runs; the minimum number of runs in the test
set for any sample turned out to be 4. From these, we could
calculate an unbiased mean DWD score.

3.2. Shape Modeling

The process of fitting an m-rep to a binary image as de-
scribed above was applied individually to each of the 10
anatomical objects using the Pablo tool [17]. The corre-
spondence across samples is implicitly established by using
a template model as the starting point of the deformation

process. Fig. 6 shows medial atoms (a) and their implied
surfaces (b) for the set of subcortical structures.

a)

b)

Figure 6. M-reps of a multi-object complex. a) Medial atoms. b)
Implied boundary surfaces of medial description.

3.3. Pose

The first step of our experiment was to explore the sig-
nificance of local pose changes. For each sample, these
features totalled 70: three for translation, three for rota-
tion, and one for uniform scale across 10 objects. The
raw features were transformed as described above, thus re-
ducing the quaternion representing the rotation to a three-
dimensional vector. The knowledge that there are volume
differences between autistic and typical brains led us to be-
lieve that the pose, which includes uniform object scale fac-
tors, might show significance on its own. This is the case
for the mean DWD scores, p=0.001. Fig. 7 shows the dis-
tributions of the mean DWD scores for each group. The red
line is the median, the top and bottom of the blue box are the
25th and 75th percentiles, the extensions to the box are the
minimum and maximum excluding outliers, and red plus
signs are outliers defined as being more than 1.5 times the
interquartile range from the box. Although the p-value for
the mean DWD scores shows significance, the test sample
classification accuracy, which is the percentage of the 38
test samples correctly classified as autism or control, was
poor (54%, see Table 1). Also, 24 out of the 100 individual
runs had a classification accuracy below 50%, a result that
would be outperformed by a random coin flip. The trans-
lation and rotation components of the pose seemed to be



adding mostly noise to the DWD calculation because the
same experiment run with only the scale factors gave an
average classification rate of 67%. From these results, we
conclude that the pose does include some relevant informa-
tion for discrimination but that most of it is likely in the
uniform scale factors.

Figure 7. Pose features: Box plot (median, 25 and 75 percentiles,
min/max) of mean DWD scores of each group over those runs in
which the samples were in the test set. Greater than zero classified
as autism, less than zero classified as control. p=0.001.

Table 1. Classification Accuracies for Test Samples over 100 Runs
of Leave-Many-Out Experiment and P-values of Mean Classifica-
tion Scores

Feature Mean Std. Dev. P-value
Pose 56 % ± 10 % 0.001
Shape 60 % ± 7 % < 0.0001
Shape and Pose 64 % ± 7 % < 0.0001

3.4. Shape

Fig. 8 shows the results of using only the m-rep shape
features for the DWD calculations. Once again, the mean
DWD scores for the test samples were significantly differ-
ent (p<0.0001, Fig. 8). Also, the classification accuracy
of shape was better than pose with an average correctness
rate of 60%. More encouraging was the much lower num-
ber (6) of runs with less than 50% accuracy when compared
with pose. Here the DWD methodology proved its useful-
ness and stability in high dimensional low sample size set-
tings because the m-rep shape features for the 10 subcorti-
cal structures number about 2000 in total, whereas the pose
had 70. Even in this high dimensional space, the DWD still
generalized well enough to best the performance of the pose
features.

Figure 8. Shape features: Box plot (median, 25 and 75 percentiles,
min/max) of mean DWD scores of each group over those runs in
which the samples were in the test set. Greater than zero classified
as autism, less than zero classified as control. p<0.0001.

3.5. Shape and Pose

Finally, we concatenated the pose and shape parameters
into one feature vector. This gave us the most complete de-
scription of the variability of the multi-object complex. The
results shown in Table 1 reflect this in that the average clas-
sification rate (64%) was higher using both pose and shape
than either individually. Likewise, there were no individual
runs in which the classification accuracy was below 50%.
The differences between the mean DWD scores remained
significant (p<0.0001).

Figure 9. Shape and pose features combined: Box plot (median, 25
and 75 percentiles, min/max) of mean DWD scores of each group
over those runs in which the samples were in the test set. Greater
than zero classified as autism, less than zero classified as control.
p<0.0001.

3.6. Evaluation of Bias

To verify that the mean classification scores were unbi-
ased, we ran our same experiments using random, normally
distributed input data. We used the same random number



seeding and the exact same training and testing sets. The
random data was generated with the same mean, variance,
and dimension as our actual shape data. The p-value of the
mean DWD scores for this case was 0.22 and the average
classification accuracy was 49%.

