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Abstract—In this paper, our goal is to develop approaches to
reduce the energy consumption in Radio Tomographic Imaging
(RTI)-based methods for device free localization without giving
up localization accuracy. Our key idea is to only measure those
links that are near the current location of the moving object being
tracked. We propose two approaches to find the most effective
links near the tracked object. In our first approach, we only
consider links that are in an ellipse around the current velocity
vector of the moving object. In our second approach, we only
consider links that cross through a circle with radius r from the
current position of the moving object. Thus, rather than creating
an attenuation image of the whole area in RTI, we only create
the attenuation image for effective links in a small area close to
the current location of the moving object. We also develop an
adaptive algorithm for determining r. We evaluate the proposed
approaches in terms of energy consumption and localization error
in three different test areas. Our experimental results show that
using our approach, we are able to save 50% to 80% of energy.
Interestingly, we find that our radius-based approach actually
increases the accuracy of localization.

I. INTRODUCTION

Radio frequency (RF) sensor networks can track people and
objects without requiring them to carry any wireless transmit or
receive devices [1]. Moving people and objects can be located
based on the changes they cause in the received signal strength
(RSS) of the radio links they perturb between transmit and re-
ceive sensor nodes. This “device free” localization of physical
objects is called radio tomographic imaging (RTI) [2], [3], [4],
[5], [6], [7], [8]. Localization of moving people and objects
using RF sensor networks has several applications including
surveillance, rescue operations, and residential monitoring [9].

One critical issue which has been neglected in existing RTI
approaches is energy efficiency. RTI has primarily focused on
location accuracy and assumed that sensors are connected to
wall power sockets or their batteries can be recharged often.
When deploying RTI in outdoor settings where wall power is
not an option, saving energy of sensor nodes becomes a key
requirement. It might not be easy to recharge sensor nodes
after deploying them. Even in indoor environments, wall power
might not always be available. Therefore, it is desirable to
reduce the energy consumption of RTI sensor nodes as much
as possible to prolong the lifetime of the RF sensor network.
In this paper, our goal is to develop approaches to reduce
the energy consumption in RTI methods without giving up
accuracy.

A typical RTI set up deploys a mesh of n transceivers
around the area that is to be monitored. In this set up,
each node takes turn to transmit radio signals. All the other

nodes, when not transmitting, receive radio signals. The mea-
surements of the RSS on all the O(n2) links between the
transmitters and the receivers are used for tracking moving
objects in the monitored area. We develop energy efficient
target tracking methods that essentially limit the number of
radio links that we must measure at any given time thereby
allowing us to deactivate a large number of transceivers and
hence save energy on these nodes. Our key idea is to only
measure those links that are near the current location of the
moving object. In order to find the effective links near to
the current location of the moving object, we propose two
approaches. In our first approach, we only consider links that
are in an ellipse around the velocity vector from the current
location of the moving object. In our second approach, we
only consider links that cross through a circle with radius r
from the current position of the moving object. Thus, rather
than creating an attenuation image of the whole area in RTI,
we only create the attenuation image for effective links in a
small area close to the current location of the moving object.

We propose an adaptive algorithm to change the value of
r in the radius-based approach. The value of r must change
over time depending on the velocity of the moving object, the
number of links that cross through the circle, and the amount of
error in the current location estimation. Moreover, the tracking
accuracy and the energy consumption in the radius-based
approach is highly depended on the value of r. For example,
if we choose a large value for r that includes all changes,
then the accuracy of localization improves at the expense of
relatively high energy consumption.

Our contributions in this paper are as follows. First, we
define two energy efficient approaches for localization using
RTI. Our energy efficient approaches can be used with both
Shadowing-based RTI and variance-based RTI [2], [3], [4],
[5], [6], [7], [8]. Second, we introduce an adaptive algorithm
to change the radius in the radius-based approach. Third,
we evaluate the proposed approaches in terms of energy
consumption and localization error in three different test areas
- an open indoor area, a cluttered office, and the aisles of
the University of Utah campus bookstore. Our experimental
results show that using our approach, we are able to save 50%
to 80% of energy. Interestingly, we find that our radius-based
approach for energy efficiency actually increases the accuracy
of localization.

