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Abstract

We propose a novel malware detection application—
SocialScan—which enables friend-to-friend (f2f) malware
scanning services among social peers, with scanning resource
sharing governed by levels of social altruism. We show that
with f2f sharing of resources, SocialScan achieves a 65%
increase in the detection rate of 0- to 1-day-old malware
among social peers as compared to the the detection rates of
individual scanners. We also show that SocialScan provides
greatly enhanced malware protection to social hubs.

I. INTRODUCTION

Over the past several years, there has been an explo-
sion in the popularity and utility of online social networks
(OSNs). Traditional out-of-band communication methods—
including phone calls, traditional mailed letters, and face-
to-face conversations—are in many cases being replaced by
interaction and collaboration over OSNs. In this paper, we
present a novel application, SocialScan, that leverages altruism
between peers in an OSN for distributed malware detection for
web content. SocialScan is an N-version [1] malware detection
system. The protection mechanisms within SocialScan scale
with the number of system participants by leveraging existing
anti-malware resources on the clients of social peers.

A scanning service could be offered by clusters (cloud) of
well-managed dedicated malware detection servers [1] that
provide a large diverse set of malware checkers for a fee
and are very likely to accurately detect malware. However,
a centrally controlled service offers its own challenges. First,
a centrally controlled service can become a single point
of failure or a single target of attack, even with replica-
tion. This centrally controlled service might not be always
available when needed. A clever adversary can target the
centralized service while introducing new malware in the
networks. Second, the centrally controlled services, in many
cases, give a false sense of privacy to their users. The privacy
of all of the user access behavior is contingent upon how
well protected the user data are at these centralized service
clusters. These are always a prime target of attack because
an adversary, for the amount of effort required, can obtain
a large amount of private information (in comparison to the
adversary attacking individual users). An even bigger problem
is that some centralized service providers might sell the
private information of their users to other businesses or use
that information in unauthorized or unethical ways. Third,

fundamentally, simple performance analysis of p2p and client-
server architectures shows the expected lack of scalability of
the client-server model. Centralized- and cloud-based malware
protection mechanisms are much more limited in their re-
sources and thus cannot provide all clients on the Internet
with effective but resource-intensive anti-malware techniques
including both N-version [1] and execution-based [2] [3] virus
detection. We believe that the p2p model, combined with social
networks, offers a new and unique opportunity to explore the
distributed applications space not just for higher reliability and
performance but also for creating a level playing field when
it comes to user privacy.

In this paper, we first design the SocialScan system. We
propose the use of an existing social altruism metric [4] to
determine the peers for scanning objects (files retrieved from
the Internet) and for exchanging logs of object scans. Then,
we develop our methodology for deciding whether access to
an object should be allowed or denied. This methodology
uses the results of the data available for that particular object
being requested, including the results of previous local scans,
as well as peer scans obtained from directed scan requests.
We propose three decision making strategies - one based on
local scans only, a Paranoid strategy requiring a minimum
number of diverse scanners, and a Dynamic strategy that
adjusts the required diversity of scanners based on the age
of the object. Next, we implement SocialScan as a set of
Python modules and services on top of an SQLite database.
Using our implementation on the Amazon EC2 cloud, we
show that with sharing of resources across social peers, both
the Paranoid and Dynamic strategies achieve a 65% increase
in the detection rate of 0- to 1-day-old malware among
social peers as compared to the the detection rates of local
scans only. Using simulations of both scanner diversity and
scan result sharing, driven by social connectivity from real-
world Facebook data, we find that SocialScan provides the
top 5% of socially connected users—the social hubs—with
the greatest levels of both scanner diversity and shared scan
results. We also show through simulation that even relatively
small groups of social peers can provide significant levels of
scanner diversity.

II. ADVERSARY MODEL

SocialScan is primarily designed to increase the probability
that malware will be detected when accessed by a client run-
ning the SocialScan software. The principle set of adversaries
for SocialScan are the creators of common malware—software
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Fig. 1. SocialScan Overview

that has the goal of infecting and exploiting computers when
retrieved and opened by unsuspecting Internet users. The
design outlined in this paper is not focused on attacks against
SocialScan itself. Such attacks by infected SocialScan nodes
(client systems running SocialScan on behalf of their respec-
tive users) might include: false negative scan responses and
false positive scan responses (denial of service/object blocking
attempts). While each SocialScan participant can dynamically
tune the level of scanning redundancy and scanner diversity
required before accepting an object in an attempt to mitigate
false scan responses by requiring larger and more diverse
quorum responses, we defer the evaluation of such threats and
candidate mitigation methods to be the subject of future work.