3.7. Visualization

To visualize the changes in shape along the DWD di-
rection, we start with the mean m-rep of the autism group.
Then, we deform the autism mean m-rep along the unit-
length DWD which points toward the control group. The
distance along the DWD direction by which the autism
mean is deformed is defined as the distance between the
mean of each group’s projections onto the DWD line. The
final m-rep, which has been deformed this full distance, is
then used to represent the control group.

a)

b)

Figure 10. Colormap of surface distances from autism mean m-rep
to deformed m-rep along DWD direction using a) shape only, b)
shape and pose. Red, green, and blue are inward distance, zero
distance, and outward distance respectively.

For robustness, we chose to use the mean DWD direc-
tion over all the runs instead of using a single run from the
leave-many-out experiment. We also used all 70 samples to
compute the distance between the projected group means,
which gives us the distance to deform along the DWD di-
rection, and all 46 autism samples for the autism mean m-
rep. Fig. 10 shows colormaps of surface distances between
the two multi-object sets representing each of the two diag-
nosis groups. The measurement is the distance when start-
ing from the autism group and deforming towards the con-
trol group. Red, green, and blue coloring denote inward,
zero, and outward deformations respectively. In Fig. 10a,
we see that the amygdala and hippocampus undergo strong
shape changes between the groups relative to the other three
structures. There is a distinct inward deformation of the hip-
pocampus tail (seen in far right of Fig. 10a) as well as an
outward change in the midsection. A good portion of each
amygdala is covered with some non-green coloring denot-
ing a change in shape as well.

4. Conclusion
This research demonstrates work in progress towards

shape analysis and group discrimination of multi-object
complexes. Traditionally, shape analysis is mostly con-
cerned with representation and statistical analysis of single
objects, mostly following a well developed mathematical
framework that proposes linear alignment and subsequent
statistical analysis of corresponding features.

In a multi-object setting, the alignment step has to be
reconsidered. Linear alignment of a population of multi-
object complexes will remove global translation, rotation
and scale, but will not account for relative object pose vari-
ability. A joint analysis of only globally aligned sets of
shapes will therefore include these residual pose differences
into the statistical shape model. Here, we discuss and ex-
plore the various options for global and local alignment of
sets of shapes. We propose an initial global alignment with
rotation and translation to map each dataset into a common
coordinate frame. This step is followed by a local align-
ment of each object individually, but the alignment param-
eters translation, rotation and scale are kept as pose param-
eter vectors. Shape analysis of the joint set of objects will
therefore use pure shape features not affected by any resid-
ual pose differences. Features are mapped into Riemannian
symmetric space, the appropriate choice for medial atom
features that include rotational frames and positive reals,
and are ready for statistical analysis. The same technique
can be applied to the vectors of the joint pose parameters
of the multi-object complexes. It is then straightforward to
choose pose, shape, or pose and shape as features for group
discrimination.

Although sampled medial representations use a lower
number of features than densely sampled surfaces, we still
face the HDLSS problem (high dimensionality low sample
size). This problem is even more pronounced with the anal-
ysis of object sets, resulting in a feature space dimensional-
ity which is magnitudes larger than the number of samples.
In typical applications similar to the one described here,
two populations of 25 samples are each represented by 2000
features to provide a sufficiently detailed representation for
10 3-D objects. For classification, we applied the distance-
weighted discrimination (DWD) method, which is a variant
of support vector machine discrimination but is designed
to be robust for HDLSS data analysis problems. Unbiased
statistical analysis by repeated leave-many-out experiments
finally results in classification rates and significance values
(p-values).

The driving application is a pediatric autism study with
autistic and typically developing children imaged at 2 and
4 years of age. We focus on a joint analysis of five left
and right subcortical structures represented as sampled me-
dial representations after model fitting. The combination of
pose and shape performed better than either did individu-



ally, and shape analysis was better than analysis of pose.
Please note the discrepancy of relatively low classification
rates in the presences of highly significant population dif-
ferences. This might possibly be explained by the nature of
the underlying clinical problem. Morphologic phenotypes
in neurodevelopmental disorders are often reflected by only
subtle differences and increased heterogeneity. The purpose
is not to achieve highly accurate classifications (they are di-
agnosed by psychiatrists using non-imaging scores), but to
study morphologic changes as part of a better understand-
ing of phenotypes and biological mechanisms. The reported
group differences have to be interpreted with caution since
there is a mismatched gender ratio between the patient and
control groups; an appropriate correction scheme is in de-
velopment. In the future, we would like to develop a tech-
nique to explore the covariance structure of sets of shapes in
order to explain their interrelationship. This will help clin-
icians to explore links between morphological changes and
underlying biological processes.
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