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Abstract—Fast, scalable, low-cost, and low-power execution
of parallel graph algorithms is important for a wide variety
of commercial and public sector applications. Breadth First
Search (BFS) imposes an extreme burden on memory band-
width and network communications and has been proposed as
a benchmark that may be used to evaluate current and future
parallel computers. Hardware trends and manufacturing limits
strongly imply that many-core devices, such as NVIDIA R©

GPUs and the Intel R© Xeon Phi R©, will become central compo-
nents of such future systems.

GPUs are well known to deliver the highest FLOPS/watt and
enjoy a very significant memory bandwidth advantage over
CPU architectures. Recent work has demonstrated that GPUs
can deliver high performance for parallel graph algorithms
and, further, that it is possible to encapsulate that capability
in a manner that hides the low level details of the GPU architec-
ture and the CUDA language but preserves the high throughput
of the GPU. We extend previous research on GPUs and on
scalable graph processing on supercomputers and demonstrate
that a high-performance parallel graph machine can be created
using commodity GPUs and networking hardware.

Keywords-GPU cluster, MPI, BFS, graph, parallel graph
algorithm

I. INTRODUCTION

Scalable parallel graph algorithms are critical for a large
range of application domains with a vital impact on both na-
tional security and the national economy, including, among
others: counter-terrorism; fraud detection; drug discovery;
cyber-security; social media; logistics and supply chains; e-
commerce, etc. However scalable parallel graph algorithms
on large core or GPU counts is fundamentally challeng-
ing, as computational costs are relatively low compared
to communications costs. Graph operations are inherently
non-local, and skewed data distributions can create bottle-
necks for high performance computing. Solutions based on
map/reduce or requiring checkpoints to disk are relatively
inflexible and 1000s of times too slow to extract the value
latent in graphs in within a timely window of opportunity.
Fast execution and robust scaling requires a convergence of
techniques and approaches from innovative companies and
the High Performance Computing (HPC) community.

Our work on graph problems is motivated by the fact
that large, and often scale-free, graphs are ubiquitous in
communication networks, social networks and in biological
networks. These graphs are typically highly connected and
have small diameters such that the frontier expands very

quickly during BFS traversal as seen in Figure 1. We use the
same scale-free graph generator as the Graph 500 for which
there is a vertex degree distribution that follows a power law,
at least asymptotically [24], [26], [27]. We focus on Breadth
First Search (BFS) as this is perhaps the most challenging
parallel graph problem because it has the least work per byte
and the most reliance on memory bandwidth within the node
while placing a severe stress on the communications network
among the nodes. By demonstrating success on BFS, we
hope to show that the potential of the proposed approach to
a wide range of parallel graph problems.

Our research is motivated in part by Merrill at el. [16] who
demonstrated that GPU can deliver 3 billion Traversed Edges
Per Second (3 Giga-TEPS or GTEPS) across a wide range
of graphs on Breadth First Search (BFS), a fundamental
building block for graph algorithms. This was a more
than 12× speed up over idealized multi-core CPU results.
Merrill directly compared against the best published results
for multi-core CPU algorithms, implemented a single-core
version of the algorithms, verified performance against pub-
lished single-core results, and then used idealized linear
scaling to estimate multi-core performance. He found that
the GPU enjoyed a speedup of at least 12× over the idealized
multi-core scaling of a 3.4 GHz Intel Core i7 2600K CPU
(the equivalent of 3 such 4-core CPUs). The single-GPU
implementation of MapGraph [1] generalizes Merrill et
al.’s dedicated BFS solution to support a wide range of
parallel graph algorithms that are expressed using the Gather
Apply Scatter (GAS) abstraction [3]. This abstraction makes
it easy for users to write sequential C methods and realize
throughput that rivals hand-coded GPU implementations for
BFS, SSSP, PageRank, and other parallel graph algorithms.

In this work, we extend the MapGraph framework to
operate on GPU clusters. The starting point for our design
is an approach described by Checconi, et al. for the Blue
Gene/Q [7]. A major challenge of our research is that GPUs
are much faster than the Blue Gene/Q processors while com-
modity networking hardware lacks the more sophisticated
communication capabilities of the Blue Gene/Q. Together,
these factors can create a severe imbalance between compute
and communications for bandwidth and communications
constrained problems such as BFS.

