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Abstract. The segmentation of the subcortical structures of the brain
is required for many forms of quantitative neuroanatomic analysis. The
volumetric and shape parameters of structures such as caudate are em-
ployed to characterize a disease or its evolution. This paper presents our
fully automatic segmentation of the caudate. The segmentation is based
on an unbiased diffeomorphic atlas with probabilistic spatial priors built
from a training set of MR images with corresponding manual segmenta-
tions. When applying the atlas for automatic structural segmentation, an
MR image is first intensity inhomogeneity corrected, skull stripped and
intensity calibrated to the atlas. Then the atlas image is registered to
the image using an affine followed by a deformable registration matching
the gray level intensity. Finally, the registration transformation is ap-
plied to the caudate probabilistic maps, which are then thresholded at
0.5 probability.
Our method has been tested on all datasets provided by workshop as
our atlas was build on a separate training population. The results show
intermediate overlap results (76% Dice) and high correlation with the
IBSR data (93%) and moderate correlation with the BWH data (64%).
This indicates that our manual segmentation procedure is more similar
to the procedure used for the IBSR than for the BWH dataset.

1 Introduction

Magnetic resonance imaging (MRI) is able to provide a detailed information of
normal and diseased anatomy for medical research and has become a significant
imaging modality in clinical diagnosis and brain studies. Segmentation of sub-
cortical structures such as the caudate from MR brain scans is a critical task
that has many applications such as volume assessments and shape analysis. Even
though manual delineation by experts is still common practice for high quality
segmentation, it is time-consuming and subjective. Neuroimaging studies tend
to become ever larger and manual segmentation with its time requirement and
low reproducibility is ill-suited for such large imaging studies.

Many methods exist to perform automatic segmentations of the caudate and
subcortical structures in general [1]. Deformable models have been employed in
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numerous medical imaging applications [2]. Leventon et al. [3] and Tsai et al. [4]
use a shape-based approach to curve evolution for the segmentation of medical
images containing known object types. A hierarchical, atlas based expectation-
Maximization segmentation algorithm [5] is used by Pohl et al. Of course, many
more algorithms are available and will be presented at this workshop.

In this paper we describe our automatic segmentation method presented in
detail in [6]. Our approach is based on an unbiased diffeomorphic atlas with
probabilistic spatial priors built from a training set of images with correspond-
ing manual segmentations. Using the transformation fields from the previous
step we generate probabilistic maps for the caudate. After several preprocessing
steps, the atlas is registered to the image using an affine followed by a deformable
registration matching the gray level intensities. Lastly, the registration transfor-
mations are applied to the probabilistic maps of the caudate, which is then
thresholded at 0.5 probability.

2 Method

The method described in this paper is based on the registration of an atlas
with probabilistic maps onto the case to be segmented. The whole process can
be separated into an atlas building step, which is performed only once, plus
a segmentation step performed for each dataset. This section summarizes this
methodology, which is described in more detail in [6].

2.1 Atlas computation

Our caudate segmentation method is based on an atlas registration. Prior to
any segmentation we need to create the atlas itself and the caudate probabilistic
maps in the atlas coordinate space. The atlas is generated in two parts: first a
template image is computed as the unbiased average of a training population,
then the probabilistic maps are computed in the template image space. The atlas
used in this study was created from 10 separate healthy adult control subjects
(20 to 55 year old, IRprepped SPGR, GE 1.5) that were not part of the training
population provided by the workshop organizers. The probabilstic maps have
been generated from manual segmentations performed by a single expert. As we
chose a separate training atlas, the provided training datasets in the workshop
were used as unbiased testing datasets.

Our experience with the atlas creation for our segmentation shows that the
probabilistic maps provide a better segmentation if they come from the same kind
of manual segmentation. If the range of variation of the manual segmentation
used in the atlas creation process is too wide, the automatic segmentation does
not give satisfying results. The atlas used in this study is the one we created
from a very consistent manual segmentation study, and it showed good results on
numbers of different datasets. In the training dataset provided for this workshop,
the manual segmentations have different sources and the age range is broad. This
atlas would not have given a better segmentation than the one we used.
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As a preprocessing to the atlas building, we select randomly a single train-
ing image and registered initially all datasets affinely to that image [7, 8]. The
datasets are then skull stripped, intensity inhomogeneity corrected, and intensity
calibrated (see next section for more details). After this preprocessing, we use
fluid, deformable registration to compute the unbiased average from the whole
training population, along with deformation fields containing the information to
transform each image to the atlas [9]. The deformable registration refines itera-
tively an average image and computes a fluid-model based deformation field via
voxel-by-voxel diffeomorphic mapping to that average image.

