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Abstract

Construction of population atlases is a key issue in medical image analysis, and par-

ticularly in brain mapping. Large sets of images are mapped into a common coordi-

nate system to study intra-population variability and inter-population differences,

to provide voxel-wise mapping of functional sites, and help tissue and object seg-

mentation via registration of anatomical labels. Common techniques often include

the choice of a template image, which inherently introduces a bias. This paper de-

scribes a new method for unbiased construction of atlases in the large deformation

diffeomorphic setting.

A child neuroimaging autism study serves as a driving application. There is lack of

normative data that explains average brain shape and variability at this early stage

of development. We present work in progress toward constructing an unbiased MRI

atlas of two year of children and the building of a probabilistic atlas of anatomical

structures, here the caudate nucleus. Further, we demonstrate the segmentation of

new subjects via atlas mapping. Validation of the methodology is performed by

comparing the deformed probabilistic atlas with existing manual segmentations.
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1 Introduction

Since Broadman,1909 the construction of brain atlases has been central to the

understanding of the variabilities of brain anatomy. More recently, since the

advent of modern computing and digital imaging techniques intense research

has been directed towards the development of digital three dimensional atlases

of the brain. Most digital brain atlases so far are based on a single subject’s

anatomy [29,16]. Although these atlases provide a standard coordinate sys-

tem, they are limited because a single anatomy cannot faithfully represent

the complex structural variability between individuals. A major focus of com-

putational anatomy has been the development of image mapping algorithms

[33,24,10,27] that can map and transform a single brain atlas on to a pop-

ulation. In this paradigm the atlas serves as a deformable template[12]. The

deformable template can project detailed atlas data such as structural, bio-

chemical, functional as well as vascular information on to the individual or an

entire population of brain images. The transformations encode the variability

of the population under study. A statistical analysis of the transformations

can also be used to characterize different populations [5,30,17]. For a detailed

review of deformable atlas mapping and the general framework for computa-

tional anatomy see [32,13]. One of the fundamental limitations of using a single

anatomy as a template is the introduction of a bias based on the arbitrary

∗ Corresponding author.
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choice of the template anatomy.

Thompson and Toga [31] very elegantly address this bias in their work by

mapping a new data set on to every scan in a brain image database. This

approach addresses the bias by in effect forgoing the formal construction of

a representative template image. Although this framework is mathematically

elegant and power full it results in a computationally prohibitive approach

in which each new scan has to be mapped independently to all the data sets

in a database. This is analogous to comparing each subject under study to

every previously analyzed image. As brain image databases grow the analysis

problem grows combinatorially.

In more recent and related work Avants and Gee [2] developed an algorithm

in the large deformation diffeomorphic setting for template estimation by av-

eraging velocity fields.

Most other previous work [?,3] in atlas formation has focused on the small de-

formation setting in which arithmetic averaging of displacement fields is well

defined. Guimond et. al develop an iterative averaging algorithm to reduce the

bias[?]. In the latest work of [3], explicit constraints requiring that the sum

of the displacement fields add to zero is enforced in the proposed atlas con-

struction methodology. These small deformation approaches are based on the

assumption that a transformations of the form h(x) = x+u(x), parameterized

via a displacement field, u(x), are close enough to the identity transformation

such that composition of two transformations can be approximated via the

addition of their displacement fields:

h1 ◦ h2(x) ≈ x + u1(x) + u2(x) . (1)
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The focus of this paper is a development of a methodology that simultane-

ously estimates the transformations and an unbiased template, in the large

deformation setting. The method developed herein does not assume the above

approximation of Equation 1 and build atlases of populations with large geo-

metric variability.

2 Methods

Given a collection of anatomical images a natural problem is the construction

of a statistical representative of the population. If the data associated with the

population under study can be easily parameterized by a flat euclidean space,

classical statistical methods of simple averaging can be applied to generate

such a representative. The imaging data under the Gaussian assumption can

be easily represented as member of a flat space. The image can be represented

as a member of very large dimensional euclidean space (RN , where N is the

number of voxels in the image). Alternatively, using appropriate interpolation

assumptions the image can be assumed to be a square integrable function,

that is a member of the (flat) Hilbert space L2(Ω) where Ω is the underlaying

coordinate space, usually a compact subset of R3.