Key contributions of this work include:
- A high performance implementation of parallel BFS for
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Figure 1. Frontier size during BFS traversal (scale 25)

GPU clusters with results on up to 64 GPUs and 4.3 billion
directed edges.
- A strong and weak scaling study on up to 64 GPUs with an
analysis of the strengths and weaknesses of our multi-GPU
approach with respect to scalability.
- Identification of a log p communication pattern that may
permit strong scaling to very large clusters.
- Identification of a means to eliminate the all-to-all commu-
nication pattern used by the Blue Gene/Q [7] while allowing
the parallel computation of the predecessors on each GPU.

II. RELATED WORK

Graph traversal and graph partitioning have been stud-
ied extensively in the literature. On a distributed parallel
computer architecture, scalable and efficient parallel graph
algorithms require a suitable decomposition of the data
and the associated work. This decomposition may be done
by graph partitioning with the goal of distributing data
and work evenly among processors in a way that reduces
communication cost. There are many graph partitioning
strategies proposed in the literature. The simplest strategy
is 1D partitioning, which partitions the graph vertices into
disjoint sets and assigns each set of vertices to a node as
implemented in parallel in widely-used packages such as
Zoltan [4] and ParMetis [5].

Vastenhouw and Bisseling [6] introduce a distributed
method for parallel sparse-matrix multiplication based on
2D graph partitioning. In 2D graph partitioning, the edges
are distributed among the compute nodes by arranging the
edges into blocks using vertex identifier ranges. These blocks
are organized into an p×p grid and mapped onto p2 virtual
processors. Each row in the grid contains all out-edges for
a range of vertices. The corresponding column contains the
in-edges for the same vertices. In [7], the authors implement
BFS with this 2D graph partitioning algorithm on IBM
Blue Gene/P and Blue Gene/Q machines using optimizations
to reduce communications by 97.3% (through a “wave”
propagated along the rows of the 2D processor grid to
eliminate duplicate vertex updates) and also optimize for the
underlying network topology. They study the weak scaling
and strong scaling of their design and the effect of the graph
partitions on cache locality. This approach was ranked 1st

in the November 2013 Graph500 on 65, 536 Blue Gene/Q
processors (http://www.graph500.org).

Many of the 1D and 2D Graph partitioning algorithms per-
form partitioning on the original graphs and try to minimize
the edge-cuts in order to minimize the communication costs.
Catalyureck [8] showed that hypergraphs more accurately
model the communication cost leading to packages such as
[9], [4].

Several methods and software packages are introduced in
the literature to develop scalable, high performance graph
algorithms on parallel architectures. In [11], the authors
try to address the problem of how graph partitioning can
be effectively integrated into large graph processing in the
cloud environment by developing a novel graph partitioning
framework. Also, Berry et al. [12], introduce the Multi-
Threaded Graph Library (MTGL), generic graph query
software for processing semantic graphs on multithreaded
computers while Bader [13] introduces a parallel graph
library (SNAP). Agarwal [25] presents results for BFS on
Intel processors for up to 64 threads in a single system with
comparisons against the Cray XMT, Cray MTA-2, and Blue
Gene/L. Pearce [17] presents results for multi-core scaling
using asynchronous methods while [18] and [19] present
an approach to graph processing based on sparse matrix-
vector operations. The approaches of PowerGraph [2] and
GraphChi [10] have been shown to be equivalent to 2D
partitioning.

As noted above, Merrill et al. [16] developed the first
work-efficient implementation of BFS on GPUs. He devel-
oped adaptive strategies for assigning threads, warps, and
CTAs to vertices and edges, and optimized frontier expan-
sion using various heuristics to trade off time and space and
obtain high throughput for algorithms with dynamic fron-
tiers. While [16] offers the best results to date for BFS on
a single GPU, Fu et al. offer nearly equivalent performance
on BFS in MapGraph [1] using a high-level abstraction and
a data-parallel runtime (the performance may be slightly
higher or lower depending on the data set). Gharaibeh
and Zhong present multi-GPU (single workstation) results
for Page Rank (PR) and BFS [20]. Gharaibeh defines a
performance model for hybrid CPU/GPU graph processing,
tests that model with up to 2 GPUs using random edge cuts,
and notes that aggregation can reduce communications costs.
Zhong uses 1D partitioning and also tests n-hop partitioning
(to increase locality through redundancy). While some of
these approaches use multiple GPUs on a single node, none
of these approaches scales to GPU clusters.

