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Abstract. Longitudinal shape analysis often relies on the estimation of
a realistic continuous growth scenario from data sparsely distributed in
time. In this paper, we propose a new type of growth model parame-
terized by acceleration, whereas standard methods typically control the
velocity. This mimics the behavior of biological tissue as a mechanical
system driven by external forces. The growth trajectories are estimated
as smooth flows of deformations, which are twice differentiable. This dif-
fers from piecewise geodesic regression, for which the velocity may be
discontinuous. We evaluate our approach on a set of anatomical struc-
tures of the same subject, scanned 16 times between 4 and 8 years of
age. We show our acceleration based method estimates smooth growth,
demonstrating improved regularity compared to piecewise geodesic re-
gression. Leave-several-out experiments show that our method is robust
to missing observations, as well as being less sensitive to noise, and is
therefore more likely to capture the underlying biological growth.

1 Introduction

The study of time dependent shapes is an emerging field in Computational
Anatomy, with potential application to early brain development, aging studies,
or the analysis of evolving pathologic structures. As longitudinal data becomes
more widely available, the need for computer models of anatomical evolution
becomes increasingly important. Two approaches have been followed so far: the
first consists in computing a realistic growth scenario from cross-sectional time-
series data, like in [4,10,6,3]. The second approach involves estimating several
individual growth trajectories and combining them with a framework for 4D reg-
istration between growth trajectories or 4D atlas construction, to statistically
analyze the growth variability within a population, like in [13,8,14,7,9].

In any case, the methods rely greatly on the estimation of growth models from
time series data, which are sparsely distributed in time. Growth models provide
a tool to generate shapes at any instant in time (within the interval defined by
the data), offering us the opportunity to continuously measure shape properties.
This is in contrast to using sparse measurements such as volume or circumference
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for 1D regression absent the shape information. The problem can be stated as
“temporal shape regression” and can be solved by purely descriptive statistical
methods like the extension of kernel regression to Riemannian manifolds [4], or
by generative statistical models which define a parameterized family of realistic
growth models and the one which best fits the actual data is estimated based on
a regularized least-square criterion [8,7,2]. We favor this last approach, since it
makes explicit the assumptions which drive the estimation of growth trajectories
and therefore enables the inclusion of realistic biological priors to constrain the
estimation.

The growth model in [7] is based on a continuous flow of diffeomorphisms,
with piecewise geodesics interpolating between shapes. This method estimates
continuous non-linear growth between shapes, but does not guarantee differen-
tiable growth as the speed of evolution is discontinuous at observation time-
points. Our work is motivated by the assumption that the evolution of biological
tissue is inherently smooth in time. If we consider the growth of biological tis-
sue as a mechanical system driven by external forces, then the evolution of any
particle on an anatomical surface is continuous with continuous derivative and
therefore does not change direction instantaneously, as observed in the growth
model estimated from [7].

Temporal smoothness can be enforced via smooth interpolation between 3D
deformations estimated at discrete time-points, using B-splines or polynomial
interpolation as in [11,1]. However, these approaches are not based on the in-
ference of a generic growth model, which captures the dynamics of the shape
changes over time.

Based on these considerations, we propose a new growth model parame-
terized by acceleration, rather than velocity as in the large deformation setting
of [12]. The estimated acceleration could be considered an indication of the forces
which drive the growth of the anatomical structures. From this parameteriza-
tion, we gain one order of differentiability and guarantee that shape evolution is
smooth in both space and time. We further deviate from the large deformations
framework by introducing a new regularization term which accounts for the to-
tal amount of acceleration. As a consequence, our model does not constrain the
flow of deformation between shapes to be geodesic, or close to a geodesic path.
By contrast, the approach in [16] estimates twice differentiable trajectories as
random perturbations of geodesic paths.

The evaluation of our new methodology on real anatomical surfaces reveals
the differences between our approach and piecewise geodesic regression. Our re-
gression yields a twice differentiable evolution with improved regularity, thus dis-
carding more noise from the data to fit a more realistic growth trajectory. Also,
we demonstrate that volume measurements taken out of our 3D shape regression
are compatible with a 1D regression of these measurements, whereas piecewise
geodesic regression appears to overfit. Lastly, we show via leave-several-out ex-
periments that our method better interpolates between data and is therefore
more robust to missing observations. This suggests a greater ability to capture
the underlying growth of the anatomical structures.
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2 Shape Regression Parameterized by Acceleration

The problem of longitudinal shape regression involves inferring a continuous
shape evolution from a discrete set of shapes Sti

observed at time ti. Shape
evolution is modeled as the continuous deformation of a baseline shape S0, for-
mally defined as Rt = φt(S0) where Rt corresponds to S0 having undergone
the transformation φt with t varying continuously within the time interval. The
time-varying deformation φt is a general transformation from R

N to RN with
φ0(S0) = S0. The baseline shape is deformed over time to closely match the
observed shapes (Rti

∼ Sti
) while the rigidity of the deformation is controlled

via a regularity term. This leads to a variational problem in the form of a trade
off between fidelity to data and regularity. For measuring shape similarity, we
follow the work of [15], modeling shapes as currents.