The geometric variability of the anatomy itself usually cannot be represented

by elements of a flat space. If the geometry of the underlying anatomy can be

adequately represented by a finite number of landmarks, representative tem-

plate landmark configuration can be estimated using the Procrustes method

pioneered by Kendal [20] and championed by Bookstein [4]. The study of

anatomical shape is inherently related to the construction of transformations

of the underlying coordinate space that map one anatomy to another. Various
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transformation groups of R3 have been studied for understanding anatomical

geometry. These groups vary in dimensionality from simple global transla-

tions (R3) and rigid rotations (SO(3)) to the infinite dimensional group of

diffeomorphisms (H) [23]. In this paper we address the problem of anatomical

template construction as the joint estimation of the most representative image

and the associated anatomical geometry given a database of brain images.

2.1 Averages in metric spaces

In this paper, the problem of building an anatomical template is posed as a

statistical estimation problem. For anatomical representations in which the

underlying geometry is parametrized as a Euclidean vector space, training

data can be represented as a set of vectors x1, · · · , xN in a vector space V .

In the small deformation elastic image mapping setting this is assumed to

be true, as the deformations are assumed to be close enough to the identity

mapping. Under this assumption the displacement vector fields parameterizing

the transformations can be assumed to be elements of the Hilbert space of

square integrable functions L2(Ω).

In a vector space, with addition and scalar multiplication well defined, an av-

erage representation of the training set can be computed as the linear average

µ =
1

N

N∑
i=1

xi .

Linear averaging cannot be directly applied to the large deformation setting

as under the large deformation model the space of transformations is not a

vector space but rather the infinite dimensional group H of diffeomorphisms
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of the underlying coordinate system Ω.

In the group of diffeomorphisms, the addition of two diffeomorphisms is not

generally a diffeomorphism and, hence, a template based on linear averaging

of transformations is not well defined. In this paper we extend the notion of

averaging to general metric spaces first proposed by Frechet [9]. For a general

metric space M , with a distance d : M × M → R, the intrinsic mean for a

collection of data points xi can be defined as the minimizer of the sum-of-

squared distances to each of the data points. That is

µ = argmin
x∈M

N∑
i=1

d(x, xi)
2 .

In our previous work [7,8], we have used these concepts to extend first and

second order statistical analysis to finite dimensional Riemannian Manifolds

for statistical analysis of medial representations of objects.

In this paper, we apply this approach to the construction of large deformation

diffeomorphic templates. This work builds heavily on the mathematical metric

theory of diffeomorphisms developed by Miller and Younes [22].

2.2 Rigid Template Estimation

To exemplify the template estimation problem first, consider a collection of

N images Ii(x) of the same anatomy acquired with unknown rigid registra-

tion. For such a collection of images the variability is the noise introduced

by the imaging modality and the rigid pose of the anatomy parameterized by

rigid translations and rotations ((Ti, Si) ∈ R3 × SO(3)). The optimal tem-

plate is one that requires the ‘minimum amount of transformation’ to each of

the anatomical images and which is most likely given the imaging modality

6
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noise model. If the imaging modality is MRI than we can assume an additive

Gaussian noise. The template estimation problem can then be stated as the

quadratic minimization problem

Î(x) = argmin
I(x),(Ti,Si)

N∑
i=1

∫
Ω
(Ii(Six + Ti)− I(x))2dx +

N∑
i=1

D(Ti, Si)
2 , (2)

where D(Ti, Si) is the metric on the space of rigid transformations from the

identity transformation given by

D2(Ti, Si) = ||Ti||2 + || log(Si)||2 .

In the above expression the log, is the matrix log which for a rotation ma-

trix can be easily calculated using the Rodriguez formula. A straight forward

extension of the well known Procrustes method minimizes Equation 2. above

[34].

Although the above methodology has been extensively studied for rigid trans-

formations, the concept can be readily extended to general transformations.