The rest of this paper is organized as follows. Section II
contains the relevant related work. In Section III, we briefly
describe two basic approaches (Shadowing-based RTI, and
variance-based RTI) for localization using radio tomographic
imaging. Section IV represents the energy efficient approaches978-1-4799-4657-0/14/$31.00 c© 2014 IEEE
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in details. In Section V, we describe three conducted experi-
ments and evaluate the results. Section VI is devoted to some
directions for future work. Finally, the concluding remarks is
provided in Section VII.

II. RELATED WORK

RF sensor networks estimate the location of people and
objects using the changes in RSS measured on the links of a
wireless network. A growing body of research has developed
approaches to improve the robustness of RF sensing to the
challenges of the multipath radio channel. Experimental sys-
tems have demonstrated locating a person in offices or homes
with average errors from 17 cm to 1 m [10], [11], [5], [12], [6],
even across an entire office building floor [13], while tracking
multiple people [14], [15], [16], [17], and even through exterior
walls [7], [18], [19]. Moreover, measurements from standard
wireless devices have been shown experimentally to enable
reliable gesture recognition [20], breathing rate estimation
[21], and fall detection [22], [23]. These experimental results
are impressive despite the fact they are predominantly tested
in the 2.4 GHz band where the REM system experiences
interference from WiFi.

Several general approaches exist for using RSS in an RF
sensor network for localization. One is radio tomographic
imaging (RTI), which estimates a map of the activity in the
area of deployment, computed from the changes in mean
[2], [3], [4], [5], [6] or variance [7], [8] of RSS. Another
perspective is to use machine learning to estimate position,
using a pre-recorded set of training data with a person in
each position [13], [16], [23]. Another approach is to use line
crossing information directly to infer position, either using a
geometrical model [10], [15] or a statistical model for RSS
given person location (and statistical inversion) [11], [12].

The energy consumption of RF sensor networks has been
addressed by very few works, to our knowledge. Sensor nodes
in RF networks have limited supply of energy and it is often
difficult to recharge them after deployment. Thus, in order
to increase the lifetime of network, the energy consumption
should be reduced. One way to reduce the energy required for
data collection is to have sensors locally process RSS data and
decide when a link is crossed, and forward data only when a
link is detected as crossed [24]. This idea is complementary
to this proposed work, which would turn off sensors’ RSS
data collection if the link is not expected to be crossed due
to current human positions. Compressed sensing (CS), which
estimates tomographic images using fewer link measurements,
has been tested for tomographic building structure imaging
[25], [26] and for open-area attenuation-based RTI [27]. These
papers explore sensing strategies that are fixed, even if random,
not a function of the current positions of people. In contrast,
we present an adaptive strategy. Future work might combine
the benefits of both CS and adaptive strategies.

In contrast to energy efficiency in RF sensor networks,
research in energy efficiency in wireless sensor networks
(WSN) is significantly more mature [28], [29], [30]. A general
WSN uses transmission and reception purely for data commu-
nication, not to measure the environment as in an RF sensor
network. In an RF sensor network, it is insufficient to find a
low-energy route from source to destination. Instead, we have

a tradeoff between activating transmitter and receivers to min-
imize tracking error, and allowing them to sleep to minimize
energy consumption. The adaptive algorithm explored in this
paper addresses this fundamental tradeoff.

III. BACKGROUND ON RADIO TOMOGRAPHIC IMAGING

Radio tomographic imaging is the process of imaging the
attenuation caused by physical objects moving in an RF sensor
network. This image can be used to find the location of the
moving objects or people within the area of deployed RF
network.

In an RF network with n static sensor nodes, there are L =
n(n − 1) directed links. Let vector y = [y1, y2, . . . , yL]

T be
the measurement for all links. Also, let x = [x1, x2, . . . , xM ]T

be the vector of voxels values, where M is number of voxels.
Then, y can be modeled as:

y = Wx+ n (1)

Where, n is L× 1 vector that represents the noise level of L
links. W is a L×M matrix where wij indicates how the voxel
j’s attenuation affects link i.

The weight matrix, W , is modeled by an ellipse [3], [6],
[7]. In this model, an ellipsoid with foci at the transmitter and
receiver locations determines the weight for each link. If voxel
j falls outside of link i’s ellipsoid, wij is set to zero. Otherwise,
wij is set to the constant, which is inversely proportional to
the square root of the link length, as follows:

wij =

{

1
√

d
drj + dtj < d+ λ

0 otherwise
(2)

Here, d is the length of link i, drj and dtj are length of
line from the center of voxel j to the receiver and transmitter
locations of link i, respectively, and λ represents the width of
the ellipse.