We define the acceleration field a(x, t) at point x and time t as a vector field
of the form

a(x, t) =

N
∑

i=1

KV (x, xi(t))αi(t) (1)

where xi are the shape points carrying a point force vector αi, and KV (x, y) =

exp(−‖x− y‖
2
/λ2

V
) is a Gaussian kernel of dimension mass−1 with standard

deviation λV controlling the spatial extent at which the acceleration field varies.
The time-varying point force vectors αi(t) parameterize a flow of deforma-

tion φt(xi(t)) by the integration of the 2nd-order ODE φ̈t(xi(t)) = a(xi(t), t)
with initial position xi(0) and initial velocity ẋi(0). The initial positions of the
particles are assumed to be fixed at the vertices of the baseline shape, while the
initial velocity of the particles have to be determined by the algorithm.

Let x(t), a(t), and α(t) be the concatenation of the xi(t)’s, ai(t)’s, and the
αi(t)’s. This parameterization leads to the specific regression criterion

E(ẋ(0),α(t)) =
∑

ti

‖φti
(x(0))− x(ti)‖

2
W∗ + γ

∫

T

0

‖a(t)‖
2
V
dt (2)

where ‖·‖
W∗ is the norm on currents and regularity is defined as ‖a(t)‖

2
V

=
α(t)KV (x(t),x(t))α(t), interpreted as the ‘total amount of acceleration’, mea-
sured using the norm in the reproducing kernel Hilbert space defined by the
interpolating kernel [5].

3 Description of the Algorithm

We implement an adaptive step size gradient descent algorithm. The gradient of
the criterion (2) with respect to force vectors and initial velocity is written as

∇αi(t)E(t) = 2γαi(t) + ηẋ
i
(t) and ∇ẋi(0)E = ηẋ

i
(0) (3)

where variables ηx
i
(t) and ηẋ

i
(t) satisfy coupled ODEs shown in Appendix A.
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Fig. 1. a) and b) Shape evolution from baseline (solid) to final configuration (trans-
parent) using a model based on piecewise geodesics (a) and our method (b) with point
trajectories for selected particles displayed as black lines. c) The path of a point on the
forebrain is decomposed into coordinates. Growth is estimated using 15 target shapes,
highlighting the speed discontinuities present in the piecewise geodesic evolution.

During each iteration of gradient descent, the trajectories of shape points
are computed by solving the 2nd-order ODE φ̈t(xi(t)) = a(xi(t), t) using a Ver-
let integration scheme. The auxiliary variables ηx

i
(t) and ηẋ

i
(t) are computed

using an Euler method with prediction/correction. Eventually we compute the
gradients given in equation (3). The algorithm may be started with zero initial
velocity and force, though we notice faster convergence when initial velocity is
determined by registration between the baseline and first target shape as in [15].

4 Experiments

To evaluate our method, we use longitudinal image data from a child that has
been scanned 16 times between four and eight years of age. The MRI data is first
rigidly aligned to establish a common reference frame. The intracranial volume
and lateral ventricles are segmented from each image using an EM based tissue
classification algorithm and a level-set based active contour segmentation tool.

We estimate the evolution of the intracranial surface using a regression model
based on the piecewise geodesic flow of diffeomorphisms as in [7]. The standard
deviation of the Gaussian kernel controlling deformation is set to 50 mm, roughly
30% of the diameter of the baseline intracranial surface. For the scale of cur-
rents we use 20 mm, with a regularity weight of 0.1. Finally, time is discretized
in increments of 0.0425 years. We also produce a growth trajectory using our
proposed method with the same parameter settings as above except we weight
regularity by 0.01 (the two weighted terms cannot be compared since they have
different ‘physical’ dimension). The parameters were tuned empirically to pro-
duce regressions of comparable quality with both methods.
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Fig. 2. Volume measurements derived from our growth model are consistent with a
kernel regression (σ = 0.5) performed on the sparse volume measurements. Our model
describes the continuous evolution of shape and volume is measured after regression.

Shape evolution is considerably smoother using our proposed regression model
as compared to the piecewise geodesic model. This is particularly evident in the
trajectories of the shape points across time, a subset of which are shown in Fig. 1.
It is an important distinction that the trajectories estimated by our method are
not a smoothing of the piecewise geodesic method. Rather, the trajectories are
the result of fundamentally different assumptions on the underlying model which
results in a more realistic estimation of growth.

The smoothness constraints imposed by our model limit the shape variation
we can capture over short time periods. Consequently, we investigate the ac-
curacy of our model by examining how closely we match the target data: our
estimated growth scenario decreases the initial sum of squared residual by 148%,
compared to a 153% decrease from the piecewise geodesic method. While our
method does not come as close to matching the target data, this suggests that
our method is less sensitive to noise and less likely to overfit.