Given a metric on a group of transformations, the template construction prob-

lem can be stated as that of estimating an image Î that requires the minimum

amount of deformation to transform into every population image Ii. More pre-

cisely, given a transformation group S with associated metric D : S ×S → R,

along with an image dissimilarity metric E(I1, I2), we wish to find the image

Î such that

{ĥi, Î} = argmin
hi∈S,I

N∑
i=1

E(Ii ◦ hi, I)2 + D(e, hi)
2 (3)

where e is the identity transformation.
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2.3 Large deformation Diffeomorphic Template Estimation

Now consider a collection of N MRI images of different anatomies acquired by

the same imaging modality in rigid registration. For such a collection of im-

ages the variability is a result of not only of the noise of the imaging modality

but also the inherent biological variability of the geometry of the underlying

anatomy. In sharp contrast to the above setting, to study the geometry of

the underlying anatomy, the finite dimensional matrix group of rigid transfor-

mations must be replaced by the infinite dimensional analogue, the group of

diffeomorphisms H.

Let Ω ⊂ R3 be the underlying co-ordinate system of the template image.

Let Ωi ⊂ R3, i = 1, · · · , N be the coordinate systems of the images Ii. The

problem of estimating the most representative template image can be stated as

the estimation of an image Î, an associated independent coordinate system Ω,

which requires the least deformation represented by diffeomorphisms hi(x), to

best match each of the input images. This framework is depicted in Figure 2.

We apply the theory of large deformation diffeomorphisms [19,6,24] to generate

deformations hi ∈ H that are solutions to the Lagrangian ODEs d
dt

hi(x, t) =

vi(hi(x, t), t), t ∈ [0, 1]. The transformations hi are generated by integrating

velocity fields vi forward in time. Inverse transformations h−1
i are generated by

integrating the negative velocity fields ṽi backward in time. The relationship

between vi and ṽi is simply given by vi(·, t) = −ṽi(·, (1− t). For a single trans-

formation, h, this relationship is shown in Figure 1. The location y = h(x, 1)

is described in terms of the forward integration of the velocity field v starting

from the location x. Similarly, x can be described in terms of integrating the

8
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negative velocity field ṽ backward in time starting at y.

We induce a metric on the space of diffeomorphisms by using a Sobolev norm

via a partial differential operator L on the velocity field v. Let h be a dif-

feomorphism isotopic to the identity transformation e. We define the squared

distance D2(e, h) as

D2(e, h) = min
v

∫ 1

0

∫
Ω
||Lv(x, t)||2 dxdt

subject to

h(x) =
∫ 1

0
v(h(x, t), t) dt.

The distance between any two diffeomorphisms is defined by

D(h1, h2) = D(e, h−1
1 ◦ h2).

This distance satisfies all of the properties of a metric [22]. Namely it is non-

negative, symmetric, and satisfies the triangle inequality. D is trivially non-

negative. Symmetry follows from the fact that h−1 is generated by integrating

backward in time the negative of the velocity field that generates h. Hence

the minimizer of Equation 2.3 below is the same for both h and h−1, implying

that D(e, h) = D(e, h−1). Miller et al. [22] give a detailed discussion of D and

show that it satisfies the triangle inequality.

Having defined a metric on the space of diffeomorphisms, the minimum energy

9
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Figure 1. Velocity Field Integration

Figure 2. Template Construction Framework

template estimation problem (Equation 3) is formulated as

{ĥi, Î} = argmin
hi,I

N∑
i=1

E(Ii ◦ hi, I)2+

∫ 1

0

∫
Ω
‖Lvi(x, t)‖2 dxdt

subject to: hi(x) =
∫ 1

0
vi(hi(x, t), t) dt. (4)
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The above problem of estimating a template image Î that is the best rep-

resentative for a population of N anatomical images {Ii}N
i=1 is depicted in

Figure 2.

Throughout this paper we use the squared error dissimilarity metric but other

metrics such as the Kullback-Leibler divergence can also be used [21]. Un-

der the squared error dissimilarity measure the template estimation problem

becomes

{ĥi, Î} = argmin
hi,I

N∑
i=1

∫
Ω

(Ii (hi (x))− I(x))2 dx

+
∫ 1

0

∫
Ω
‖Lvi(x, t)‖2 dxdt. (5)

This minimization problem can be simplified by noticing that for fixed trans-

formations hi, the Î that minimizes Equation 5 is given by

Î (x) =
1

N

N∑
i=1

Ii (hi (x)) . (6)

That is, Î is the voxel-wise arithmetic mean of the deformed images Ii (hi (x)).