III. SOCIALSCAN MALWARE DETECTION SYSTEM

With their work on Cloud-AV [1], Oberheide et al. have
shown the benefits of utilizing a cluster of servers running a
heterogeneous set of anti-virus software. This is referred to
as N-version virus scanning. The authors show that although
the anti-virus signature sets used by diverse vendors intersect,
there is no single signature set that can effectively act as a
superset of all other vendor signatures. Individual AV (anti-
virus) products have the potential to be compromised [5].
This provides motivation for using divergent signature sets and
AV products to scan for malware. Individual home and small
office users rarely have the budget or technical expertise to
construct and maintain a cluster of N-version virus scanners,
but they commonly have social peers that are willing to share
resources (CPU, memory, bandwidth, etc). A user’s social
peers likely run diverse anti-virus scan engines and signature
sets. A licensing issue might arise due to SocialScan requiring
a peer to scan malware for other peers by using their single-
user virus scanner. We believe that this issue will get addressed
in legal frameworks in a broader sense as it applies to other
application software and other distributed systems (including
those promoting cyber foraging) as well. The legal aspects of
this issue are beyond the scope of this paper.

We design SocialScan to leverage these existing anti-
malware resources to improve malware detection for all system

participants. An overview of SocialScan is shown in Fig. 1.
SocialScan provides two important services: first, passive
sharing of the results of object scans among social peers; and
second, providing a medium by which social peers can request
immediate scans of particular objects; SocialScan has the goal
of improving malware detection accuracy while minimizing
additional object scanning latency as described below:

Malware Detection Accuracy: By leveraging friend-to-
friend (f2f) scanning services, we design SocialScan to im-
prove a node’s accuracy in detecting malware within the
objects requested by the user. Utilizing the same N-version
philosophy of the Cloud-AV [1] project, we design SocialScan
to increase the malware detection accuracy of individual nodes
by encouraging the sharing of scan results among social peers
running diverse virus scanners. With the level of resource
sharing—i.e., servicing scan requests and sharing results—
governed by levels of altruism among social peers, SocialScan
maximizes the anti-virus resources of social-hubs. As the
recipients of larger amounts of scanning resources, social-hubs
will be armed with the highest levels of protection against
malware.

Object Scanning Latency: We design SocialScan to mini-
mize any latency penalty created by relying on social peers
to assist with malware detection. In contrast with Cloud-AV,
which relies on a dedicated local cluster of scanning hardware
and software, SocialScan relies on the sharing of surplus
memory, bandwidth and CPU resources across geographically
dispersed nodes. Given the unpredictable availability of social
peer resources as well as the lack of guarantees on the level
of willingness of a peer to service scan requests, we design
SocialScan with a no-assurances approach as to scan request
response times from peers.

A. Social Relationship Identification

Before SocialScan enabled nodes can collaborate directly
with their peers, they must first identify true social peers. So-
cialScan utilizes one or more social networks (e.g., Facebook,
Weibo, etc) so as to identify active social relationships among
users based on their relative levels of social connectivity. The
traditional SMTP email social network can also be used. A sig-
nificant body of research has been conducted in analyzing and
quantifying relative levels of altruism—commonly referred to
as distance—between social peers. We design SocialScan to
support any analysis module that will yield a quantifiable and
relative level of altruism among social peers. For our particular
implementation of SocialScan, we approximate relative levels
of altruism among peers within a social network using the
SocialDistance metric, which is explained in detail in our
earlier work, SocialSwarm [4]. Briefly, a proportional and
direct level of altruism, A(a, b) between a peer a and another
peer b is given by the ratio I(a, b)/I(a, all), where I(a, b) is
the number of reciprocal interactions a has had within a given
time window with b, and I(a, all) is the number of reciprocal
interactions a has had with all of its peers during the same
window of time. The SocialDistance between a and b is the
inverse of A(a, b). For indirect peers that are more than one
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hop away in the social network, the altruism is depreciated by
a hop decay factor resulting in a larger SocialDistance between
the indirect peers.

B. IP Address and Key Exchange

To bootstrap direct f2f interaction after identifying true
social peers, SocialScan—running on each peer device—needs
to learn the current IP address and TCP port numbers used
by their social peers. SocialScan also generates a simple
public/private key pair for f2f message encryption and shares
the public key with the user’s social peers. SocialScan lever-
ages established messaging mechanisms on social networks to
exchange IP address and public key information among peers.