Next, we investigate the application of our model to the study of measure-
ments derived from shape. Here we obtain a continuous non-linear model of
volume, shown in Fig. 2. The results are consistent with a 1D regression model,
such as kernel regression, applied to the sparse volume measurements. However,
we have focused our modeling efforts on capturing the evolution of shape, with
continuous volume measurements resulting naturally from the estimated growth.
In addition, the piecewise geodesic method appears to be overfitting, producing
unrealistic volume measurements, further suggesting that our method is more
robust in the presence of noisy data.

Finally, we consider the evolution of the lateral ventricles, which exhibit
considerably more complexity than the intracranial surface. The horns of the
segmented lateral ventricles are as thin as a few millimeters, making regression
particularly challenging. As with the intracranial volume, ventricle growth is
estimated using a piecewise geodesic model and our acceleration based model.
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Fig. 3. Left: Snapshots from a continuous shape evolution of lateral ventricles esti-
mated by our regression model. Acceleration vectors are displayed on the surface, with
color denoting magnitude. Right: The impact of the number of target shapes on R

2.

The scale of deformation is set at 6 mm, the scale of currents to 2 mm, and
regularity is weighted by 0.1 and 0.01, respectively.

The impact of missing data is examined by performing leave-several-out ex-
periments, the results of which are summarized in Fig. 3. In all experiments,
selected target shapes were chosen as uniformly across time as possible. Our
method demonstrates robustness with respect to the number of target shapes,
with only minimal increase in the coefficient of determination R2 when using
more than 3 targets. This suggests that our method captures the underlying
growth with limited data, as additional target data does not greatly alter the
estimation. In contrast, piecewise geodesic regression is more influenced by ad-
ditional target data and is therefore likely to overfit.

5 Conclusion

We have introduced a new 2nd-order regression model for estimating smooth
evolution from time dependent shapes. This is based on a new way of parame-
terizing growth by acceleration rather than velocity. We show on real anatomical
data that, compared to the standard piecewise geodesic model, our method is less
sensitive to noise introduced during segmentation and is robust to missing data,
and is therefore more likely to characterize the underlying biological growth. The
evolution of volume extracted after shape regression was shown to be compatible
with a 1D regression on the observed volume measurements. Our method may
be improved by additionally solving for initial positions of the shape points as
in [7], to address the apparent underestimation of initial volume in Fig. 2.

Note that the new concept introduced in this paper has been implemented
for 3D-surface data modeled as currents but can be easily adapted to a variety
of other data and metrics. Future work will focus on the interpretation of the
estimated acceleration in terms of external forces exerted on the biological tissue.
This will enable the addition of more biological and mechanical priors.
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A Differentiation of the Regression Criterion

Using matrix notation, we denote the current state of the system of shape points
by the vector X(t) = (x(t), ẋ(t))t concatenating position and velocity of every
point. The state of the system is evolved by the following differential equation:

Ẋ(t) = F (X(t),α(t)) =

(

ẋ(t)
ẍ(t) = K(x(t),x(t))α(t)

)

(4)

with initial condition X(0) = X0 = (x0, ẋ0)
t.

We now rewrite (2) as E(X(t)) =
∑

ti
A(X(ti)) + γ

∫

T

0
L(X(t), α(t))dt. Let

δE be a variation of the criterion E with respect to a variation δα(t) of the
impulse vectors α(t), which induces a variation of the state variable X(t):

δE =
∑

ti

(

dX(ti)Ai

)

δX(ti) + γ

∫

T

0

(∂X(t)L(t))δX(t) + (∂
α(t)L(t))δα(t)dt (5)

The ODE in (4) shows that these variations δX(t) satisfy a linear inhomo-
geneous ODE. The method of variation of parameters gives the solution

δX(t) = R0tδX0 +

∫

T

0

Rut∂α(u)F (u)δα(u)1{u≤ti}du (6)

where Rut = exp
(

∫

t

u
∂X(s)F (s)ds

)

and 1{t≤ti} = 1 if t ≤ ti and 0 otherwise.

Plugging this equation into (5) leads to:

∇αE(t) = ∂
α(t)L(t)

t + ∂
α(t)F (t)tη(t) and ∇X0

E = η(0) (7)

where we denote the auxiliary variable η(t) as

η(t) =
∑

i

∇Xti
Ai1{t≤ti} +

∫

T

t

∂XL(u)t + ∂XF (u)tη(u)du (8)

From now on, we decompose the vectors into 2 blocks (the x-component and
the ẋ-component). Due to the definition of A, L and F , we have ∇X(ti)Ai =
(∇xi

Ai 0)t, ∂XL = (γαt(∂1 + ∂1)(K(x,x)α) 0)t, ∂αL = 2γαtK(x,x), ∂XF =
(

0 1

(∂1 + ∂2)K(x,x)α 0

)

and ∂αF
x = (0 K(x,x)).

Therefore, the gradient of the regression criterion with respect to the L2

metric given in (7) is now equal to: ∇αE(t) = K(x(t),x(t))
(

2γα(t) + η
ẋ(t)

)

,
where we have decomposed the auxiliary variable η into η = (ηx,ηẋ).

The matrixK(x(t),x(t)) is precisely the Sobolev metric induced by the kernel
on the set of L2 functions, so the gradient is given in coordinates as in (3).
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