In addressing multi-GPU scalability we will draw on
lessons learned from large-scale parallel scalability for the
Uintah Software (http://www.uintah.utah.edu). Uintah runs
on, and scales to, the very largest machines by using high-
level abstractions, such as: (a) a domain specific abstraction
for writing analytics; (b) a low-level, data-parallel runtime
system with adaptive, asynchronous and latency-hiding task
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execution and (c) a data warehouse on each multi-core/GPU
node which abstracts away hardware specific operations
required to support the movement of data [22]. In imple-
menting BFS on GPU clusters, we combine the Uintah
design philosophy with the wave communication pattern of
[7] (see above) and the Mapgraph approach [1] to parallel
edge expansion on GPUs.

III. MULTI-GPU IMPLEMENTATION

While writing a single GPU graph-processing program is
difficult due to the data-intensive graph algorithms, irregular
data storage and access and dynamically varying workload,
this challenge has been addressed in MapGraph [1]. In
this paper, we extend that work to BFS on multiple GPUs
using a Bulk Synchronous Parallel (BSP) approach with a
synchronization point at the end of every BFS iteration.

A. Partitioning

The graphs we use are generated in parallel using the
Graph 500 Kronecker Generator [15]. The edges are par-
titioned using 2D partitioning, similar to the partitioning
mechanism used by [7]. Our code models each undirected
edge as two directed edges. Each directed edge, consisting of
a source vertex, a target vertex and an edge value, is stored
on a single GPU. The adjacency matrix is partitioned in
two dimensions with an equal number of vertices partitioned
across each row and column. In our case, if we have p2

GPUs, we have to partition the matrix into p partitions
along both the rows and columns. We layout the source
vertices along the rows and the target vertices along the
columns. The global vertex identifiers are converted to local
vertex identifiers, and the data are written into a file system,
with each line containing an edge (row identifier, column
identifier, edge weight). At run time, the CPUs read the
edge list and convert it to a CSR (Compressed Sparse Row)
sparse matrix. The data are then copied to the GPU’s global
memory, where the GPU builds a CSC (Compressed Sparse
Column) sparse matrix. The CSR matrix is used during
traversal. Once the traversal is complete, the CSC matrix is
used to compute the predecessors from the assigned levels.

B. BFS Traversal

The algorithm for the distributed BFS traversal is de-
scribed in the Figure 3. The search begins with a single
search key, called starting vertex, that is communicated to all
GPUs as the initial set of vertices that we should process. We
call this vertex set the global frontier. In line 2 of Figure 3,
each GPU, denoted Gij , decides if the starting vertex falls
in its range and sets the corresponding bit in the bitmap
Inti, where t stands for the iteration t of BFS. In line 4 of
Figure 3, all GPUs that contain the starting vertex perform a
data parallel local operation (Expand 4) in parallel, in which
they compute the 1-hop expansion of the active vertices
over the local edges and produce a new frontier. The new
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Figure 2. Multi-GPU BFS algorithm

frontier is also represented as a bitmap, denoted Outtij . Next,
the global frontier size is computed in line 5 and 6 with a
Count method and a Reduce method. Then we check if the
global frontier size is greater than zero. If so, we perform
the Contract operation that will be describe below and the
update the levels of the discovered vertices in the Expand
operation. If the global frontier size is zero, we terminate the
iteration and compute the predecessors from the levels 7.

The detail of the implementation of the Expand operation
is shown in Figure 4. In the algorithm, line 2 first converts
the bitmap to a vertex frontier list, and line 3 initializes
an empty vertex frontier list. Next, each vertex in the
frontier list Lin is assigned to a thread. Each thread then
concurrently looks up in the CSR representation (consisting
of RowOff and ColIdx arrays) of the graph adjacency to
find the neighbors of the vertex and puts the neighbors into
the new vertex frontier list Lout. In this process, each thread
can enlist other threads to cooperatively handle its neighbors
depending on its degree. This is described in detail in [1].
Finally, line 10 converts the new vertex frontier list Lout

back to a bitmap.