C. Active Scan Requests

SocialScan places all of its scanning logic into a central
module called DecisionHandler (described in detail in Sec-
tion IV). This module can be tuned based on the preferences
of the system user. The DecisionHandler module promulgates
scan requests via SocialCast to all social peers within a
given SocialDistance or to send unicast scan requests to
specific peers. When a prioritized request is received from
a social peer SocialScan will service that request and send a
response message to the requester containing the scan results,
information on the scan vendor, and the date/time stamp of
the scanner signature set used.

D. Request Queuing and Prioritization

Given that SocialScan nodes have limited resources and
give the very common possibility that active scan requests
from peers—across one or more applications—would exceed
a client’s resource capacity, it becomes critical to be able
to arbitrate contention for resources. SocialScan prioritizes
peer requests based on the SocialDistance of the peers that
sent the requests. SocialScan has no assurance that an active
scan request sent to other peers will be serviced at all or
handled within a desired time window. Active scan requests
in SocialScan are asynchronous and best-effort only.

E. Passive Scan Experience Sharing

Over time, a node will accumulate scan results from both
local user requests as well as active scan requests from peers.
Scan results are stored in a local database table of scans. A
node will also store the results in a quickly searchable hash
table known as a Scan Log. The hash table key for one entry in
the Scan Log is the SHA256 hash of: (URL + log creator ID
+ a nonce for the Scan Log). The hash table key for a second
entry in the Scan Log is the SHA256 hash of: (file contents +
log creator ID + a nonce for the Scan Log). The value for both
entries in the hash table is the scan result with a 0 indicating
the object was found to be benign and a 1 indicating the object
was found to be malicious. The nonce associated with a Scan
Log is part of the Scan Log metadata that is sent to peers along
with the Scan Log. Peers thus can look up arbitrary URLs and
objects in the Scan Log using the same nonce.

Both of these keys are also added to a Bloom Filter known
as a Scan Digest. The Scan Digest contains an entry if the

object has been scanned and the result stored in the Scan
Log. The motivation for using a Bloom Filter to pre-share
information on URLs comes from Cache Digests [6] [7]
which are widely used among caching HTTP proxy servers
to identify peer proxy server contents. As with Cache Digests,
Scan Digests are small in comparison with a full list of URLs,
including those contained in a Scan Log. Scan Digests are
small enough to reside in ram, whereas larger Scan Logs
would typically reside on disk. Given the possibility of Bloom
Filter collisions, Scan Digests may contain false positives,
Scan Digests are always used in conjunction with Scan Logs.
Scan Digests may be viewed as a manifest of the Scan Log
keys with lossy compression.

We now describe the method used by SocialScan for Scan
Digest and Scan Log rotation, sharing, and eviction. Scan
Digests by their nature do not allow existing entries to be
deleted. Individual entries within a Bloom Filter do not contain
semantic data about when the scans were conducted, what
scan engine was used, and the date of the signature set used.
We design our Scan Digests to include scanner vendor and
signature set information as accompanying metadata. Thus,
Scan Digests and Scan Logs must be rotated at least each
time these metadata change (e.g., when the scanner signature
set is updated). To maintain a steady flow of new information
on objects to social peers, Scan Digests and Scan Logs may be
rotated several times each day. When Scan Digests and Scan
Logs are rotated, the current “active write” pair of a Scan
Digest and a Scan Log are closed and a new Scan Digest and
a new Scan Log are opened for writing.

At the time of rotation, SocialScan places the Scan Log in
a hidden (retrievable but not searchable) location on a locally
web service. SocialScan then sends a Socialcast to trusted
peers with the following pieces of information:

• The URL of the new Scan Log
• The Scan Digest associated with the Scan Log
• Metadata, including the scan engine that was used, the

signature set that was used, and the date/time of the
rotation creation.

Peers that receive this notice retrieve the associated Scan
Log when and if their SocialScan instance so chooses. So-
cialScan appraises the potential value of a peer’s announced
Scan Log by evaluating the perceived SocialDistance to the
creator of the Scan Log; with Scan Logs generated by closer
peers being considered as more reliable and valuable. Peers
may also compare their own recent access history with the con-
tents of the Scan Digest. Should the peer have a close-enough
perceived SocialDistance and should the Scan Digest indicate
a sufficient level of correlated access history, SocialScan will
retrieve the full Scan Log associated with that Scan Digest.