In the shadowing-based RTI, y is the change in RSS mean
values and in variance-based RTI, y is the windowed variance
of RSS on each link. The image vector x is estimated from
y. However, finding y is an ill-posed inverse problem. Thus,
regularization is required to reduce the noise in the image.
A regularized least square approach [2], [8] is used for both
shadowing-based RTI and variance-based RTI:

x̂ = Πy (3)

Π = (WTW + σ2
NC−1

x )−1WT (4)

in which σ2
N is the noise variance. The prior covariance matrix

Cx is obtained by using an exponential spatial decay:

[Cx]jl = σ2
xe

−djl/δc (5)

where δc tunes the amount of smoothness in the image, σ2
x

is the variance of voxel attenuation, and djl is the length of
line between voxel j’s center and voxel l’s center.
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Fig. 1. An Ellipse around the velocity vector from the current location of
the moving object

IV. ENERGY EFFICIENT RTI APPROACHES

In this section, we describe two energy efficient approach
for RTI that limit the number of radio links that we must
measure at any give time thereby allowing to deactivate a large
number of transceivers and hence save energy on those nodes.
In the basic RTI approach, all transceivers are active at all
times.

To reduce the energy consumption, instead of forming the
image of attenuation for the whole monitored area, we only
construct the image of attenuation for the small area near the
current position of the moving object. We expect a temporal
dependency in the moving pattern of object. Therefore, the next
location of the moving object is likely to be close to its current
location. Additionally, the moving object only changes the RSS
of the links that are near the moving area. In fact, as the
distance of a link from the moving object increases, it provides
less information about the attenuation caused by the moving
object. Thus, only links that are within a certain distance from
the current location of the moving object contribute to the
formation of the attenuation image. We refer to these links as
effective links. Our aim is to save energy by measuring only
the effective links and deactivate those transceivers that do not
construe these links.

To find the effective links, we use two approaches. In the
first approach, the effective links are those that cross through
the ellipse around the velocity vector from the current location
of the moving object. In the second approach, effective links
are within the circle of radius r from the current location.
We explain these two approaches in Sections IV-A and IV-B,
respectively. Then, in Section IV-C, we describe a scheduling
policy for activating and deactivating appropriate transceivers
to reduce the energy consumption.

A. Ellipse-based Approach

Using the fact that a typical moving object changes its
velocity and its direction of movement smoothly and gently
instead of abruptly, in the ellipse-based approach, we only
consider an ellipse around the velocity vector from the current
position of the moving object to form an attenuation image for
localization. Figure 1 shows the ellipse where −→v and θ are the
velocity vector and direction of movement, respectively. The
point c is the current location of the moving object.

To estimate the velocity vector, we use the history of
movements over a window of time t. The velocity vector at
time t+1 is a function of the moving object locations during
[1, t] as follows:

−→v t+1 = −→v t + ǫ (6)

ǫ ∼ N(0, σ2) (7)

−→v t is obtained by dividing the path length by the time taken
to traverse the path. A path is the longest straight line that
the moving object can traverse without changing the direction
or pausing. Since the object need necessarily not move in a
straight line and there are likely to be some deflections around
the straight line, we are likely to see some small paths around
the straight line. To address these deflections, we fit a straight
line between two points with distance greater than lmin such
that the other points between these two points are a distance
less than w from the line.

We first run the basic RTI approach for t seconds. Using the
location histories of the moving object over time t, we estimate
the velocity vector at time t+ 1. After that, we only consider
links that are in the ellipse around the velocity vector. Again, in
time period t+2, we set the window for estimating the velocity
vector by 1. Given that we use the ellipse-based approach from
time t+ 1 onwards, our estimation of the velocity vector can
contain errors. This error can gradually increase and the ellipse
that we use can move far away from the actual location of the
moving object.

To tackle this potential for increase in error, we periodically
(with time T > t) compare the result of localization of
our approach with the result of localization of the basic RTI
approach. If the difference between the positions obtained by
the two approaches is greater than a threshold, we run the basic
RTI approach for time t to obtain a more accurate history
of movement of the object. Although, this re-estimation of
the history reduces the localization error, it also increases the
energy consumption because we run the basic approach more
often.

