1 2 3 4 5	Importance of Ethiopian shade coffee farms for forest bird conservation Evan R. Buechley ^{1, 2} , Çağan H. Şekercioğlu ^{2,3} , Anagaw Atickem ⁴ , Gelaye Gebremichael ⁵ , James Kuria Ndungu ⁶ , Bruktawit Abdu Mahamued ⁷ , Tifases Beyene ⁸ , Tariku Mekonnen ^{4,9} , Luc Lens ¹⁰
6 7 8	¹ Corresponding Author e.buechley@utah.edu
9 10 11 12	² University of Utah, Department of Biology, 257 S. 1400 E. Salt Lake City, UT, 84112, USA
13	³ College of Sciences, Koç University, Rumelifeneri, Istanbul, 34450, Turkey
14 15 16	⁴ Centre for Ecological and Evolutionary Synthesis, Biology Department, Oslo University, Box 1066, N-0316, Blindern, Oslo, Norway
17 18 10	⁵ Jimma University, College of Natural Sciences, P.O. Box 378, Jimma, Ethiopia
19 20	⁶ Front Trail Safaris, P.O Box 60903-00200, Nairobi, Kenya
21 22 23	⁷ Manchester Metropolitan University, School of Science and the Environment, Manchester, M15 6BH, United Kingdom
24 25	⁸ Arba Minch Crocodile Farm, Arba Minch, Ethiopia
26 27 28	⁹ Jimma University, College of Agriculture and Veterinary Medicine, Jimma, Ethiopia
29 30 31	¹⁰ Ghent University, Department of Biology, Terrestrial Ecology Unit, Ledeganckstraat 35, B-9000 Ghent, Belgium
 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	

47 **Abstract** 48

Coffee is the most important tropical commodity and is grown in high-priority 49 50 areas for biological conservation. There is abundant literature on the 51 conservation value of coffee farms internationally, but there has been little 52 research on this topic in Africa. Ethiopia is a diverse and little-studied country 53 with high levels of avian endemism, pressing conservation challenges, and 54 where Coffea arabica originated. We sampled bird communities in shade coffee farms and moist evergreen Afromontane forest in Ethiopia utilizing standard mist 55 56 netting procedures at seven sites over three years to evaluate bird species 57 richness, diversity and community structure. Although species diversity did not 58 differ between shade coffee and forest, shade coffee farms had over double the 59 species richness of forest sites and all but one of the nine Palearctic migratory species were captured only in shade coffee. There was a greater relative 60 abundance of forest specialists and understory insectivores in forest, 61 demonstrating that little-disturbed forest is critical for sustaining these at-risk 62 groups of birds. Nonetheless, all species recorded in primary forest control sites 63 were also recorded in shade coffee, indicating that Ethiopian shade coffee is 64 perhaps the most "bird-friendly" coffee in the world. This is an important finding 65 66 for efforts to conserve forest birds in Africa, and for shade coffee farmers that may benefit from avian pest regulation and biodiversity-friendly coffee 67 certifications. 68 69

70 71

Keywords: understory insectivore, coffee, agroforest, biodiversity hotspot,
 ecosystem services, forest specialist, climate change, tropical ecology,
 ornithology

UU IR Author Manuscript

94 **1 Introduction**

93

95 **1.1 Tropical Forest Declines and Implications for Bird Populations**

96 Increasing human populations and corresponding land use changes are driving a 97 global extinction crisis (Brashares et al., 2001; Pimm et al., 2006; Vitousek et al., 98 1997). Tropical forests are the most species-rich terrestrial ecosystem on Earth, 99 supporting up to 70% of plant and animal species, and are being lost at an 100 alarming rate (Dirzo and Raven, 2003; Donald, 2004; Laurance and Bierregaard, 1997; Sodhi et al., 2004). In the last decade, approximately 13 million hectares of 101 forest were cut down each year, with most of the losses occurring in the tropics 102 103 (UNFAO, 2010). Tropical deforestation represents the single greatest threat to global biodiversity (Donald, 2004): it results in rapid transformations in plant and 104 animal communities, which drastically alters ecological processes and impacts 105 human societies (Clough et al., 2009a; Tilman et al., 2001). 106

Numerous studies attribute forest bird declines to deforestation and the 107 conversion of tropical forests to agricultural habitats, particularly in forest 108 109 archipelagos in agricultural landscapes (Bregman et al., 2014; Newmark, 1991; Sekercioğlu, 2012a; Sigel et al., 2006; Sodhi et al., 2011; Stratford and Stouffer, 110 1999). Currently, 23% of bird species are globally threatened or near threatened 111 112 with extinction (BirdLife International, 2014), with the vast majority of threatened species inhabiting tropical forests (BirdLife International, 2014; Brooks et al., 113 1999; Lees and Peres, 2006; Sodhi et al., 2004; Turner, 1996). 114

115 Understanding the ecological drivers underlying avian distributions is critical to evaluate the overall ecological integrity of ecosystems because birds 116 are highly specialized, occupy a variety of ecological niches, have key ecological 117 118 functions, and are variably susceptible to disturbance (Komar, 2006; Sekercioğlu, 2006a, 2006b; Anjos et al. This Issue; Pollock et al. This Issue; Pavlacky et al. 119 120 This Issue). Bird extinction risk increases with ecological specialization 121 (Sekercioğlu, 2011). Shifts in bird relative abundance and/or local extinctions are 122 likely to affect ecological processes, including seed dispersal, pollination, nutrient cycling, and even soil formation (Chapin et al., 1998; Heine and Speir, 1989; 123 124 Lens et al., 2002; Şekercioğlu et al., in press).