C. Global Frontier Contraction and Communication

The Outtij generated by the GPUs are contracted globally
across the rows Ri of the partitions using prefix sum
technique similar to the wave method used by the Blue
Gene/Q [7]. This operation removes duplicates from the
frontier that would otherwise be redundantly searched in
the next iteration. It also resolves conflicts among the GPUs
arising from the simultaneous discovery of the same vertex
by more than one GPU by deciding which GPU will update
the state associated with each vertex discovered during that
iteration. The Assignedij bitmap makes sure that only one
GPU gets the chance to update the state associated with a
particular vertex. The implementation of the Global Frontier
contraction is shown in Figure 5.

Instead of the sequential propagate communication pattern
described in [7], we used a parallel scan algorithm [14]
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1: procedure BFS(Root, Predecessor)
2: In0ij ← LocalVertex(Root)
3: for t← 0 do
4: Expand(Inti, Outtij)
5: LocalFrontiert ← Count(Outtij)
6: GlobalFrontiert ← Reduce(LocalFrontiert)
7: if GlobalFrontiert > 0 then
8: Contract(Outtij , Outtj , Int+1

i , Assignij)
9: UpdateLevels(Outtj , t, level)

10: else
11: UpdatePreds(Assignij ,Predsij , level)
12: break
13: end if
14: t++
15: end for
16: end procedure

Figure 3. Distributed Breadth First Search algorithm

1: procedure EXPAND(Inti, Outtij)
2: Lin ← convert(Inti)
3: Lout ← ∅
4: for all v ∈ Lin in parallel do
5: for i← RowOff[v],RowOff[v + 1] do
6: c← ColIdx[i]
7: Lout ← c
8: end for
9: end for

10: Outtij ← convert(Lout)
11: end procedure

Figure 4. Expand algorithm

1: procedure CONTRACT(Outtij , Outtj , Int+1
i , Assignij)

2: Prefixtij ← ExclusiveScanj(Outtij)
3: Assignedij ← Assignedij ∪ (Outtij − Prefixtij)
4: if i = p then
5: Outtj ← Outtij ∪ Prefixtij
6: end if
7: Broadcast(Outtj , p , ROW )
8: if i = j then
9: Int+1

i ← Outtj
10: end if
11: Broadcast(Int+1

i , i, COL)
12: end procedure

Figure 5. Global Frontier contraction and communication algorithm

1: procedure UPDATELEVELS(Outtj , t, level)
2: for all v ∈ Outtj in parallel do
3: level[v]← t
4: end for
5: end procedure

Figure 6. Update levels

1: procedure UPDATEPREDS(Assignedij , Predsij , level)
2: for all v ∈ Assignedij in parallel do
3: Pred[v]← −1
4: for i← ColOff[v],ColOff[v + 1] do
5: if level[v] == level[RowIdx[i]] + 1 then
6: Pred[v]← RowIdx[i]
7: end if
8: end for
9: end for

10: end procedure

Figure 7. Predecessor update

for finding the Prefixtij , which is the bitmap obtained by
performing Bitwise-OR Exclusive Scan operation on Outtij
across each row j as shown in line 2 of Figure 5. There
are several tree-based algorithms for parallel prefix sum.
Since the bitmap union operation is very fast on the GPU,
the complexity of the parallel scan is less important than
the number of communication steps. Therefore, we use an
algorithm having the fewest communication steps (log p)
[14] even though it has a lower work efficiency and does
p log p bitmap unions compared to p bitmap unions for work
efficient algorithms.

At each iteration t, Assignedij is computed as shown in
line 3 of Figure 5. In line 7, the contracted Outtj bitmap
containing the vertices discovered in iteration t is broadcast
back to the GPUs of the row Rj from the last GPU in
the row. This is done to update the GPUs with the visited
vertices so that they do not produce a frontier containing
those vertices in the future iterations. It is also necessary for
updating the levels of the vertices. The Outtj becomes the
Int+1

j . Since both Outtj and Int+1
i are the same for the GPUs

in the diagonal (i = j), in line 9, we copy Outtj to Int+1
i in

the diagonal GPUs and then broadcast across the columns
Ci using MPI_Broadcast in line 11. Communicators were
setup along every row and column during initialization to
facilitate these parallel scan and broadcast operations.

During each BFS iteration, we must test for termination
of the algorithm by checking if the global frontier size is
zero as in line 6 of Figure 3. We currently test the global
frontier using a MPI_Allreduce operation after the GPU local
edge expansion and before the global frontier contraction
phase. However, an unexplored optimization would overlap
the termination check with the global frontier contraction
and communication phase in order to hide its component in
the total time.