The ellipse approach can reduce the number of measured
links significantly and consequently, it can save energy. How-
ever, it is expected to work well only in scenarios where the
changes in the mobility pattern are not drastic. In cases with
drastic movements, e.g., an object moving back and forth or
an object changing its direction of movement significantly
because of the obstacle in the area, the localization error
of the ellipse approach can be high. In a high mobility
environment, the ellipse approach can consume more energy
because of the need to run the basic RTI approach every T time
units. Essentially, the ellipse-based approach can result in high
localization errors or high energy use when the tracked object
exhibits an unpredictable movement pattern. For robustness in
these mobility scenarios, we propose the radius-based approach
in the next section.

B. Radius-based Approach

In the radius-based approach the effective links are those
that are in a circle with radius r from the current position of
the moving object. Using a circle instead of ellipse reduces the
error of localization in case of high changes in the mobility
pattern. In the radius based approach, we start with the basic
RTI approach by measuring all links. However, after finding
the current location of the moving object, we only consider
links that are in the circle with radius r from the current
location.

One important challenge in the radius-based approach is
the determination r. An improper value of r can increases
the energy consumption or the localization error substantially.
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Furthermore, the value of r should be adapted dynamically
depending on (i) the number of sensor nodes that are deployed,
(ii) the obstacles (e.g., bookshelf, table, sofa) that are placed
in the area, (iii) the number of links that cross the circle, (iv)
the velocity of movement, and (v) amount of error in location
estimation. Unlike the ellipse-based approach, we find the
value of r in the real time without using history of movement.
Thus, the localization error does not increase over time. In
the next section, we describe our adaptive algorithm for the
selection of r.

1) Adaptive Algorithm for Radius Selection: In our adap-
tive algorithm for radius selection, we compare the location
estimated using the radius-based approach with that estimated
using the basic RTI approach every T time units. We change
the value of r based on the difference between the location
estimates and also based on the current state of the algorithm.
Figure 3 shows the three states that we use in our adaptive
algorithm to change the value of r. The algorithm starts in an
exponential decrease, ED, state and then it goes to the linear
increase linear decrease, LILD, state and then to the recovery
state.

ED: The first state of algorithm is ED. In this state, we
set the initial value of r to rmax. rmax is the radius of circle
that covers the whole area of experiment and also all links,
i.e, at the first step of ED both the radius-based and basic
RTI approaches operate in a similar fashion. Then, in each
time period T , we estimate the location using the radius-based
approach and compare it with that obtained from the basic
RTI approach. If the difference in the estimation is within a
threshold, we reduce the value of r by half, otherwise we go
to the LILD state. Let rk−1 denotes the value of r after k− 1
time units, the next value of r in the ED state will be:

rk = max(α ∗ rk−1, rmin) (8)

Here, α = 0.5 is the exponential factor and rmin is the
minimum value of r.

The ED state finds the range of r which depends on several
factors. We start with r = rmax to cover the whole area.
However, due to temporal dependency and the fact that the
moving object only changes the RSS of neighboring links,
rmax is much greater that the optimal value for r. Thus, in
each time interval we exponentially reduce the current value
of r when the difference in location estimates (in comparison
to basic RTI) is low. When we go to the LILD step after k
time periods, the range of r is determined to be from rk−1 to
rk.

LILD: Given that we determine the range of r, [rk−1, rk],
quickly through exponential decrease in the ED state, we now
adjust the value of r much more slowly, by increasing or
decreasing its values linearly, to move closer to its optimal
value. The value of r in this state is obtained as follows:

rk =

{

max(rk−1 + β, rmin) Invalid Result
max(rk−1 − β, rmin) Valid Result

(9)

An invalid result in the above equation refers to the
situation when the difference in location estimation using
the radius-based and basic RTI approaches is greater than a
threshold. A valid result is one where the difference in location
estimation is less than or equal to the threshold. Every T time
units, we increase the value of r linearly if the result is invalid
and decrease the value of r linearly if the result is valid. Thus,
in LILD, the value of r fluctuates between rk−1 and rk.