Note that the method for computing Î from {Ii} is determined by the image

dissimilarity metric used. Other image dissimilarity metrics would imply dif-

ferent methods for computing Î.

Combining Equations 5 and 6 results in

ĥi = argmin
hi

N∑
i=1

∫
Ω

Ii (hi (x))− 1

N

N∑
j=1

Ij (hj (x))

2

dx

+
∫ 1

0

∫
Ω
‖Lvi(x, t)‖2 dxdt. (7)

Note that the solution to this minimization problem is independent of the

ordering of the N images.
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This template construction framework produces transformations ĥi such that

ĥi : Ω → Ωi. Since each ĥi is a diffeomorphism, its inverse ĥ−1
i : Ωi → Ω exists

and can be calculated by integrating the negative velocity fields backward in

time (Figure 1). Image to image correspondences can be computed from these

transformations using the composition rule

ĥi,j = ĥj ◦ ĥ−1
i : Ωi → Ωj. (8)

3 Inverse Consistent Image Registration

When the template construction framework presented in the previous section

is applied to two images the result is an inherently inverse consistent image

registration algorithm–no correction penalty for consistency is required.

A registration framework is inverse consistent if image ordering does not af-

fect the registration result. Many image registration algorithms are not inverse

consistent because their image dissimilarity metrics are computed in the co-

ordinate system of one of the images being registered. The choice of such a

reference image can bias the result of the registration. Inverse consistent reg-

istration is desired when there is no a priori reason to choose one image over

another as a reference image. Previous work ([14,1]) has introduced methods

for computing approximate inverse consistent registrations by applying inverse

consistency constraints on intermediate incremental transformations.

12
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For two images I1 and I2, Equation 7 reduces to

{ĥ1, ĥ2} = argmin
h1,h2

1

2

∫
Ω

(I1 (h1 (x))− I2 (h2 (x)))2 dx

+
∫ 1

0

∫
Ω
‖Lv1(x, t)‖2 dxdt

+
∫ 1

0

∫
Ω
‖Lv2(x, t)‖2 dxdt.

The transformations h1 and h2 map Ω to Ω1 and Ω2 respectively. Using the

composition rule (Equation 8), we define the transformations h1,2 : Ω1 → Ω2 =

h2 ◦h−1
1 and h2,1 : Ω2 → Ω2 = h1 ◦h−1

2 . In other words, h1,2 is a transformation

from I1 to I2 and h2,1 is a transformation from I2 to I1. This method is inverse

consistent since h1,2 ◦ h2,1 = h2,1 ◦ h1,2 = e, the identity transformation.

4 Implementation

In this paper we present results based on a greedy fluid flow algorithm and

are currently working on implementing the full space time optimization based

on the Euler-Lagrange equations derived in [22]. Following the greedy fluid

algorithm of propagating templates described in [24], we approximate the

solution to the minimization problem in Equation 7 using an iterative greedy

method. At each iteration k, the updated transformation hk+1
i , for each image

Ii, is computed using the update rule hk+1
i = hk

i

(
x + εvk

i (x)
)
. hk

i and vk
i are

the current estimated transformation and velocity for the ith image, and ε is

the step size. In other words, each final transformation hi is built up from the

composition of k transformations.

The velocity vk
i for each iteration k is computed as follows. First, compute the

13
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updated template estimate

Îk(x) =
1

N

N∑
i=1

Ik
i (x),

where Ik
i = Ii(h

k
i (x)) is the ith image deformed by hk

i . Next, define force

functions

F k
i (x) = −

[
Ik
i (x)− Îk(x)

]
∇Ik

i (x).

This is the variation of the image dissimilarity term in Equation 7 with respect

to hi. The velocity field vk
i is computed at each iteration by applying the inverse

of the differential operator L to the force function, i.e. vk
i (x) = L−1F k

i (x),

where L = α∇2 + β∇∇ ·+γ is the Navier-Stokes operator. This computation

is carried out in the Fourier domain [18].

For each iteration the dominating computation is the Fast Fourier Transform.

