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Abstract— Engineering drawings have posed significant chal-
lenges to image analysis for many decades. The goal is to take
images of scanned engineering drawings and interpret them
so as to understand their contents (e.g., characters, digits, line
segments, box segments etc.). This is known as semantic analysis.
We propose a new approach here which takes advantage of the
man-made nature of drawings: there is a tremendous amount
of symmetry. We exploit this insight to enhance our previously
reported system, the Non-Deterministic Agent System (NDAS),
with symmetry-based analysis tools. Agents work independently
but use each others results to produce the final result (e.g., form
segmentation, character analysis, structural analysis, boundary
segmentation, etc.). We use the wreath product representation
both to characterize symmetry as well as to structure a Bayesian
network model of the uncertainty. This approach permits
wide application to perform semantic analysis of engineering
drawings.

I. INTRODUCTION AND BACKGROUND

Figure 1 shows an example of a complex engineering
drawing and the kinds of semantic information which must
be derived from the image. Much work has been done in

Fig. 1. An Example Engineering Drawing and the Kinds of Semantic
Analysis Desired.

this area, and we refer the reader to [2] for a comprehen-
sive survey and detailed review of the state-of-the-art. We
proposed the NonDeterministic Agent System (NDAS) [3],
which is a set of nondeterministic image analysis agents
that use a blackboard to communicate. One weakness of the
system concerns the extraction of robust low-level geometric
primitives: straight line segments, arcs, etc. We propose here
a new approach to the extraction of shape based on the use
of specific symmetries in geometric forms. The particular
geometric entities to be found include: lines, boxes, circles,
polygons, and corners. We propose to determine the standard

coordinate axes of the image as well (which way a person
sees as up). Note that linear structure may also be used
to detect lines of text in the image, provided that there is
sufficient text.

II. SYMMETRY THEORY AND WREATH PRODUCTS

We have been studying the role of symmetry in robot
cognition (see [4]), and follow Leyton’s basic approach. He
proposed a generative model of shape [6] based on the wreath
product group. (Also, see [7], [8] for a discussion of the
key issue of invariance as a way to detect regularities in
geometric objects.) The wreath product, denoted F ≀ C, is
defined as the semi-direct product of two groups, F and C,
where C is the control (permutation) group which acts on F

the fiber group. More formally:

F ≀ C ≡

n∏

i=1

Fi ⋊ C

where ⋊ is the semi-direct product of n copies of F with
C. C is generally a permutation group with the permutations
applied to the copies of F . The key notion is that C is the
control group that acts to transform the fiber group elements
onto each other.

We apply this idea directly to low-level image analysis.
As a simple explanation:

• the translation symmetry group – denoted by ℜ (1D):
the invariance of pixel sets under translation defines a
straight line segment.

• the rotation symmetry group (2D) – denoted by O(2):
the invariance of pixel sets under rotation defines a
circle (and with a small modification allows description
of ellipses).

• the reflection symmetry group – denoted by Z2 (2D):
the invariance of a set of pixels under reflection about
a line in the plane describes bilateral symmetry in 2D.

We show that this approach significantly improves the seg-
mentation of low-level geometric primitives.

A. Group Theory
Group theory is the mathematical formalization of sym-

metry. A group G is a set, S, along with a binary operator
⋆ defined as the ordered pair (S, ⋆) which satisfies the
following axioms:

• Closure: ⋆ : S × S → S.
• Identity: ∃ ε ∈ S | ∀a ∈ S, a ⋆ e = e ⋆ a = a

• Inverse: ∀a ∈ S, ∃ a−1 ∈ S |, a ⋆ a−1 = a−1 ⋆ a = ε

• Associativity: (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c), ∀a, b, c ∈ S
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B. Wreath Product

Leyton ([6]) defines a wreath product group (WPG) as an
extension of its normal subgroup (the direct product of the
group) and a permutation group. WPGs aim to maximize:

• transfer of action: actions can be applied to new
situations based on previous situations, and

• recoverability: ability to give causal explanation to
effects.