When SocialScan is queried to evaluate whether an object is
malicious or not, it will first identify any scanning experiences
for the object that it has already received from its social
peers in the way of Scan Logs. Scan Digests are sufficiently
small to be cached in RAM, whereas larger Scan Logs are
more suitably stored on slower and lower cost media. For this
reason, SocialScan will first perform a lightweight search of
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Fig. 2. SocialScan Experience Sharing

each memory-resident Scan Digest looking for the particular
URL. If the URL is found in a particular Scan Digest, then
SocialScan will proceed to search for an entry in the disk-
based Scan Log. Given the basic nature of hash tables, the
Scan Log search is a O(logn) operation. If a value is found
during the look up, then this value is the scan result claimed
by the peer who performed the scanning. Scan result values
that are found are passed to the DecisionHandler (described in
section IV). If no value is found during the hash table look up,
then a Bloom Filter collision has occurred in the Scan Digest
and no result is considered. The process of creating, sharing,
and using Scan Digests and Scan Logs can be seen in Fig. 2.

Over time, a node will accumulate a variety of different
Scan Digests and Scan Logs from both close and distant social
peers. Each Scan Digest and Scan Log will eventually need
to be evicted. To assist in Scan Digest and Scan Log eviction,
SocialScan maintains a maximum age limit for both Scan
Digests and Scan Logs. Once a Scan Digest and Scan Log pair
exceeds this age, the pair is automatically evicted. SocialScan
also keeps an exponentially weighted moving average of the
utility rating for each Scan Digest and Scan Log based on the
number of objects of interest that were found in a particular
Scan Digest and Scan Log over a given time period. Scan
Digests and Scan Logs with the lowest utility rating (those
with the fewest objects of interest to the evaluator) are chosen
as candidates for eviction, should disk- or ram-cache capacity
limits mandate evictions. Eviction based on a utility rating
will automatically bias the SocialScan cache towards retaining
objects from neighbors who are accessing similar content—
those with correlated object-access behaviors. The greater the
correlation of the objects accessed among peers the higher the

Fig. 3. SocialScan State

probability will be that Scan Digests and Scan Logs received
by a node from its peers will already contain scan results of
value to that node.

F. Clickstream Privacy

The sharing of users’ clickstreams (the list of objects that
they have accessed or are attempting to access) is a significant
privacy concern with SocialScan. The existing SocialScan de-
sign includes two built-in mechanisms to promote clickstream
privacy. First, sharing of Scan Logs partially anonymizes
clickstreams by using one-way hashes of URLs and object
contents. An attacker may perform a dictionary attack by
walking through a given set of known clickstream entries in an
effort to reconstruct the exact clickstream followed by the Scan
Log creator. For this reason, SocialScan also avoids inserting
object types that are known to have a low probability of being
compromised (e.g. static HTML). Avoiding inserting certain
objects that are part of the clickstream reduces the certainty by
which an attacker can positively reconstruct full clickstreams.
Second, Scan Digests and Scan Logs are only shared with
peers within a tunable SocialDistance radius. Likewise, So-
cialScan only sends active scan requests to peers within a
separate—presumably smaller—tunable SocialDistance radius.
This effectively limits the number of nodes from which a
clickstream collection attack can be launched to a node’s group
of trusted peers. Additional privacy considerations associated
with SocialScan can be found in Section VII.

IV. DECISIONHANDLER MODULES

Fig. 3 shows the states used when an object request is
passed through SocialScan. At the core of SocialScan is a
DecisionHandler module that contains the majority of the
logic around how much data are collected to make a decision
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TABLE I
SOCIALSCAN PARAMETERS

PARAMETER PURPOSE

isConfident Boolean indicating whether or not
DecisionHandler is confident in its
decision. If it is not confident yet
in its decision, then it will loop

and wait for additional data to be
collected.

isMalicious Boolean indicating the current
decision by DecisionHandler

(True=Malicious, False=Benign)
WaitTime Number of uSeconds to sleep before

calling DecisionHandler again if
Confident ==False

doLocalScan Boolean indicating whether a
local scan should be performed

on the object
ScanRequestRadius Maximum SocialDistance to

which SocialScan should send directed
scan requests (via a

SocialCast)
ScanRequestPeers List of specific Social Peers to

which should send directed scan
requests (via unicast)

as well as the result of the decision. SocialScan provides
the DecisionHandler module all of the available data on the
particular object that is being requested, including all result
records of previous local scans, peer scans found in Scan Logs,
as well as peer scans obtained from directed scan requests.
Along with each of the scan records, the DecisionHandler is
provided with the scan engine name and date of signature set
that created the scan results. The DecisionHandler returns the
value of the six parameters shown in table I.