Thus, the order of the algorithm is MNn log n where M is the number of

iterations, N is the number of images to be registered, and n is the number

of voxels in each image. The complexity increases only linearly as images are

added, making the algorithm extremely scalable. Satisfactory correspondence

is typically achieved after 200 iterations. In practice, we use a multi scale

approach that initializes the fine (voxel) scale registration with the up-sampled

correspondence computed at a coarser scale level. The finer scale levels only

need to account for residue from coarser scale levels and thus require far fewer

iterations to converge.

5 Driving application: Autism neuroimaging study

In the following, we describe the application of the unbiased atlas construction

to an ongoing infant autism study directed by Joseph Piven at UNC Chapel
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Hill. From the partnership with our Psychiatry department, we have access

to a morphologic MRI study with a large set of autistic children (N=50), de-

velopmentally delayed subjects (N=25) and control subjects (N=25), scanned

at age two with follow-up at age four. This project employs structural (MRI)

and functional (fMRI) neuroimaging techniques to examine the neural basis

of social cognitive, affective, and executive functioning deficits in autism. The

combined use of neuroimaging and neuropsychological data should further our

understanding of the causes of autism, thus assisting identification, prevention,

and potentially treatment of this disorder.

This study of early development imposes several significant challenges to im-

age analysis. Cross-sectional comparison between healthy and autistic subjects

at ages two and four and the study of brain growth over the two year follow-up

period require adequate image analysis methods. Normative imaging data of

healthy and patient populations in this age range are not available, suggesting

the development of atlases that describe the mean and the statistical variabil-

ity in early development. We plan to build population atlases that help us to

study differences between groups and differences in growth patterns. Methods

have to cope with the relatively large variability of head size and shape in

these age groups and with significant longitudinal changes due to growth.

5.1 Gray-level MRI data for atlas-building

The atlas-building described here uses high-resolution T1-weighted MRI with

voxel size 0.781252×1.5mm3. The standard segmentation pipeline of the UNC

autism image analysis group rigidly aligns the raw MR images to a Talairach

coordinate space by specifying anterior and posterior commissure (AC-PC)
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and the interhemispheric plane. The transformation also interpolates the im-

ages to a standard isotropic voxel-size of 1×1×1mm3. We randomly selected

8 images from the total of currently over 80 cases in our database. The images

were cropped for efficiency reasons.

5.2 Construction of unbiased gray-level atlas

To evaluate the performance of this method we applied our algorithm to a set

of intensity adjusted 3D MR brain images taken from eight different subjects.

As a preprocessing step, these images were aligned using an affine transforma-

tion. Axial slices from five of these eight initial images are shown in the first

column of Figure 3. There is noticeable large deformation variation between

these anatomies, especially around the ventricles. The second column of Fig. 3

shows the deformed (3D) images after 500 iterations of our algorithm. The de-

formed images look very similar, as they have been deformed into the common

coordinate space of the evolving template Ω. Column 3 of Fig. 3 shows the ab-

solute error between each input image and the initial template estimate. After

applying our algorithm the deformed neuroanatomies are very close, resulting

in a sharp final template estimate. Column 4 of Fig. 3 shows the absolute error

between each deformed image and the final template estimate. This image is

amplified to a maximum range to show the residual error. The squared error

as a function of the number of iterations is displayed in column 5 of Fig. 3.

The plots demonstrate the monotonous decrease of the error with increasing

number of iterations.

Figure 4 shows the initial and final estimate of the template. The initial tem-

plate estimate is blurry since it is an average of the varying individual neu-
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roanatomies. Ghosting is evident around the lateral ventricles and near the

boundary of the brain. The final template estimate Fig. 4 right is close to each

individual final results (column 2 Fig. 3). The sharpening of the resulting at-

las in comparison to the initial estimate is also shown in Fig. 5. Whereas the

initial template obtained by affine deformation and averaging does not show

any details in cortical regions, these regions appear much sharper in the final

template.

5.3 Annotated Atlas: Example Caudate Nucleus

Atlases might also carry anatomical labels, which can be used to explain loca-

tion and variability of anatomical structures if transformed to the atlas space.

Also, they find use in the segmentation of new subjects by atlas deformation.

Rohlfing et al. [25,26] deformed a set of labeled atlas images to a new image

and showed that the combination of these independent classifiers was sub-

stantially better than an individual classifier. Combination of the deformed

label images was done using an extension of the STAPLE [28,35] algorithm.