A WPG is composed of an upper group, called the control
group (C), acting on a lower group, the fiber group (F),
that moves the F around (onto copies of its elements) and
represents the actions that are transferred. The fiber group is
related to the control group by a semi-direct product.

The basic groups of interest can be described as follows:
1) an infinite line in 2D, written as {e} ≀ ℜ: represents a

translation. This breaks down as:
• {e}: this represents a point (in the plane) by using

the group consisting of just the identity element
(e). The operator (⋆) can be viewed as the identity
transform in the plane (I). In any implementation,
it is necessary to augment this with the actual
coordinates of the point with respect to some
coordinate system.

• ℜ: this represents all continuous translations (i.e.,
the real number line). Again, it is necessary to
augment this with information which determines
the line (e.g., a direction). ℜ is a 1-parameter Lie
group (i.e., the set is compact and continuous).

• the uncountable nature of ℜ: since the real num-
bers are uncountable, the fiber group consists of
the direct product of an uncountable number of
points; however, since we deal with digital images,
we have a discrete number of pixels to indicate.

2) a finite length line segment, written as {e} ≀ Z2 ≀ ℜ:
represents a finite line segment by adding a charac-
teristic group (Z2) to select the point or not along the
infinite translation represented by ℜ. The digital nature
of images means that a variety of options are available
to represent this (e.g., two endpoints, a list of points,
the parameterized equation of a line with the extreme
values of the parameter specified, etc.).

3) a circle, written as O(2): this represents the group
of rotations about some point in the plane. It is a 1-
parameter Lie group. This must be augmented by a
center point location and radius.

4) a reflection about a line (in 2D), written as Z2: this
represents a reflection because it is a 2-element group
with just the identity and the reflection; note that the
reflection of the reflection is the identity. This must be
augmented with a line of reflection.

The aspect of interest here is that the wreath product
defines shape by means of a transformation of a point set.
The control group (the group to the right of the operator)
tells how to transform the elements on the left. This gives a
generative model. E.g., to make a finite line segment, start

with a point in the plane and translate it in a certain direction
for a certain amount.

Figure 2 demonstrates the idea that a point is translated
by the control group, ℜ.

Fig. 2. Example of Control Flow in a Wreath Product; e, the identity group
which represents a point is acted on by ℜ to obtain the an infinite line.

A more complicated example is that of a rectangular shape
which can be represented as: {e}≀Z2 ≀ℜ≀Z2×Z2, where {e}
represents a point, the first Z2 is the characteristic selection
group which indicates which points are selected, ℜ is the
translation group, and the last group is the cross product of
two cyclic groups of order 2, representing reflections about
the two lines which cut the rectangle across the two pairs of
sides. (See [4], [6] for more details.)

III. DETECTING SYMMETRIES IN IMAGES

A. Translation

Following the notion that translation symmetry arises from
the (straight line) motion of a point, we have developed the
following algorithm:

Algorithm Find Translation

On input: im – a binary image
On output: θ – the direction of motion

d – the translation distance along θ direction

∀p̄ =(row,col)
s← range scan centered at p̄
θ ← direction of greatest possible translation
d← s(θ)

The range scan is performed at a sub-pixel level and returns
the distance to the background from the given pixel in one
degree steps. Figure 3 shows an image and the range scan
at the indicated pixel. Figure 4 shows part of an engineering
drawing (upper left), an arrow plot indicating the direction of
translation at each foreground pixel (upper right), a close-up
on the letter ’A’ (lower left), and a close-up of two crossing
lines (lower right). Another example is shown in Figure 5 of
the image of an engineering drawing form; it is important to
recover the box structure of such forms, and this depends on
the quality of the detection of line segments.