DecisionHandler is thus provided with all possible infor-
mation on an object and has full control over the behavior of
SocialScan. DecisionHandler can decide to make an immediate
decision (isConfident == True) and either accept or reject
the object. Alternatively, DecisionHandler can decide to seek
more information and specify a list of peers or a SocialCast
distance to send out active scan requests. There is a maximum
decision delay time, however, and if the DecisionHandler call
loop exceeds this maximum time, then the latest return value
of isMalcious is used to either accept or reject the object.

We design the following three interchangeable Decision-
Handler modules:

A. Local-only Scanning

The local-only SocialScan DecisionHandler behaves like a
traditional single scanner client. This module is designed only
for comparison with other DecisionHandler modules.

B. Paranoid Scanning

The Paranoid SocialScan DecisionHandler requires virus
scan results from a tunable minimum number of diverse
scanners—within a tunable social radius. Each of those scan-
ners must have been updated within specific recent windows of
time to be considered valid. Lack of sufficient result diversity
as well as any single positive (malicious) result induces the

Paranoid SocialScan DecisionHandler module to block the
object being requested. Intuitively, this module will likely yield
the highest malware detection rates but will also require the
greatest latency to certify benign objects.

C. Dynamic Scanning

The Dynamic SocialScan DecisionHandler module adjusts
the required diversity of scanners based on the age of the
object. The results of our experimentation as well as those
of other researchers [1] show that as malicious objects age,
their probability of being detected by one or more virus
scanners increases. In order to achieve the same probabilities
of malware detection, objects that are known to be older can
be assessed using a lower diversity of scanner signature sets in
comparison with newer objects. The detection of very recent
malware—those being less than a few days old—is challenging
due to the time required to add a new malware’s signature
to antivirus signature sets. Protecting systems against recent
malware can also be challenging given that new malware
commonly attempts to exploit newly exposed and not-yet-
patched software vulnerabilities. Software vendors attempt
to patch such vulnerabilities quickly [8], but windows of
exposure frequently exist. Although it is impossible to certify
the age of objects from arbitrary sites on the Internet, certain
sites—including those that allow user submitted content—may
be considered trustworthy keepers of file creation (upload) and
modification times. With the assumption that an object’s age
can be assessed with a high level of accuracy from a list of
trusted sites via the last − modified header of HTTP, the
Dynamic SocialScan DecisionHandler module dynamically
adjusts the required diversity of scanners based on an object’s
age. Using the last−modified HTTP header to determine the
minimum age of an abject implies that the security of a web
site can be trusted to prevent date/time stamp modifications
by system users.

V. IMPLEMENTATION

To provide some level of OS independence, we choose to
implement SocialScan along with the three DecisionHandler
modules as described in the previous section, as a set of Python
modules and services on top of an SQLite database1. We
leave the majority of the implementation details to a separate
extended version of this paper.

A. Online Social Network Modules

We implement SocialScan to use proportional levels of
reciprocal interactions between peers to approximate altruism
and nominal SocialDistance [4] between those peers. We
expand upon our earlier work by creating social network
analysis modules as part of the SocialScan implementation
not only for Facebook, but also for Twitter and standard email
(SMTP + IMAP). For Twitter, reciprocal pairs of re-tweets as
well as reciprocal pairs of directed tweets are both identified as
forms of reciprocal communication. On Facebook, reciprocal

1Our implementation of SocialScan is available online [9].
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pairs of wall postings are identified as reciprocal communi-
cation. With email, reciprocal pairs of email messages are
identified as reciprocal communication [10]. Intuitively, there
is a generally positive relationship between the frequency
of social interaction and the strength of a social tie (e.g.,
members of the same family will tend to have more social
interaction than members of the same political party). We
use existing messaging mechanisms with Twitter, Facebook,
and email to share user IP addresses as well as to distribute
public encryption keys. We make the assumption that the
existing messaging mechanisms over these forms of social
media are reliable and secure enough for the purpose of IP
address and key distribution. For each peer that sends an IP
address and public key, SocialScan calculates the multi-hop
nominal SocialDistance and maintains the IP, key, and nominal
SocialDistance of each peer in a local database. SocialScan
also sets a perceived SocialDistance in the database to equal
that of the nominal SocialDistance.