Forest understory insectivores are especially sensitive to forest fragmentation and disturbance, and are thus among the most threatened bird species in the world (Tobias et al., 2013). They have relatively high habitat specificity, dependence on forest interior habitats, and limited mobility (Lens et al., 2002; Şekercioğlu et al., 2002; Tobias et al., 2013). Evaluating where and why they are declining is a conservation priority in the tropics (Tobias et al., 2013).

133 **1.2 Agroforests as Bird Habitat**

Preserving biodiversity in habitats that are impacted by human activities is
important because (i) these habitats make up an increasingly large portion of the
globe (Norris, 2008) and (ii) about one third of world's ~10,000 bird species have
been recorded in human-dominated and mostly agricultural habitats (Şekercioğlu
et al., 2007). Agriculture accounts for over 37% of global land cover (World Bank,

139 2012a) and is a major cause of deforestation. Agroforestry—a farming technique 140 that combines a mixture of trees, shrubs, and crops—is particularly valuable for biodiversity conservation, especially when native tree species are present 141 142 (Fischer and Lindenmayer, 2007; Perfecto et al., 1996; Pimentel et al., 1992). The conservation value of tropical agroforests is being increasingly recognized 143 144 (Greenberg et al., 2008; Perfecto and Vandermeer, 2008; Tscharntke and Klein, 2005). Landscape management strategies that maximize biological diversity 145 146 retention, ecological services, and economic profitability should be investigated and promoted (Bengtsson et al., 2005; Railsback and Johnson, 2014; 147 148 Rosenzweig, 2003).

A number of factors affect bird assemblages in tropical agroforests. 149 including forest patch size, proximity to other habitat types, percent canopy 150 cover, and shade tree composition. For example, agroforests that have intact 151 forest canopies with high shade tree diversity and native tree species harbor 152 relatively high avian diversity (Gove et al., 2008; Perfecto et al., 1996; Greenberg 153 et al., 1997; Van Bael et al., 2007). Shade coffee is among the most bird-friendly 154 of agricultural habitats, often harboring a high diversity of birds, including forest 155 156 specialists (Komar 2006; Perfecto et al., 1996; Greenberg et al., 1997; Van Bael 157 et al., 2007). However, most avian studies only evaluate species diversity or 158 richness, and often overlook the role of community composition in shaping the ecological and conservation importance of bird species utilizing coffee farms. In 159 particular, there is a need to evaluate the degree of habitat specialization, 160 foraging guild structure, and conservation status of bird communities (Komar, 161 2006). Furthermore, the majority of this research has taken place in the 162 Neotropics and the ecology of birds in coffee farms in Africa, in particular, needs 163 164 further investigation (Komar, 2006; Sekercioğlu, 2012a).

1.3 Ethiopia: Importance and Challenges

167 Ethiopia is a unique, immensely diverse and little-studied country with a high level of avian endemism. It is located along the critical African-Eurasian migratory 168 flyway (Ash et al., 2009; Sekercioğlu, 2012b). Eastern Afromontane and Horn of 169 170 Africa Global Biodiversity Hotspots cover most of the country (Conservation 171 International, 2014) and the Ethiopian highlands account for over 50% of the Eastern Afromontane eco-region (Figure A1). This eco-region is intermittently 172 distributed, is the least explored and least protected eco-region in Africa, and is a 173 major source of endemism (Gole et al., 2008; Küper et al., 2004; Scholes et al., 174 2006). Approximately three-quarters of plant species (Gole et al., 2008) and 32 175 bird species are endemic to the Abyssinian Highlands, which include Ethiopia 176 177 and a portion of neighboring Eritrea (Ash et al., 2009). Despite minimal visitation by ornithologists and birders, especially the unstable border regions with 178 Somalia, Kenya, North and South Sudan, and Eritrea, an impressive total of over 179 180 860 species have been documented (Sekercioğlu, 2012b); ranking Ethiopia 181 among the richest countries in the world in terms of bird diversity. This species 182 list is steadily growing with increasing research and tourism. The combination of 183 bird diversity, endemism, globally important migration routes, and scant research

165

make Ethiopia a top priority in Africa for ornithological research and conservation(Şekercioğlu, 2012b).