This classification method requires multiple high-dimensional deformations

to be applied to each new individual, which poses a computational problem

problem if applied to large clinical studies.

The caudate study allows us to perform similar experiments. Each infant MRI

is segmented into brain tissue, fluid, ventricles, and subcortical structures.

Here, we will use the left and right caudate nucleus. In the following, we will

describe the construction of a probabilistic caudate atlas which, similarly to

Rohlfing’s work, is built by deformation of a set of segmented images into

a template. We will further show how this caudate atlas can be applied to

17
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a b c d e

Figure 3. Template Construction shown for five of the eight initial images. a) Set of

initial images. b) Deformed images after 500 iterations. c) Absolute error between

the initial images and the initial template estimate. Notice the structure of the

residual error around the ventricles and the cortex. the deformed images and the

final template estimate. These errors are normalized to the maximum intensity

range to show the locations of the residual errors. Notice the lack of structure in the

residue after the deformation. e) Sum of squared errors as a function of the number

of iterations.

segment new subject’s images.
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Figure 4. Estimated templates initially and after 500 iterations. The figure shows

an axial slice through the ventricles and basal ganglia. Atlas construction is based

on eight infant MRI.

Figure 5. Estimated templates initially (left) and after 500 iterations (middle). The

right graph illustrates a profile along the dashed line for the initial (line) and final

template (dotted).

5.3.1 Caudate nucleus segmentations

A specific structure of interest in autism research is the caudate nucleus, as

this structure is associated with controlling motor function and indirectly with

the repetitive behavior as observed in autistic children. On a first sight, the

caudate seems easy to segment since the largest fraction of its boundary is

bounded by the lateral ventricles and white matter. Portions of the boundary

of the caudate can be localized with standard edge detection (provided the

appropriate scales are chosen). However, the caudate is also adjacent to the
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nucleus accumbens and the putamen where there are no visible boundaries in

the MRI (see Fig. 6). The caudate and nucleus accumbens are distinguishable

on histological slides, but not on MRI of this resolution. Another “trouble-

spot” for the caudate is where it borders the putamen; there are “fingers” of

cell bridges which span the gap between the two. We have developed a highly

reliable manually assisted caudate segmentation using SNAP, a tool based on

3D geodesic snakes [15]. This tool reduced segmentation from about 2 hours to

approximately 10 minutes, still including manual experts’ definition of nucleus

accumbens and putamen boundaries.

Here, we used the caudate segmentations of the 8 cases selected for atlas build-

ing to construct a probabilistic caudate atlas. Further, we selected 5 new cases

from our database which are not part of these 8 images for testing caudate seg-

mentation by atlas deformation. These 5 cases were taken from the reliability

test series, with the advantage that we have 6 manual segmentations (2 raters

with 3 segmentations each) for each case, which represent a probabilistic gold

standard.

5.3.2 Probabilistic caudate template using voxel voting

The caudate segmentations of the eight atlas images were transformed into

the atlas space by applying the individual deformations obtained during atlas

building. The set of deformed caudate segmentations can be used to build a

probabilistic caudate atlas. The segmentations were combined by a voxel-wise

voting scheme counting the number of segmentations at each voxel. Normal-

ization by the number of images finally results in a probabilistic caudate tem-

plate. This segmentation template can be seen as a level set within the range
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Figure 6. Two and three-dimensional views of the caudate nucleus. Coronal slice of

the caudate: original T1-weighted MRI (left), and overlay of segmented structures

(middle). Right and left caudate are shown shaded in green and red; left and right

putamen are sketched in yellow, laterally exterior to the caudates. The nucleus

accumbens is sketched in red outline. Note the lack of contrast at the boundary

between the caudate and the nucleus accumbens, and the fine-scale cell bridges

between the caudate and the putamen. At right is a 3D view of the caudate and

putamen relative to the lateral ventricles.

[0 · · · 1] where the level 0.5 defines the average shape. Figure 7 left illustrates

a sagittal cut and the corresponding 3D surface of the average shape.