B. f2f Messaging

As part of SocialScan, each node runs a Lighttpd web
server and provides both XMLRPC services—for messaging,
as well as file serving—for Scan Log sharing. When messages
from peers are received over XMLRPC into SocialScan’s
incoming request queue, they are ordered based on the per-
ceived SocialDistance of the peer that sent the messages. For
our implementation of SocialScan, we use a fixed request
servicing (dequeue) rate. In future implementations, we plan to
evaluate adapting request dequeuing rates based on resource
(CPU, memory, etc) availability. To distribute Scan Digests
SocialScan sends a SocialCast containing the Scan Digest,
the URL of the associated Scan Log, and the metadata for
the Scan Digest. SocialScan obtains information on the scan
engines and signature sets used by peers from the Scan Digest
metadata received from each peer.

C. AV Local Scan Handlers

A SocialScan module known as the local scan handler is
responsible for interacting with the anti-virus scanner installed
on the machine. The local scan handler retrieves a URL, scans
it with a specific anti-virus engine, and returns the result to
SocialScan. The local scan handler also returns information on
the virus signature set used in the scanning. For our SocialScan
implementation, we implement scan handler modules for anti-
virus packages from the following six vendors: AVG, Avast,
Microsoft, Clamwin, Avira, and Kaspersky. Based on existing
research [11] on worldwide market share of scanning engines,
we believe this set of engines represents around 65% of the
global install base of anti-virus software.

D. Browser Request Filtering

To maximize compatibility with a variety of desktop and
mobile user agents (browsers), we implement a SocialScan
module for the squid caching http proxy server. Applications
that make outgoing http requests via squid automatically
receive the scanning benefits of SocialScan. Squid feeds

SocialScan each url that the browser is attempting to retrieve.
SocialScan responds to squid indicating if it wants to allow
the browser access the url. SocialScan can also respond
with an alternative url if it wants to redirect the browser
to different target content (e.g. a warning page). As part
of the implementation, we confirm compatibility with three
locally installed browsers (IE, Firefox, and Chrome) as well as
three mobile browsers (Opera, Firefox, and Android Browser)
by configuring the mobile device to proxy http connections
through a non-mobile SocialScan enabled squid instance.

VI. EVALUATION

In this section we evaluate SocialScan via both implementa-
tion and simulation. Using our implementation on the Amazon
EC2 cloud, we evaluate SocialScan against its design goal
of increasing malware detection accuracy by allowing peers
access to diverse scanning of objects retrieved from the web.
Given that the ratio of false negatives to false positives in
signature-based commercial virus scanners is several orders
of magnitude, our current experiments focus on rates of false
negatives; we evaluate the detection rate of objects that have
been verified to be malware (false negatives).

Malware is continuously changing and adapting in attempts
to avoid security software signature sets. For the purpose
of evaluating SocialScan, we collect and maintain a large
repository of recent malware from the Internet [12].

1) Local vs SocialScan: Using the local DecisionHandler,
we run each of six individual scanners through a random
selection of approximately 3000 pieces of recent malware. We
find similar results as found by Oberheide et al. [1] in that
older objects had a higher probability of being detected by
malware scanners. Fig. 4 shows the individual scanner results
in relation to the age of the malware object being scanned
as well as a weighted mean for those scans, with the weight
based on the proportional global market share [11] of each
scanner. The weighted mean provides a strong indication of the
total effectiveness of individual scanners at detecting malware
based on the age of the object scanned. Fig. 4 also shows the
results of the Paranoid and the Dynamic DecisionHandlers.
The Paranoid DecisionHandler uses collaboration with social
peers and in this experiment requires responses from each of
the six diverse scanners before a decision to allow the object
is made. The Dynamic DecisionHandler varies the number of
required responses from social peers based on the age of the
object being scanned. For 0- to 1-day old malware, this figure
highlights a change from 44% to 74% (a 65% increase) in
the malware detection accuracy when using the Paranoid and
Dynamic DecisionHandlers in comparison with the market-
share average of individual scan results.