D. Computing the Predecessors

Unlike the Blue Gene/Q [7], we do not use remote
messages to update the vertex state (the predecessor and/or
level) during traversal. Instead, each GPU stores the lev-
els associated with vertices in both Intj frontier and Outtj
frontier (See Figure 6 for the update level algorithm). This
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information is locally known in each iteration. The level for
the Intj frontier is available at the start of each iteration. The
level for the vertices in the Outtj frontier is known to each
GPU in a given row at the end of the iteration.

Once the BFS traversal terminates, the predecessors are
computed in parallel by all GPUs without any further com-
munications. The algorithm for the predecessor computation
is available in Figure 7, where ColOff and RowIdx are
the CSC index. For each GPU, all vertices discovered by
that GPU (that is, those vertices that correspond to a set bit
in Assignedij bitmap) are resolved to a source vertex at the
previous level on that GPU. Specifically, each vertex vi first
looks up in the level array to find its own level li. Next, it
accesses its adjacency list and find the levels of its neighbors.
For neighbors with level li−1, this vertex writes the neighbor
identifier in a temporary array. Otherwise, it writes −1 in
the array. Finally, we do a reduction on the temporary array
to find the maximum and set it as the predecessor of the
vertex.

This procedure is entirely local to each GPU. When it
terminates, the GPUs have discovered a valid predecessor
tree. On each GPU, the elements of the predecessor array
will either be a special value (−1) indicating that the
predecessor was not discovered by that GPU or the vertex
identifier of a valid predecessor. The local predecessor arrays
can then be reduced to a single global array on a single
GPU.

IV. EVALUATION

Two fundamental measures of scalability for a parallel
code running on a parallel computer are strong and weak
scaling. As strong scaling has a constant problem size and
increasing processor or core count, it measures how well a
parallel code can solve a fixed size problem as the size of the
parallel computer is increased. In contrast, weak scaling has
a fixed problem size per core per processor and so measures
the ability of a parallel machine and a parallel code to solve
larger versions of the same problem in the same amount of
time.

To evaluate our approach, we conduct an empirical study
of the strong and weak scaling behavior on a GPU compute
cluster with up to 64 GPUs. This scalability study provides
empirical evidence that GPU compute clusters can be suc-
cessfully applied to very large parallel graph problems. As
noted in [7], weak scaling is not expected for this design.
This is because the frontier message size grows with the
number of vertices while the work per GPU is roughly
constant given a fixed number of edges per GPU.

A. Test Environment

The test environment is a GPU cluster hosted at the
Scientific Computing and Imaging (SCI) Institute in Utah
with 32 nodes and 64 GPUs. Each node of the cluster has
two Intel Xeon CPUs, 64 GB of RAM, and two NVIDIA

K20 GPUs. Each GPU is equipped with 5GB DDR5 memory
and has a peak single precision performance of 3.52 Tflops,
a peak memory bandwidth of 208 GB/sec and supports
PCIe Gen 2. ECC was enabled for all runs. The 32 nodes
of the cluster are connected with the Mellanox InfiniBand
SX6025 switches that provide up to thirty-six 56Gb/s full bi-
directional bandwidth per port. The nodes were configured
using CentOS 6.5. The MPI distribution is MVAPICH2-
GDR and the CUDA version is 5.5. This configuration
allows us to use GPUDirect, thus eliminating copying of data
between the GPU and the CPU. Instead, MPI requests are
managed using the PCIe connections between the GPU and
the InfiniBand port paired with each GPU. This substantially
decreases the latency and increases the throughput of MPI
messages. The CPUs and the CPU memory are not relied
on in these experiments except to coordinate the activity on
the GPUs. All data is stored in the GPU memory, and all
computation is performed on the GPUs.

B. Graph 500 Graph Generator

In order to provide comparable benchmark results we
use the Graph 500 [15] generator, which is based on a
Kronecker generator similar to the Recursive MATrix (R-
MAT) scale-free graph generation algorithm described by
[24]. The graph has 2SCALE vertices based on inputs of
SCALE and EDGEFACTOR, which defined the ratio of the
number of edges of the graph to the number of vertices.
The EDGEFACTOR was 16 for all generated graphs. The
adjacency matrix data structure for the graph edges is then
produced and is recursively partitioned into four equal sized
partitions and edges are added to these partitions one at
a time; each edge chooses one of the four partitions with
probabilities A = 0.57, B = 0.19, C = 0.19, D =
1− (A+B +C) = 0.05. For each condition, we randomly
selected 5 vertices with non-zero adjacency lists (excluding
self-loops). The average of those 5 runs is reported. The
observed variability among those runs was very small. All
experimental runs visit the vast majority of the edges in the
graph. This is because the generated scale-free graphs have
a very large connected component that encompasses most
of the vertices.