5.3.3 Probabilistic caudate template using STAPLE

Warfield and Zou et al. [28,35] developed an algorithm to calculate the compos-

ite gold standard estimate from multiple manual segmentations. The Simultaneous

Truth and Performance Level Estimation (STAPLE) method is based on an

expectation maximization (EM) algorithm. Given a set of binary segmenta-

tions of the same object, STAPLE calculates the maximum likelihood estimate

of the composite “gold standard” or the best estimate of the unknown gold

standard. The algorithm calculates the specificity and sensitivity of each seg-

mentation in an iterative way. The major difference over voxel-wise voting

is its ability to assign weights for each individual segmentation proportional

to the performance, i.e. segmentations which are closer to the estimated gold
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standard get larger weights. The STAPLE algorithm is applied to the set of

eight segmented left and right caudates after they were deformed to the atlas.

It is important to notice that we limited the STAPLE calculations to disputed

voxels only, so that regions with only background and agreement within re-

gions were not taken into account. Figure 7 right illustrates a sagittal cut and

the corresponding 3D average object.

a b

Figure 7. Probabilistic caudate atlas. The manual segmentations of the eight images

used for atlas building are deformed using the individual deformation fields obtained

during atlas building. a) The eight deformed segmentations are superimposed by

voxel-voting and normalized to form a caudate probability map. b) The STAPLE

algorithm is applied to represent a probabilistic best estimate (gold standard) of

the true structure. The images show sagittal slice through this probabilistic images

and 3D surfaces of the average structure (probability 0.5).

5.3.4 Segmentation of new unknown subjects

The combined unbiased MRI and caudate atlases can be used to segment new

subjects by atlas deformation. The use of the unbiased atlas constructed from

a representative set of images eliminates the need to deform and combine

multiple labeled atlases. The MRI atlas is deformed using fluid deformation.

The same transformation is then applied to the caudate template to trans-

fer the probabilistic caudate to the new image. Figure 8 illustrates manual

segmentation and segmentation by deformation-segmentation. The compar-
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ison demonstrates the potential of this segmentation technique not only to

segment well-visible boundaries but also transition regions (like nucleus ac-

cumbens, e.g.) which can only be segmented in the anatomical context of

embedding neighboring structures.

Manual Segmentation Segmentation by Atlas Deformation

Figure 8. Coronal and sagittal view of the right caudate segmented manually (left

two images) and by nonlinear deformation of the atlas (right two images). Atlas

deformation allows to capture the inferior and lateral boundaries of the caudate

with nucleus accumbens and putamen although there are no visible contours in the

MRI image (see also Fig. 6 for anatomical reference).

5.3.5 Validation

The deformation-segmentation is validated against the gold standard of hu-

man expert segmentation. As discussed earlier, each of the 5 new subjects

selected for segmentation also comes with a set of 6 expert segmentations (3

repeated segmentations by 2 raters). This allows to compare not only binary

segmentations but also probabilistic segmentations.

We use a previously developed validation package VALMET [11] that includes

a probabilistic overlap measure between two fuzzy segmentations. This metric

is derived from the normalized L1 distance between two probability distribu-

tions
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POV (A, B) = 1−
∫
|PA − PB|
2

∫
PAB

. (9)

PA and PB are the probability distributions representing the two fuzzy seg-

mentations and PAB is the joint probability distribution. In this study, PA

and PB are calculated by integrating a set of binary segmentations with sub-

sequent normalization to the range of [0 · · · 1], whereas PAB is calculated by

integrating the set all binary segmentations and appropriate normalization.

The numerator expresses the probabilities of non-intersecting regions.

Table 1 lists the left and right caudate volumes for manual segmentation (user

assisted geodesic snake) and deformation segmentation. The results are en-

couraging but also show the limitations of high dimensional deformation with-

out using landmarks. There is one case (5007 right) with very large volumetric

difference, probably due to very thin ventricles creating local large scale de-

formation.

Table 5.3.5 lists overlap measures for pairs of binary segmentations (top) and

pairs of probabilistic segmentations (bottom). Binary objects are extracted

from the probabilistic segmentations by choosing level 4 close to the middle

level. The overlap ratio is defined as the intersection divided by the average.

The probabilistic overlap uses the probabilistic caudate atlas constructed from

8 cases and the manual experts segmentations (6 cases). Overlap results are in

the range 0.85 to 0.90, which is encouraging given the small size of the objects.