2.2 Atlas based segmentation

Preprocessing The first preprocessing step puts the rather heterogeneous set
of images provided by the workshop into the same image space using a rigid,
normalized mutual information registration approach [8]. We choose one of the
datasets (UNC 03) as the registration target and all images are rigidly registered
and resliced to an isotropic 1mm resolution image grid. We choose this particular
case because it is quite well-centered, its unspecific appearance and the intactness
of the whole skull in the image.

The second step computes a brain tissue classification using a probabilistic
atlas driven automatic segmentation called itkEMS [10]. In addition to the tis-
sue segmentation, itkEMS performs an intensity inhomogeneity correction that
removes gradual variations in the image intensities mainly due to RF coil im-
perfections. The atlas used for itkEMS is different from the one used in the
registration process. The tissue segmentation atlas is a specific one that con-
tains prior knowledge of the tissue distribution. Additionally skull stripping is
performed using the hard tissue segmentation. This itkEMS step is used only
for the inhomogeneity correction and the skull stripping.

In the last step of the preprocessing an intensity calibration of the image
to the atlas image. This intensity calibration of the skull stripped images is
computed using a histogram matching only at a specified number of quantile
values (ITK filter, 100 quantiles).

After this preprocessing, all images are aligned in the same anatomical space,
skull stripped, their intensity inhomogeneity is corrected and normalized. All of
these steps are computed fully automatically via shell scripting. The resulting
images are used as inputs in the atlas computation and the subcortical structure
segmentation.

Segmentation step Our segmentation consists of registration of the atlas to
the preprocessed image and the propagation of the probabilistic atlas caudate
definition. The registration is computed in two steps. First, the atlas image is
affinely registered to the preprocessed image with 15 parameters [8]. Then, the
affinely registered template is warped to the case using the fluid, diffeomorphic,
deformable process described in the atlas building step [9].

Both transformations (affine and warping) are then applied to the caudate
probabilistic definitions to have them in the coordinate space of the case to
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be segmented. In order to have the final segmentations in the original image
space, and thus to allow the comparison with the manual expert segmentations
in this workshop, we apply the inverse of the prior rigid registration computed
in the first preprocessing step to the caudate probabilistic maps. In the final step
these probabilistic maps are thresholded at 50% probability to yield the binary
segmentation of the caudate. We use a probabilistic map along the process be-
cause it makes the segmentation more robust when we apply the transformations
(affine and warping).

The quality of this segmentation is strongly related to the appropriateness of
the atlas to represent the cases to be segmented. The workshop dataset provided
has a really large range of age and we expect that our method will not perform
well for cases that are highly different from the atlas training population.

3 Results

We present here in this section both results we generated comparing our segmen-
tation to the workshop’s training dataset, as well as to the workshop’s testing
dataset. The first was computed by us, while the latter was computed by the
workshop organizers.

3.1 Training data results

The training dataset has 33 cases provided with their manual caudate segmen-
tations: 15 from the BWH dataset and 18 from the IBSR dataset. We applied
our segmentation method as described above on these 33 cases.
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Fig. 1. Dice, Tanimoto and Pearson coefficients for the training dataset.

We calculated the two mainly used volumetric overlap definitions as well as
a correlation coefficient:
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1. Dice overlap coefficient which is the intersection of the two volumes divided
by the average volume

2. Tanimoto overlap coefficient which is the intersection divided by the union
of the two volumes

3. Pearson correlation coefficient which measures the correlation of the volu-
metric measurements across all cases.

In figure 1 the results for both right and left caudate have been averaged, and
we present the values for all the data along with the results for the two dataset
separated.

The Tanimoto coefficient, which is the hardest test for volume comparison,
presents an average value of 63% and the Dice coefficient is at 76%. We notice
that the values are quite constant across the two datasets. The Pearson coefficient
is much more different between the two groups: while the BWH dataset shows
a quite poor result with 0.64, the IBSR dataset has a very good correlation of
0.93.

This big difference in the Pearson coefficient is explained by the nature of
our segmentation. The agreement of our segmentation and the manual segmen-
tation depends on the way the manual segmentation procedure in our training
population agrees with the one employed in the workshop images. This indicates
that the segmentation procedure of our training expert segmentations is more
similar to the procedure used for the IBSR dataset than for the BWH dataset.

3.2 Testing data results

Our segmentations on the testing data set are evaluated with the workshop or-
ganizer automatic program. The testing group is composed of 4 different popu-
lations: scans from 2 year old children, scans from elderly people (over 55 years),
scans from adults and finally 10 scans of the same adult person to test the
reliability.