The pixel-wise translation symmetries can be used to
construct line segments along with corners and branchpoints.
A simple agglomerative scheme produces results like those
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Fig. 3. Part of an engineering drawing (left) and the range scan at the
indicated pixel (right).
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Fig. 4. Part of an engineering drawing (upper left), translation direction
arrows (upper right), close-up on letter ’A’ (lower left), and close-up of
crossing lines (lower right).

shown in Figure 6. The line segments are shown by orien-
tation in different gray levels, while endpoints, branchpoints
and corners are shown in red. Note that nonlinear segments
give rise to many short segments. A more complete image
with corners and branchpoints is shown in Figure 7. The
line segments are represented as wreath products; e.g., the
horizontal line segment above the letter ’A’ in the upper left
part of Figure 4 is segment 61, which in Matlab is:

>> wp(61) -- wreath product element 61
ans =

cg: T(179) -- 179 deg translation
fg: [1x1 struct] -- wreath product

>> wp(61).fg
ans =

cg: [2x2 double] -- id. transform
fg: [114 150 113 73] -- end pts

That is, a wreath product is defined recursively as a control
group and a fiber group, where the fiber group is another
wreath product.
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Fig. 5. Engineering forms image (left) and translation symmetries (right).

Fig. 6. A Variety of Examples of Liner Segments, Corners and Branch-
points.

B. Circles

A standard method for circle detection is the Hough
transform [1], but this involves several steps which reduce
the robustness of the method; however, it does work well for
incomplete circles since each part of the circle contributes to
its detection. Here, we focus on complete circles found in the
engineering drawing. The rotation symmetry of circles can
be found more easily by transforming the image into a polar
form centered at a selected pixel. This can be accomplished
by the Frieze Expansion Pattern (FEP) developed by Lee and
Liu [5]. The FEP is formed by taking slices of the image in
a set of directions centered at the expansion pixel. Figure 8
shows the image of a circle (left), and the corresponding FEP
(right) expanded about the center of the circle.

Given the FEP from a point located inside the circle, then
the significant feature about the FEP is that since the circle



Fig. 7. Engineering Drawing showing Corners and Branchpoints).

Fig. 8. Image of Circle (left) and Frieze Expansion Pattern (FEP) (right).

completely surrounds the expansion point, then there is a
solid line of pixels connecting the left side of the FEP to the
right side of the FEP. We take advantage of this to develop
an algorithm for O(2) rotation symmetry detection:

Algorithm Find O(2) Symmetry

On input: im – a binary image
On output: circles – set of circles {xi, yi, ri}

∀p̄ =(row,col)
FEP ← Frieze Expansion Pattern about p̄
paths across ← all distinct connected paths across FEP
circles ← paths that define circles

Consider the analysis shown in Figure 9. A complicated
subimage with a pair of large circles is shown on the left.
The FEP for this image (expanded about the center pixel) is
shown in the middle figure, with the detected paths across
the FEP from left to right. Note that there is a path across the
center due to the fact that the entire middle row is formed

from a foreground pixel (in this particular image); however,
it has radius zero. On the right is the overlay of one of the
recovered circles with the original image. Figure 10 shows
a couple of more examples of O(2) symmetry found in the
image. Note that while the hexagon itself is a polygon, there
is a subset of pixels which has a rotational symmetry. The
polygonal nature of the set of points can be determined from
several different aspects: (1) the translational properties of
the pixels, (2) the corners, (3) the reflectional symmetries.

Subimage from Engineering Drawing

Paths Across FEP

Rotational Symmetry Overlayed on Image

Fig. 9. Subimage with Circles (left), FEP with Overlayed Paths(middle),
Recovered Rotational Symmetry overlayed on Image (right).

Fig. 10. Image of Hexagon (upper left) and Detected Rotational Symmetry
(upper right); Image of Letter ’O’ and Symmetry Detected.