In the LILD state, it is possible that we observe consecutive
invalid results. If the number of consecutive invalid results,
despite linearly increasing r, is greater than a predefined
threshold then we conclude that we are not converging to the
right r. This means that the current location of the moving
object is far from its true location and even by increasing the
value of r linearly in consecutive time periods, we are unable
to find the location of the moving object correctly. In such
a situation, stay in the LILD state will dramatically decrease
the accuracy of localization. To avoid this, when we receive a
certain number of consecutive invalid results, we go to the ED
state again and set r to rmax. In other words, we start with the
basic RTI approach to find the current location and reduce the
value of r exponentially to find its right range all over again.

Recovery: Although, in the ED state, we decrease the value
of r exponentially, it takes a long time for ED state to find the
proper value for r and consequently the sensor nodes consumes
more energy. Thus, we should reduce the number of times that
we go to the ED state. For this, we add the recovery state in
the return path from the LILD to the ED state. Recovery state
gives us a less drastic approach to find the proper value of r
before going to the ED state.

In this state, we double the current value of r and then
compare the result of localization after one time period T . If
the result is valid then we go to the LILD state, otherwise we
go to the ED state.

Figure 2 shows the changes of the value of r in these three
states over time. We first start with the ED state by setting the
r to rmax = 8m. Then, we reduce the value of r to half in
each time slot. In this figure after four time units, the algorithm
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is able to find the range of changes for r. In the LILD state,
we change the value of r linearly. Finally, we double the value
of r in the recovery state.

C. Scheduling

In this section, we explain our scheduling policy for
activating and deactivating the RF transceivers in our energy
efficient approaches.

In the basic RTI approach, all sensor nodes are on at
all times whether they transmit or receive signals. Figure 4
shows the scheduling policy for the basic RTI approach. In this
figure, the deployed RF sensor network has 4 sensor nodes. To
estimate the image of attenuation in the basic RTI approach,
we must measure the RSS on all links in a full mesh topology.
Considering the fact that in RF sensor networks the RSS of the
link from a to b can be different from the RSS of the link from
b to a, in the basic RTI approach we must measure L = 12
links.

Our scheduling policy for activating or deactivating sensor
nodes is based on the Spin protocol [31]. The Spin protocol
uses a token-based approach to prevent multiple sensor nodes
from transmitting at the same time. In this protocol, the
sensor nodes transmit in time division multiple access (TDMA)
fashion with an order identified by their node IDs. When one
sensor node is transmitting, all the other nodes are in the
receiving mode. Figure 4 shows one round of scheduling in
the basic RTI approach. In the first time slot, t = 1, the first
node is in transmitting mode (TX), and all the other nodes
(2, 3, and 4) are in the receiving mode (RX). At the end of
one round, in case multiple channels are used, the sensor nodes
switch synchronously to the next frequency channel defined by
the user and use the same scheduling as the previous channel.
As shown in figure 4, in all time slots, all nodes are either in
the transmitting or in the receiving mode.

Our energy efficient approaches are based on the fact
that not all links in the full mesh topology are effective.
Independent of how we find the effective links (using the
ellipse-based or the radius-based approach), Figure 4 shows
one round of the scheduling policy for the graph with reduced
links (L = 6). In the first time slot, t = 1, node 1 is in the
transmitting mode, node 2 and 3 are in the sleeping mode

(deactivated), and node 4 is in the receiving mode. As this
figure shows, in one round of an energy efficient approach,
we can save 50% energy by increasing the number of times
that sensor nodes are in the sleeping mode from 0 to 6.

As shown in Figure 4, in energy efficient approaches, re-
ducing the number measured links does not change the number
of nodes that are in transmitting mode. This happens because
in most real cases, sensor nodes are placed uniformly along
the perimeter. For scheduling the receivers, at the beginning
of each round, the sink node sends a small control packet to
all nodes. This packet determines the receiving nodes in each
time slot. Let n be the number of sensor nodes, then size of
the control packet for each node is n bits. A bit is set to 1,
if the sensor node is in the receiving mode in that time slot,
otherwise, it is set to 0. Note the control packet is the same
for all available channels and the sink node only sends it once
for all channels, in case multiple channels are used for RTI.

If the sensor nodes are placed non-uniformly, then there
might be some cases where the number of nodes that are in
transmitting and receiving modes is reduced. In this case, the
scheduling policy is entirely determined by the control packet
that the sink node sends to all nodes. The control packet in this
case indicates three modes (transmitting, receiving, sleeping)
for each node in each time slot. Thus, the size of control packet
for each node is 2n bits in a network with n nodes as 2-bits
are required to represent three modes.