Table 1 presents the scores of the segmentations of the 3 first groups. The
computation of these scores is based on several values described in the table 1.
The table shows that our segmentation gives much better results on the pediatric
and elderly dataset (averaging at 80) than on the adult dataset (with 62). The
volumetric overlap, the relative absolute volume difference, the symmetric RMS
surface distance and the maximum symmetric absolute surface distance scores
are better for the pediatric and elderly group whereas the volumetric difference
shows surprisingly better results for the adult group.

Table 2 shows the Pearson correlation coefficient for the three groups. The
table presents good results for the elderly (.87) and the adult group (.83) but
they are not as good with the pediatric dataset (.59). When compared with
the average Pearson correlation for the manual segmentation of human experts,
which is .71, one can see that our method correlates for the 2 UNC datasets at
least as much with the manual raters as they with each other.

Table 3 presents the coefficient of variations (COV) among the 10 scans of the
same person. It averages at 1.2% whereas the variablility of the human expert
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All Dataset Overlap Err Volume Diff. Abs. Dist. RMS Dist. Max. Dist. Total
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

UNC Ped 10 29.3 82 -14.1 75 0.7 76 1.2 78 10.7 68 76
UNC Ped 14 26.3 84 -12.4 78 0.5 82 0.8 86 3.9 88 84
UNC Ped 15 22.6 86 -13.2 77 0.4 84 0.7 87 4.8 86 84
UNC Ped 19 29.7 82 -23.2 60 0.6 78 0.9 84 5.2 85 78
UNC Ped 30 28.3 82 -12.7 78 0.6 78 0.9 85 4.7 86 82
UNC Eld 01 39.0 76 22.1 61 0.9 68 1.5 74 6.0 82 72
UNC Eld 12 30.5 81 12.4 78 0.6 78 1.0 82 4.2 88 82
UNC Eld 13 26.9 83 10.3 82 0.5 81 0.9 85 3.6 90 84
UNC Eld 20 27.0 83 14.9 74 0.5 80 0.9 84 4.5 86 82
UNC Eld 26 33.7 79 23.9 58 0.6 76 1.1 80 4.7 86 76
BWH PNL 16 41.6 74 -9.8 82 1.2 58 2.7 52 23.6 30 59
BWH PNL 17 38.6 76 -7.9 86 1.1 60 2.8 50 27.5 19 58
BWH PNL 18 47.2 70 -21.3 62 1.2 56 2.0 64 10.8 68 64
BWH PNL 19 44.5 72 -15.3 74 1.3 52 2.8 49 25.6 25 54
BWH PNL 20 38.4 76 -5.3 91 1.0 64 2.4 57 26.2 23 62
BWH PNL 21 47.6 70 -16.2 72 1.6 40 3.1 44 25.9 24 50
BWH PNL 22 42.7 74 -13.4 76 1.3 51 2.9 48 24.4 28 56
BWH PNL 23 37.7 76 3.2 94 0.8 69 1.4 76 10.1 70 77
BWH PNL 24 37.3 76 -12.6 78 0.8 68 1.5 74 8.4 75 74
BWH PNL 25 40.6 74 -8.0 86 1.2 55 2.8 50 24.9 27 58
BWH PNL 26 37.3 76 -2.7 84 0.8 70 1.6 72 10.0 70 75
BWH PNL 27 39.9 75 -16.9 70 1.4 46 3.5 38 26.2 23 50
BWH PNL 28 43.4 72 -9.2 84 1.4 48 3.2 42 24.9 27 55
BWH PNL 29 44.8 72 5.7 90 1.0 61 1.5 72 9.0 74 74
Average All 36.5 77 -5.1 77 0.9 66 1.8 67 13.7 60 69
Average UNC Ped 27.2 83 -15.1 74 0.6 80 0.9 84 5.9 83 80
Average UNC Eld 31.4 80 16.7 71 0.6 77 1.1 81 4.6 86 79
Average BWH PNL 41.5 74 -9.3 81 1.2 57 2.4 56 19.8 42 62

Table 1. Results of the comparison metrics and corresponding scores for all test cases
averaged for the left and right segmentation. The summary rows at the end of the table
display the overall average across all test cases, as well as grouped for the three testing
groups.