Manual raters still have a significantly better intra- and inter-rater reliability,

however this only comes after several months of training with several reliability

studies.
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Case Manual Vol. Atlas Deformed Vol. Diff. Manual vs. Def.

(L) (R) (L) (R) (L) (R)

Case 5003 3583.83 3596.00 3852.13 3638.25 7% 1%

Case 5004 4054.67 3910.83 3833.88 3881.13 5% 1%

Case 5007 4045.17 4319.67 3672.25 3562.25 9% 18%

Case 5011 3933.67 3899.67 4151.13 4089.25 6% 5%

Case 5020 3997.67 4112.17 3833.88 3881.13 4% 6%

Average 3922.99 3967.67 3868.65 3810.40 6.2% 6.2%

Std Dev 195.57 269.62 173.97 211.53

Table 1

Comparison between manual segmentation and automatic segmentation by atlas

deformation shown for five cases. The table illustrate the volumes for manual seg-

mentation and for segmentation by atlas deformation (volumes in mm3). The last

two columns list the absolute percentage differences. Volumes are represented by

the average objects at probability level 0.5.

6 Conclusions

In this paper a new concept for unbiased construction of atlases is presented

based on Frechet means in metric spaces. This approach results in an itera-

tive algorithm of simultaneous deformation of a population of subject images

into a new average image that evolves iteratively. This technique avoids the

systematic bias introduced by selecting a template but also the combinatorial

problem of deformation of a large number of datasets into each new subject.
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The new techniques produces a population average image which might serve

as a template to represent the population group. Sharpness of structures indi-

cates the quality of match and residual biological variability. Local variability

of brain structures is encoded in the set of deformation maps. We plan to

explore this information in our future work.

Results demonstrate the application of the new technique to eight 3D MRI

of children at age 2-years. A visual comparison of the resulting average atlas

with each individual image suggests that the atlas represents the average while

still being sharp. As each individual deformation is diffeomorphic, we can

apply transformations in both directions from the individual into the atlas

and back. We can also transform images into each other by cascading their

transformation and inverse transformations.

The caudate segmentation study with a set of over 80 segmented images and

a reliability study of 5 subjects with sets of repeated segmentations by several

experts form an excellent database to test and validate intermediate stages of

our development. Moreover, the caudate is an excellent example of an anatom-

ical structure that is not fully delineated by strong contrast boundaries but

can only be segmented in the context of embedding structures or a geometric

model. This supports use of deformable atlas registration where constraints

are provided through the use of a volumetric, unbiased atlas.

The caudate segmentation experiment clearly demonstrates the accuracy to

be obtained by deformation segmentation without landmarking. It can be

seen from the results that in one of the validation cases (subject 5007) lume

of the right caudate was substantially underestimated. This was primarily

as a result of a local extrema in the greedy optimization strategy used. We
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are in the process of augmenting the current completely automated process

with manual landmarking and a complete space-time optimization which will

greatly improve the accuracy of the segmentations.
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Overlap Ratio

Case Mean Level (L) Mean Level (R) STAPLE (L) STAPLE (R)

Case 5003 0.88 0.86 0.88 0.87

Case 5004 0.91 0.92 0.90 0.91

Case 5007 0.88 0.86 0.88 0.87

Case 5011 0.88 0.85 0.88 0.85

Case 5020 0.90 0.86 0.90 0.86

Average 0.89 0.87 0.89 0.87

Probabilistic Overlap

Case Fuzzy (L) Fuzzy (R) STAPLE (L) STAPLE (R)

Case 5003 0.84 0.82 0.89 0.86

Case 5004 0.86 0.87 0.90 0.90

Case 5007 0.85 0.84 0.88 0.85

Case 5011 0.84 0.82 0.88 0.85

Case 5020 0.87 0.84 0.90 0.85

Average 0.85 0.84 0.89 0.86

Table 2

Comparison between manual segmentation and automatic segmentation by atlas

deformation shown for five cases. The tables illustrate the differences for the prob-

abilistic caudate atlas templates represented as a probability atlas (fuzzy caudate

atlas) and derived by applying the STAPLE algorithm. Top: Overlap ratio between

pairs of binary objects derived as the mean level of the probability atlas templates.

Bottom: Probabilistic overlap calculated between pairs of probabilistic atlas tem-

plates.

32

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 