Note that the energy efficient approaches determine which
bits should be set in the control packet based on the RSS of
the measured links and the steps of these approaches. Once
the control packet is created, it is sent to the sink node for
distribution to the sensor nodes. The time complexity of the
energy efficient approach is no worse than the basic RTI
approach that is used for real time localization. In fact, the
time complexity of the energy efficient approach is better than
the basic approach. This is because, in most cases, the actual
monitored area in the energy efficient approach is much smaller
than the monitored area in the basic RTI approach.

V. EVALUATION

To evaluate the energy efficient approaches, we conduct
experiments in three different areas: an open environment, a
cluttered office area, and a bookstore. In this section, we first
describe these three areas and then present the evaluations of
our energy efficient approaches in terms of energy consump-
tion and localization error in these three areas.

A. Experiment areas

Open Environment: In the open environment, there are no
objects or obstructions in the monitoring area. Figure 5(a)
shows the layout of this experiment. As shown in this figure,
30 sensor nodes are deployed along the perimeter of a 70m2

area at the height of one meter from the floor. The sensor nodes
transmits on channels 11, 15, 18, 22 and 26. The markers in
Figure 5(a) shows the true positions of the moving person. The
person starts moving at point A, then moves along the straight
lines from A to B, B to C, C to D, and D to A. Finally, the
person stops moving at point A. At each location, the person
stands for 20s. We also measure the RSS of all links when no
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Fig. 5. The layout and sensor nodes positions for open environment, cluttered office, and bookstore

person is present in the monitoring area for 60s and use it for
RTI calibration.

Cluttered Office: This experiment is done in a cluttered area
where there are several metallic obstructions such as desks,
chairs, and monitors. In this experiment, 14 sensor nodes are
deployed inside of a 52m2 area at the height of one meter
from the floor, as shown in Figure 5(b). The sensor nodes
transmit on channels 11, 16, 21, and 26. The marker points
in Figure 5(b) shows the true locations. The person moves
along the path ABDCEFGHCEGBA. As it can be seen
in the movement path, in this experimental set up, the person
changes the direction of movement more often than in the
open environment. Using these two experiments, we are able to
compare the results of ellipse and radius-based approaches in
conditions where there are too many changes in the movement
pattern (cluttered office) with the case where the changes in
the movement pattern are minimal (open environment).

Bookstore: This experiment is performed in the University
of Utah Bookstore in a 55m2 area. As in the case of the office
environment, the bookstore is cluttered with shelves, tables,
and books. There are 34 sensor nodes that are positioned in the
area, as shown in Figure 5(c). The gray rectangles in this figure
are shelves. The sensor nodes transmit only on one channel.
In one experiment (that we call Exp. 1), a person moves along
the path ABCDA twice and in the another experiment (that
we call Exp. 2), the person moves along the path EFBAE
twice.

In the first two experiments (open environment, and
cluttered office), the sensors are TI CC2531 USB dongle
nodes [32] and in the third experiment, bookstore, the sensor
nodes are TelosB [33].

B. Experimental results

In this section, we evaluate the energy efficient approaches
in terms of energy consumption and the localization error. For
evaluation, we compare our work with both Shadowing-based
RTI and variance based RTI approaches. We use the approach
that is proposed in [6] from the shadowing based approaches
and VRTI [7] from the variance based RTI approaches. In [6],
the authors use channel diversity to improve the accuracy of
localization in RTI.

TABLE I. PARAMETERS USED IN THE EXPERIMENTS

Parameter Description Open Office Bookstore

P Pixel width(m) 0.15 0.5 0.5

λ
Excess path length limit

0.02 0.02 0.02
of ellipse weighting(m)

σx Voxels variance(dB) 0.05 0.1 0.1

σ2

N Noise variance(dB) 1 1 1

δc Correlation coefficient 4 4 4

m Number of used channels 4 4 1

α Exponential factor 0.5 0.5 0.5

β Linear factor(m) 0.5 0.5 0.5

T Time periods for RTI 50 50 50

rmin Min radius(m) 0.5 0.5 0.5

t Window size for ellipse 5 5 5

In order to evaluate the energy efficient approach, we
use two metrics: average error of location estimation, and
energy consumption ratio. The energy consumption ratio is
obtained by dividing the total energy consumption in the
energy efficient approach by the total energy consumption in
the basic approach (e.g., Shadowing-based RTI, and variance-
based RTI). The total energy consumption in an RF network
with n nodes is obtained from the following formula.