C. Reflections
Reflections about a line in the plane generally require a

2D analysis of the pairwise values of points reflected across
the line. Since we restrict our study to line drawings, it
is possible to detect reflections by using one-dimensional
curves in the FEP. The idea is that the boundary of an object
(circle, polygon, etc.) exhibits the reflection symmetry by the



fact that if a symmetry axis exists, then the data must have
the same values going left and right from that angle in the
FEP; i.e., the FEP will match the reverse of the FEP at that
point. This give rise to the following algorithm:

Algorithm Find Z2 Symmetry

On input: im – a binary image
On output: objects with reflection symmetry

∀p̄ =(row,col)
FEP ← Frieze Expansion Pattern about p̄
Pextremal ← local max and min angles in FEP
reflection axes ← reverse FEP matches the FEP

Figure 11 shows the image of a triangle (left), its FEP
(middle), and the extremal points in the FEP (right). Note
that the angles associated with the extremal points (angles)
are {15, 90, 170, 250, 270, 290} degrees, and of these, only
90 and 270 satisfy the matching property. Therefore, there
is a reflection axis at 90 degrees.
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Fig. 11. Image of Acute Triangle (left), FEP of Triangle (middle), and
Upper FEP Curve showing Extremal Points.

D. Rectangle Recognition
Collections of straight line segments may be examined

for evidence of further relative symmetry. For example, a
rectangle satisfies a 180 degree rotational symmetry, as well
as two reflective symmetries through the opposite sides. We
use the latter representation as the basis for analysis here.
The wreath product representation is given as:

{e} ≀ ℜ ≀ Z2 ×Z2

where Z2 × Z2 is the direct product of the two reflection
groups. This layout provides a direct method to detect
rectangles. A rectangle will generally be a closed contour
about the focus of expansion, and this closed contour can
be checked for reflectional symmetry. (Note even if not
completely closed, an A∗ algorithm will be able to jump

gaps.) If the number of symmetries is correct (2 reflectional),
then the axes are 90 degrees apart (located as minima in
the FEP curves), and at the upper and lower FEP curves are
equi-distant from the center of the FEP image (see Figure 12.
The method was applied to the engineering drawing image
shown in Figure 13, and all the rectangles were found. An
example of the rectangles found in a full engineering drawing
is shown in Figure 14.
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Fig. 12. FEP of Rectangle.

IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated a symmetry-based approach to
the semantic analysis of engineering drawing images. This
includes methods to discover:

1) Translational Symmetry (line segments)
2) Rotational Symmetry (circles)
3) Reflection Symmetries (Rectangles, and polygons in

general)
The methods have been shown to be robust in this applica-
tion.

We are currently working on several aspects to improve
this approach. First, the computational cost can be reduced
through the use of parallel computation (note that these
methods are embarrassingly parallel – i.e., can be run in
parallel at each pixel in the image). In addition, we plan to
extend the method to the analysis of text. Most characters
and digits have some intrinsic symmetry which can be used
to achieve better recognition rates. Finally, we are currently
applying these techniques to a large collection of engineering
drawings and investigating the use of machine learning
methods to further improve performance.



Fig. 13. Rectangles found in Engineering Drawing.

Fig. 14. Rectangles found in Full Engineering Drawing.

Acknowledgments: This work was supported by in part by
AFOSR-FA9550-12-1-0291.

REFERENCES

[1] D.A. Forsyth and J. Ponce. Computer Vision. Prentice Hall, Upper
Saddle River, NJ, 2003.

[2] T.C. Henderson. Analysis of Engineering Drawings and Raster map
Images. Springer Verlag, New York, NY, 2014.

[3] Thomas C. Henderson and Lavanya Swaminathan. NDAS: The Nonde-
terministic Agent System for Engineering Drawing Analysis. In Pro-
ceedings of the International Conference on Integration of Knowledge
Intensive Multi-agent Systems, pages 512–516, Boston, MA, October
2003.

[4] Anshul Joshi, Thomas C. Henderson, and Wenyi Wang. Robot Cog-
nition using Bayesian Symmetry Networks. In Proceedings of the
International Conference on Agents and Artificial Intelligence, Angers,
France, March 2014.

[5] S. Lee and X. Liu. Skewed Rotation Symmetry Group Detection. IEEE
PAMI, 32(9):1659–1672, 2009.

[6] M. Leyton. A Generative Theory of Shape. Springer, Berlin, 2001.
[7] M.A.G. Viana. Symmetry Studies. Cambridge University Press,

Cambridge, UK, 2008.
[8] H. Weyl. Symmetry. Princeton University Press, Princeton, NJ, 1952.