C. Validation

Each GPU extracts the predecessors for those vertices
that are marked in its Assigned bitmap. After conversion to
global vertex identifiers and adjustment by +1, the existence
of a predecessor in the predecessor array is denoted by
PredecessorVertex+1 and the rest of the vertices in the pre-
cesssor array are assigned 0. We then perform a MPI_Reduce
across the rows Ri to the nodes in the column C1 to find
all the predecessors of the vertices of that row. Then we
perform a MPI_Allgather across nodes in the column C1 to
build a lookup table for the predecessors.

114



To validate the results, the predecessor information is used
to test if the BFS tree has cycles. In the nodes in column
C1, we create a temporary list of global vertices that were
in the partition of vertices for the row Ri during the BFS
and replace each visited vertex with its predecessor in a
loop until its predecessor is the source vertex of BFS. If
the number of iterations of the loop reaches the number of
vertices in the graph, it means that there are loops in the
BFS graph, and validation fails.

Next, the directed edges of the graph are traversed to
verify that each predecessor vertex is in the BFS tree. For
each edge, we also verify that the destination vertex is in
the BFS tree at a level not greater than x+1, where x is the
level assigned to the source vertex.

V. RESULTS

Our initial scalability runs demonstrated the underlying
promise of our approach. However, they also illustrated
the fundamental challenge in the algorithm used for the
global frontier aggregation. This step aggregates the local
frontiers from the GPUs and forms the global frontier, which
is represented as a bitmap. We used the wave strategy
described the in paper [7], but our analysis shows that the
impact of this algorithm on both our results, and on those
of the Blue Gene/Q, is considerable.

In an p× p array of processors, the wave algorithm does
p communication steps per frontier operation followed by
a broadcast across 2p processors. As we increase p, the
decrease in the message size is not sufficient to offset the p
communication steps and the overall costs do not decrease
sufficiently fast across each of these stages to ensure that
the calculation scales. The fundamental issue lies in the
p communication steps per frontier operation, which is
sequential across the p processors on a given row of the p×p
processor array, but parallel across the different rows. This
p cost is one of the primary effects that limits the strong
scaling efficiency. Our solution adopts an approach based
on pairwise exchanges that has a communication cost of
log p compared to the original cost of p. This change in the
communication pattern provided a 30% gain in TEPS and
improved the strong scaling efficiency from 44% to 48%
on the same graphs and hardware. (The Blue Gene/Q has a
strong scaling efficiency of 44% as measured on a cluster
sizes of 512, 1024, 2048, and 4096 nodes.)

The main challenge in weak scaling is ensuring that the
communications costs do not grow appreciably in a manner
that is proportional to the overall problem size. In the design
considered here, the communications costs is theoretically
Ccomm = εS log p, where ε is a constant, and S denotes
the bitmap size. Therefore, when the number of GPUs in a
weak scaling study increases by a factor of 4, the bitmap
size S grows by a factor of 2, and communications costs
grow by a factor of 2 log 2p

log p . This is illustrated by Figure 8,
which breaks down the costs in a central iteration of the
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Figure 8. Communication and computation costs during BFS traversal for
iteration 2 (weak scaling)

BFS traversal for the weak scaling study. Figure 8 shows
that the communications costs grow significantly while the
computation costs per GPU remain very nearly constant. In
order to have weak scaling, the message size would need to
be constant, which it is not. Thus, while we do not achieve
weak scaling in the normal sense, we would not expect to
do so with this design. The weak scaling results in Table II
are consistent with the Blue Gene/Q [7].
A. Strong and Weak Scalability Tests

For strong scaling study, we generate a scale 25 graph,
which has 225 vertices and 230 directed edges. We then
evaluate our BFS implementation for this graph on 16, 25,
36, 49, and 64 GPUs, respectively. For the strong scaling
study we have the same data for each condition. Therefore,
we use the same set of randomly selected starting vertices
for all conditions. This makes it possible to directly compare
the performance for the same graph traversal on different
numbers of GPUs. The average performance is shown in
Table I and Figure 9. As noted above, our implementation
has a strong scaling of 48% compared to the Blue Gene/Q
with a strong scaling of 44%. This is attributable to the
log(p) communication pattern for propagate.