A. Object Scanning Latency

Even though diverse scans across peers occur in parallel,
the aggregation of results in SocialScan requires additional
latency for communication overhead. We compare the mean,
max, and average latency required across the local scanners
with those required by the Paranoid DecisionHandler. We also
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test at three different levels of a priori object access and Scan
Digest/Log sharing (locality) by peers: 0, 50, and 100%. At the
100% level each of the peers has already accessed an object,
scanned it, and shared the result with the inquiring peer via
passive Scan Digest/Log sharing. At the 50% level, half of the
URLs have previously been scanned with their results shared
and the other half are new/distinct to all of the peers in the
system. Fig. 5 shows that the Paranoid DecisionHandler at 0%
object access/scan locality requires the most time due to the
real-time communication and collaboration that must happen
between the different nodes. With 100% object access/scan
locality, the Paranoid DecisionHandler clearly outperforms
even the local scans due to the fact that with 100% object
access/scan locality, SocialScan is able to avoid local scans by
relying exclusively on previously collected information from
peers. For the purpose of this evaluation, we only provide the
extremes and do not attempt to approximate or predict levels
of object access locality among peers within real-world social
networks.

Fig. 6 shows that the Dynamic DecisionHandler requires
the greatest scan times for the newest objects. As objects
age, the Dynamic DecisionHandler decreases the required
scanner diversity and thus the time required to scan objects
decreases. Though our current experiments with the Dynamic
DecisionHandler only use a 0% object access locality, we
expect that testing of greater than 0% object access locality
would reduce the scan times proportionally with those results
from the Paranoid DecisionHandler because of the passive
scan experience caching and sharing within SocialScan.

B. Scanner Availability and Diversity

We evaluate the effectiveness of SocialScan at providing
significant scanner diversity to all SocialScan participants
and at delivering the highest level of protection to Social
Hubs to reduce the probability they will become infected
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and subsequently serve as valuable launch locations for so-
cial malware propagation. Our implementation of SocialScan
supports social relationship analysis modules for Twitter,
Facebook, and email. To evaluate the potential benefit real
social network users would have when using SocialScan, we
conduct simulations by using real-world social connectivity
metadata extracted from Facebook. We take an anonymized
data set of real-world Facebook wall posting from a network
of 5,000 Facebook users [13] and feed that data through the
SocialScan peer relationship analysis module to identify the
nominal SocialDistance between each pair of social peers. We
repeat several of our simulations while varying the Social
Net Radius—the maximum SocialDistance whereby a peer
will consider another node part of its social network and
be willing to share resources with that node. As previously
described in Section III-A, SocialDistance combines direct
levels of altruism between peers with a decay for each hop
to approximate indirect levels of altruism. Thus, Social Net
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Radius does not directly equate to a hop count between social
peers.

1) Diverse Scanner Availability: We assign each of the
5,000 simulated social peers a Facebook identity. For each
Social Net Radius tested, we perform 100 simulation runs.
On each simulation run we randomly assign each of the
5,000 social peers an anti-malware scanner from a pool of 21
candidate scanners based on the proportional market share of
each scanner. These 21 scanners represent 80% of the global
market share for anti-malware software. In our simulations
we do not consider correlated anti-malware usage among
social peers; we leave such considerations to future work. We
evaluate the level of scanner diversity that exists within each
peer’s social network and extract the mean diversity level for
each peer across the simulation runs. Fig. 7 provides a CDF
for each of the tested social network radius values and shows
that even for smaller social network radius values, most peers
have access to significant diversity of scanners across their
social peers. These findings also imply that even if a significant
portion of a user’s social peers were unavailable or unwilling
to share resources, the remaining peers would typically still
be sufficient to a high diversity of scanners.

2) SocialHub Protection – Scanner Diversity: Fig. 8 com-
pares the level of scanner diversity available to three different
sub groups of nodes ordered based on levels of social connec-
tivity: The top 250 (95th percentile), the median 250, and the
bottom 250 (5th percentile) socially connected nodes. Fig. 8
clearly shows that SocialScan participants offer the highest
scanner diversity to the most socially connected nodes.