Correl UNC Ped UNC Eld BWH PNL Total
Left 0.6730 0.8780 0.8339 0.7949
Right 0.5121 0.8767 0.8357 0.7415
Average 0.5925 0.8773 0.8348 0.7682

Table 2. Pearson correlation for the volume measurements in the three testing groups
as well as in total. This coefficient captures how well the volumetric measurements
correlate with those of the reference segmentations.
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Test/Re-Test UNC 03 UNC 04 UNC 09 UNC 11 UNC 17 UNC 18 UNC 21 UNC 22 UNC 24 UNC 25 Mean Stdev COV
[mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [%]

Left 3284 3180 3239 3299 3242 3249 3242 3265 3253 3237 3249 32 1.0
Right 3429 3350 3389 3534 3399 3356 3381 3410 3395 3424 3407 52 1.5
Total - - - 1.2

Table 3. The volumetric measurements of the 10 data sets of the same young adult
acquired on 5 different scanners within 60 days. The coefficient of variation (COV =
standard deviation / average, last column) indicates the stability of the algorithm in
a test/re-test situation including scanner variability.

segmentation is at 3.1%. This shows that our segmentation is more repeatable
and thus reliable than the one of human expert raters.

Finally the last figure (Fig. 2) is the comparison between our segmentation (in
blue) and the manual one (in red) on selected cases of each of the three groups.
The adult case presented shows that our segmentation does not work properly
at the posterior tail area of the caudate. On the two other cases (pediatric and
elderly) the automatic segmentation agrees pretty well with the general shape
of the manual one and there is no general pattern in the differences.

4 Discussion

The results obtained with the testing dataset are interesting. All the different
errors computed to assess the scores in each group show that our segmentation
is better on the pediatric and the elderly scans than on the adult brains. As
our automatic segmentation results are strongly related to the atlas used, these
results are somewhat unexpected since we used an atlas based on adult brains.
However the quality of our results depends on the correlation between the way
the manual segmentation used in the atlas have been done and the actual “true”
segmentation our results are compared to. It is thus not surprising that the el-
derly and pediatric manual segmentation protocol has a higher similarity with
the one used in our separate training population compared to the protocol used
for the adult BWH dataset. We can note that even for the fairly well segmented
cases, the final score is not near 90 (which means a good segmentation accord-
ing to the workshop evaluation process). Looking closely at the table we notice
that the two main scores that lower the overall score for the pediatric and el-
derly dataset are the volume difference and the absolute distance. These two
measures emphasize differences over the whole volume. Although the automatic
segmentation is close to the manual one, if there are small errors all around the
volume, they add up to increase these two measurements. The difference might
come from the registration step of our segmentation. It could introduce a consis-
tent extra layer around the caudate which would give these low scores. It might
also be due to the thresholding part of our method. All the registrations are
applied on the probabilistic maps, and finally to get the volume, these maps are
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Fig. 2. From left to right, a sagittal, coronal and transversal slice from a a subject in
the adults BWH group (top), one in the elderly UNC group (middle) and one in the
pediatric UNC group (bottom). The outline of the reference standard segmentation is
in red, the outline of the segmentation of the method described in this paper is in blue.

thresholded at .5. The fifty percent probability might not be the more accurate
one.

Concerning the Pearson correlation coefficient, the results are in the same
order of magnitude as what we had presented in the original paper [6]. The
coefficients computed on two datasets were .89 and .73. On the testing dataset
the elderly and adult segmentations present good values (0.87 and 0.83) but the
coefficient drops for the pediatric segmentation (0.59). This can be explained
by the caudate shape variation and the small size of the structures within the
pediatric dataset which are not handled properly with our method.
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Finally, the reliability assessment over the 10 scans of the same person aver-
ages at 1.2% for both caudates. This is a very good result regarding the stability
of the method considering that, on this same dataset, manual raters have a COV
of 3.1%.

The overall results of our segmentation are quite satisfying considering that
with our method we obtained a segmentation for the whole worshop dataset.
Some general parameters had to be set up, but we found the proper tuning such
that all the caudates have been fully automatically segmented.

5 Conclusion

In this paper we presented our fully automatic segmentation method for the
caudate which has been previously described in [6]. We applied this method on
a wide range of brain datasets and successfully segmented all of them. Even
though we have not trained our model to all different caudate segmentation
protocols used by manual expert raters for the workshop testing dataset, the
results are quite satisfying. Using a non-trained atlas gave us fairly good results,
which could be enhanced with an appropriately retrained atlas, but there seems
limited necessity as our results correlated well with the human expert segmenta-
tion. As we are also more reliable in a test/retest situation than manual raters,
we can conclude that our caudate segmentation allows an efficient and reliable
processing of large scale studies.
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7 Updated method

After the results from the first assessment, we enhanced our method to try to
get better results.

Instead of using our own atlas created from UNC dataset, we used the 15
BWH PNL cases from the training dataset. As we have seen with our first seg-
mentation the results were not consistent across the different datasets. We dis-
cussed in section 4 about the lower segmentation quality for the BWH PNL
dataset compared to the UNC Ped and Eld dataset. In order to improve our
segmentation we created the new atlas using the process described in section
2.1.
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