GPUs GTEPS BFS Time (s)
16 15.2 0.071
25 18.2 0.059
36 20.5 0.053
49 21.8 0.049
64 22.7 0.047

Table I
STRONG SCALING RESULTS

For weak scaling study, we generated a series of graphs
of different scales. Each GPU has 226 directed edges. In
order to have the same number of edges per GPU, we used
a power of 4 for the number of GPUs.

GPUs Scale Vertices Directed Edges BFS Time (s) GTEPS
1 21 2,097,152 67,108,864 0.0254 2.5
4 23 8,388,608 268,435,456 0.0429 6.3
16 25 33,554,432 1,073,741,824 0.0715 15.0
64 27 134,217,728 4,294,967,296 0.1478 29.1

Table II
WEAK SCALING RESULTS
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Figure 9. Strong scaling results

Figure 10. Weak scaling results

Performance for weak scaling is presented in Table II
and Figure 10. Unlike the strong scaling study, a different
starting vertex was chosen for each condition because a
different scale graph is used in each condition for a weak
scaling study.

B. Performance at maximum scale

The largest graph on which we report here is a scale
27 (227 ≈ 134 million vertices and 232 ≈ 4.3 billion
directed edges). On the 64 GPU cluster, this graph has
226 (67,108,864) directed edges per GPU. While we can
fit larger graphs onto the GPU, the next larger scale graph
(scale 28) would have twice as many directed edges per GPU
which would exceed the on device RAM (5GB) for the K20
GPU.

The full edge-to-edge traversal of this 4.3 billion edge
graph took an average of 0.14784 seconds and traversed
4,294,925,646 (4.3B) edges for an effective average traversal
rate of 29.1 GTEPS. Note that 41,650 edges were not visited
because they were not part of the connected component for
the starting vertices.

VI. CONCLUSIONS AND FUTURE WORK

The fundamental understanding that we now have of the
scalability properties of the algorithm is perhaps as impor-
tant as the software implementation and results obtained.

It is now possible for us to go beyond present scaling by
considering alternative approaches such as those described
above, optimizations such as the topology folding described
in [7] and graph compression [28] [29], and using pipelined
processing with multiple graph partitions per GPU to overlap
the computation with the communication in order to hide
the delay effects of the communication. Moreover, we have
shown that there is no fundamental roadblock to scalability
at levels that meets the requirements of many users.

Since our submission, two works have recently emerged
that are related to our research. Ueno [30] (December 2013)
describes an approach using CPUs to coordinate communi-
cations and GPUs to perform the edge expansion and reports
scaling up to 4096 GPUs on the Japanese TSUBAME 2.0
supercomputer. Bisson [31] appeared as a pre-print after our
submission and describes a pure GPU approach on a Cray
XC30 supercomputer with scaling up to 4096 nodes. We
will compare to these results in a future publication.

While we have shown that it is possible to achieve a
scalable solution for challenging BFS graph problems on
multiple GPU nodes, the next decade presents enormous
challenges when it comes to developing software that is
portable across different architectures. The anticipated rapid
increase in the number of cores available together with
the desire to reduce the power consumption and concerns
about resilience at large scales is introducing a rapid phase
of innovation in both hardware and software. There are
many different competing design paradigms ranging from
low power chips, to GPU designs, to the Intel Xeon Phi. For
example, GPU architectures themselves are changing very
quickly with the possibility of increased compute power,
vertically stacked memory and much improved GPU-to-GPU
communications, and continued gains in FLOPS/watt.

One solution is to use a layered software approach that
adapts to such rapid evolution in hardware and systems.
In such an approach, the aim is to automatically translate
and inject user specific algorithms into data-parallel kernels,
such as the compute intensive parts of the GPU code
presently running today. This code is then executed using a
distributed runtime system (similar to Uintah) that makes use
of all available node-to-node (e.g. GPU to GPU) optimized
communications.

The important aspect of such a design is that it involves
layers of abstraction that are sufficiently rich to encompass
future architecture developments. Our future challenge will
be to combine this layered approach with achievable perfor-
mance for challenging applications such as that considered
here.
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