3) SocialHub Protection – Scan Digests/Logs: We also run
a simulation whereby every hour, each peer in the system
randomly offers a single Scan Digest/Log pair to one of its
peers. The Scan Digest/Log offers are probabilistically granted
based on the proportional levels of altruism a peer has towards
each of its peers. We run the simulation for 500 virtual hours
and then count the total number Scan Digest/Logs received by
each node. Fig. 9 shows three CDF lines representing peer sets
with different levels of social connectivity—one for each of
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the same 95th percentile, median, and 5th percentile 250 node
peer sets used in the previous simulation. This figure clearly
shows that the most socially connected peers receive the
highest number of Scan Digest/Log offers and thus they have
access to more cached scan results in comparison with peers
that have a lower levels of social connectivity. These results
show that, as designed, SocialScan is effective at prioritizing
allocation of resources among social peers—including levels
of scan results sharing and availability of diverse scanners—
with social hubs receiving the greatest benefit (and thus level
of malware protection).

VII. ADDITIONAL PRIVACY CONSIDERATIONS

SocialScan avoids centralized commercial services in favor
of a distributed, f2f approach. The target set of users for
SocialScan are those who have an existing willingness to relax
their privacy requirements when collaborating with trusted and
monitored social peers. It is also reasonable to assume that
during browsing sessions where privacy is of critical concern,
users would not only use their browser’s “incognito” or “pri-
vate mode” but they would also temporarily disable their usage
of SocialScan. The two primary areas of concern for privacy
for SocialScan users are those of clickstream (object access
sequences) and anti-virus (vendor/version) privacy, which we
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briefly discuss below.
SocialScan requires sharing of AV Vendor and signature set

version information with social peers within a limited Social
Distance. Sharing of AV Vendor and signature set information
allows a node’s trusted social peers to evaluate their own trust
in that node’s scanning results as well as to allow each peer
to properly enforce its own requirements for scanner diversity.
The common goal of malware detection should motivate social
network participants to disclose to the peers with whom they
will be collaborating the AV Vendor and version they are
running. Even though adversarial entities running code on
nodes within the social network may learn the scan vendor
and signature sets of peers running SocialScan, those entities
will not be able to fully estimate the diversity of scanners
available to each node via peer collaboration.

In our future work, we will use a game-theoretic approach to
tackle the privacy problem. Specifically, we will use the con-
cept of co-privacy described in the recent work by Domingo-
Ferrer [14]. Intuitively, co-privacy makes the preservation of
privacy for each individual a goal that also benefits other
individuals. In other words, co-privacy strives to ensure that
preserving the privacy of a social peer seeking object scans
will be in the best interest of the other peers.

VIII. RELATED WORK

For malware detection on distributed devices researchers
have proposed a variety [15] [16] [17] [18] [19] of methods
based around the basic principle of workload offloading to
a cloud-based service. SocialScan is complementary to these
approaches in that it provides a decentralized service based on
existing resources among social peers for servicing scanning
requests.

The PeerSoN [20] system shares the SocialScan goal of
facilitating direct p2p interaction between system users. How-
ever, PeerSoN lacks application supporting facilities for social
relationship extraction from existing OSNs. Cutillo et al.
propose SafeBook [21] a system for protecting communication
privacy of social networking users via direct p2p interaction.
In contrast to SocialScan, SafeBook relies on centralized
administration of trust among users via a Trust Information
Service (TIS). SocialScan is fully distributed and does not have
such requirements for trust in a single centralized service. Both
PeerSoN and SafeBook lack experimental implementations for
use with real-world applications. Yang et al. propose [22]
a structure for information sharing between social network
users via direct p2p collaboration. As opposed to SocialScan
which leverages existing trust among OSN users to provide f2f
malware scanning services, the goal of the system proposed
by Yang is to help individuals find relevant content and
knowledgeable collaborators who are willing to share their
knowledge. Friendstore [23] is a system that leverages existing
social relationships to provide p2p distributed backup services.
Node selection in Friendstore is limited to a static set of
trusted nodes and does not account for variances in trust levels
between users (or leverage the potentially valuable altruism of
peers outside of that static set of trusted nodes).

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented SocialScan, a novel distributed
malware detection system which provides f2f scanning of
objects with priorities governed by levels of social altruism.
We implemented SocialScan and found that with f2f sharing of
resources SocialScan significantly enhances the ability of so-
cial peers to detect malware. We also showed that SocialScan
provides greatly enhanced malware protection to social hubs
by ensuring that they receive the most Scan Digest/Log offers
and have access to the greatest diversity of scanner engines.

Areas of potential future research include design of mech-
anisms to increase user privacy, evaluation of the resilience
of SocialScan against both innocuous and malicious peer
misbehavior, additional incentives for peer participation, multi-
agent (device) peers, and addition of execution-based (resource
intensive) malware detection to SocialScan.
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