E =
T
∑

t=1

n
∑

i=1

ETx(i, t) + ERx(i, t) (10)

Here, ETx and ERx are energy consumptions in the
transmitting and receiving modes respectively. We set both
ETx and ERx to 4.5J in all experiments. Table I shows the
value of parameters used in these three experiments.

Figure 6(a) shows the energy consumption of the ellipse,
radius-based, and the multi-channel RTI approaches in the
open environment. This figure shows that both ellipse and
radius based approaches can reduce the energy consumption
ratio from 1 to 0.2. In other words, both energy efficient
approaches save 80% of energy compared to the multi-channel
RTI approach. Also, this figure shows that there is not too
much difference between the energy consumption ratio of
ellipse and radius-based approach (see the yellow area).
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Fig. 6. The energy consumption ratio and average error of location estimation for Ellipse, Radius-based, and Multi-channel RTI approaches in two areas (an
open environment and cluttered office)
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Fig. 7. The energy consumption ratio and average error of location estimation for Ellipse, Radius-based, and VRTI approaches in bookstore

Figure 6(b), compares the energy consumption ratio of the
three approaches (the ellipse, radius-based, and multi-channel
RTI) in a cluttered office area. This figure shows that the
energy efficient approaches save around 60% of energy which
is a little less than the energy savings in the open environment.
This is because in the office area there are only 14 nodes which
is significantly less than the number of nodes in the open area.
The reduction in the number of measured links in the office
area is less than that in the open area and therefore, we save
less energy in the office area.

Figure 6(c) shows the average error of location estimation
in the ellipse, radius-based and multi-channel RTI approaches
for both open and cluttered office areas. In both areas (open
environment and office), the error of radius based approach
is slightly less than the multi-channel RTI approach. Since
in the radius-based approach we only construct the image of
attenuation for a circle around the current position, the noise
in the other places does not effect the result of localization.
However, in multi-channel RTI, we consider the whole area
for constructing the image of attenuation and sometimes the
noise in the environment corrupts the image and increases the
error of localization. In addition, as shown in Figure 6(c), the
average error of localization in the ellipse approach is slightly
higher than the average error in multi-channel RTI approach
for the open environment and it is a lot higher than the error
of multi-channel RTI approach in the office environment. As

we discussed earlier, one drawback of the ellipse approach
is propagation of error. This propagation has high impact
when we have frequent significant changes in the movement
pattern. In the office area, the person changes the direction of
movement more frequently compared to the open environment.
Thus, the error of localization increases significantly in the
office area.

Figures 7(a), 7(b), and 7(c) show the comparison of ellipse,
radius-based, and VRTI approaches in the bookstore. Figures
7(a) and 7(b) show that by using the VRTI approach with
ellipse and radius-based approach, we can save up to 50%
of energy on average compared to the basic VRTI approach.
However, the amount of reduction in the energy consumption
is less than that in the open environment where we use multi-
channel RTI with the energy efficient approaches. This happens
because in the VRTI approach, we need the RSS of links
for a couple of rounds to be able to compute the variance.
Therefore, in the energy efficient approaches over each T time
units, when we compare the basic approach with the energy
efficient approach, we need to turn on all sensor nodes for a
couple of rounds. This increases the energy consumption in
this scenario. However, we still cut down the energy usage by
half.

As shown in Figures 7(a) and 7(b), sensor nodes in Exp.
2 consume more energy than in Exp. 1. As mentioned in the
previous section, in Exp. 1, the person moves along the path
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TABLE II. COMPARISON OF DIFFERENT APPROACHES

Open Office Bookstore Exp.1 Bookstore Exp.2

Approaches eloc(m) ER eloc(m) ER eloc(m) ER eloc(m) ER

Ellipse 0.172 0.1611 1.667 0.2862 1.7571 0.2715 0.8013 0.2871

Radius-based 0.1544 0.1899 0.7481 0.3998 0.9368 0.4823 0.7264 0.5029

Basic Approach 0.1693 1 0.8993 1 1.0245 1 0.7928 1
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Fig. 8. Comparison between Ellipse, Radius-based, and basic approaches in
terms of the total energy consumption ratio and localization error

ABCDA that covers the whole area. However, in Exp. 2, the
person moves along the path EFBAE that is only a part of
the whole area that is surrounded by lots of sensor nodes.
Therefore, the reduction in the number of measured links in
Exp. 2 is less than the reduction in Exp. 1. As a result, in Exp.
2, we consume more energy compared to that in Exp. 1. Also,
in the bookstore experiment there is a higher difference in the
energy consumption ratio of nodes. This happens because in
the bookstore environment the sensor nodes are placed non-
uniformly.

Table II shows the average location estimation error,
eloc and the total energy consumption ratio, ER, in all the
experiments. If we only consider the energy consumption
ratio, the ellipse approach is better that the other approaches.
However, the ellipse approach does not preform well in terms
of localization. As we can see in this table, in all experiments
the localization error in the ellipse approach is higher than
the basic and the radius-based approaches and in some cases
such as the office area the localization error is significantly
higher than the error in the other approaches. In terms of
localization, the radius-based approach performs better than
the others. Also, it can save 50% energy in the worst case
which is great. Figure 8 shows this comparison. In this figure,
the x axis represents the total energy consumption ratio, and
the y axis represents the normalized localization error. Our goal
is to find an approach with points on the left bottom corner of
the figure. This figure shows that the basic approach is on the
right and close to the bottom. Our energy efficient approaches
when applied to the basic approach, moves the points from
the right to the left. Also, we decrease the distance from the
bottom in the radius based approach.

VI. FUTURE WORK

Several future research directions exist for energy efficient
target tracking using RF sensor networks. First, in our work
we proposed energy efficient approaches for tracking a single
target only. However, in many real-world environments and
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Fig. 9. The difference between the localization results when we use all links
versus when we use the k shortest links

settings, multiple people or objects are expected to move and
be tracked in the monitored areas. While there is growing work
on multiple target tracking [14], [17], energy efficiency in these
scenarios has not received much attention. In the future, we
want to extend our energy efficient approach to the multiple
target tracking.

Second, we want to improve our energy efficient approach
in terms of both the energy consumption and the error of
localization. Currently, we reduce the energy consumption to
half in the worst case. One way to reduce both the energy con-
sumption and the localization error is by reducing the number
of measured links even within the ellipse or the circle. Our
idea is to assign weights to individual links and select a subset
of them based on their weights. For example, we can weigh
links based on their lengths. Short length links provide more
information about the attenuation compared to the long ones.
Figure 9 shows the difference in the localization error when
we use all links that are crossing the monitored area versus the
cases when we use k links in the monitored area. The k links
are selected using shortest links first. In Figure 9, the total
number of links is 870. This figure shows that increasing the
number of links from 570 to 870 does not change the estimated
position. However, not all short links are informative (e.g.,
the short links that cross metallic obstructions can actually
negatively impact the accuracy). Thus, the location of the link
or its fade level is very important. Therefore, we can weigh
links based on multiple metrics, use the most effective links,
and thereby save more in terms of energy without sacrificing
accuracy.

Third, besides reducing the total energy consumption, we
want to distribute this energy benefit uniformly across the
sensor nodes. In our current energy efficient approaches, the
maximum energy consumption among the sensor nodes is half
of that in the basic approach. However, this energy is not
uniformly distributed among the sensor nodes especially in
the cases where the person moves only in the small part of the
experiment area and where sensor nodes are deployed non-
uniformly around the perimeter, e.g., the bookstore. To tackle
this problem, we can consider the energy consumption of nodes
in selecting the links within the circle or the ellipse.
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VII. CONCLUSION

We introduced two effective energy efficient RTI ap-
proaches, ellipse-based and radius-based, for localization using
RF sensor networks. In both energy efficient approaches, our
aim was to save energy by reducing the number of links
that we must measure to form an image of attenuation. In
the ellipse-based approach, we only considered links in an
ellipse around the velocity vector of the current position of
the moving object and in the radius-based approach, we used
links in a circle around the current position of the moving
object. In addition, we proposed an algorithm to tune the
radius of circle adaptively over time. We performed extensive
evaluations using real experimental data from three different
settings.

Our experimental results showed that our energy efficient
approaches can save 50% to 80% of energy without seriously
degrading localization accuracy. Interestingly, our radius-based
approach even increased the accuracy of localization in com-
parison to the basic RTI approach.
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