While Ethiopia has a tremendous wealth of natural resources and 186 187 biological diversity, it also faces serious conservation challenges. The country's population growth rate is among the highest in the world—currently estimated at 188 189 2.6% per year (World Bank, 2013)—which is causing rapid and widespread 190 conversion of forest habitats for human settlements, charcoal and firewood 191 harvesting, and clearing for agriculture, including tea and coffee plantations (Bekele, 2011; Campbell, 1991; Hurni, 1988). Furthermore, there is limited 192 193 governmental commitment to wild-land conservation. These factors have led to widespread deforestation in the biologically rich Ethiopian highlands: forest cover 194 was reduced from over 15,100,000 hectares in 1990 to just under 12,300,000 195 hectares in 2010-a drastic 18.6% decline in 20 years (FAO, 2010). 196

Global coffee consumption has increased consistently since the early 197 1980's, at a rate of about 1.2% annually (ICO, 2012a). With an annual value of 198 \$100 billion (Donald, 2004), coffee is the second most valuable legal international 199 commodity after oil (O'Brien and Kinnaird, 2003) and is the most important export 200 201 commodity for many tropical countries (ICO, 2012a). It is produced on 202 approximately 11.5 million hectares of terrain, often in areas of high conservation importance (Donald, 2004). Coffea arabica- the most widespread and 203 economically valuable coffee strain-makes up two-thirds of the world's coffee 204 205 market (Aerts et al., 2011; Labouisse et al., 2008), and is native to southwestern 206 Ethiopia where it has been cultivated for over a thousand years (Aerts et al., 2013; Anthony et al., 2001, 2002). 207

The agricultural industry accounts for 80% of employment in Ethiopia 208 209 (United Nations, 2012) and coffee is the primary export crop (ICO, 2012b). From 2000-2010, coffee accounted for an average of 33% of export earnings, the 210 211 second most of any country (ICO, 2012b). Present day coffee cultivation in 212 Ethiopia ranges from the harvesting of near-wild coffee in forest to shade coffee 213 farms with native tree canopies to monoculture sun coffee farms. While Ethiopia has a long history of shade coffee farming, it is following a recent global trend 214 215 towards sun coffee production, due to the ease of mechanization which can yield higher production per unit area despite decreased production per plant (Donald, 216 2004; Gove et al., 2008). Intensive sun coffee farms produce a lower quality crop 217 and often face problems with crop pollination and pest outbreaks due to loss of 218 avian ecological function (Kellermann et al., 2008). These biodiversity losses can 219 cause increased reliance on pesticides, which in turn cause further ecological 220 221 damage (Donald, 2004). As little forest cover remains in Ethiopia and agriculture 222 is the dominant land use, determining the conservation value of agricultural 223 systems is pressing. In addition to being an important step towards determining avian conservation priorities in the tropics, our study also fills an important gap in 224 225 the existing literature on birds in coffee farms, in a country with high levels of 226 biodiversity, endemism, deforestation rates, human population growth, and 227 economic dependence on agriculture.

UU IR Author Manuscript

228

5

229 2 Material and Methods

230 2.1 Site Description

Our study took place in the Oromia Region of southwestern Ethiopia, in the heart
of the country's coffee producing region and where *C. arabica* was first
domesticated from wild stock (Anthony et al., 2002). Bird community sampling
was carried out in two habitat types: shade coffee farms (422 km² area; at four
localities, Garuke, Eladale, Fetche, and Yebu) and moist evergreen Afromontane
forest (920 km² area; at three localities, Afalo, Abana Bunna, and Quaccho)
(Figure 1).

238 The shade coffee farms are located within the major coffee-producing 239 agricultural mosaic near the city of Jimma (in Kaffa Province, which gave coffee its name) and are all operated by small-scale local farmers with similar growing 240 strategies. The area of the shade coffee farms ranged from two to ten hectares. 241 These shade coffee farms are agroforest fragments in a patchwork of pastures 242 and agriculture. There is extensive canopy and understory thinning and 243 244 widespread planting of C. arabica at high densities and regularly spaced 245 intervals. The coffee cultivars at all of the sites were from wild stocks of C. arabica and there was no documented pesticide or fungicide use on the farms. 246 247 The shade coffee sites have a simplified structure and reduced shrub and tree species composition when compared with the forest sites. Three forest sites were 248 249 selected from the closest accessible large contiguous forest patches that 250 occurred within the same elevational range, climactic region, and vegetation 251 zone as our shade coffee sites. Located within the Belete-Gera Regional Forest 252 Priority Area, these sites showed only moderate signs of forest management and human alteration, including some clearing of the understory to promote the 253 254 growth of wild coffee. The forest was complex structurally and compositionally, 255 including diverse herbs, shrubs, lianas and saplings, with an average canopy 256 height of approximately 20m in the most pristine sections.

257 Hundera et al., (2013) studied forest composition and structure within our 258 same study sites in detail. They documented a total of 69 woody plant species 259 across all sites, with 44 species found in forest, while 26 to 38 species were found on different shade coffee farms. When comparing forest to shade coffee, 260 261 there was a 70-95% reduction of seedlings, tree abundance was reduced by 30-262 68%, and basal area decreased by up to 75%, respectively. Emergent tree species, such as Pouteria adolfi-friederici, Olea welwitschii, and Afrocarpus 263 falcatus, are often the first removed in the conversion from forest to shade coffee. 264 While mean tree and canopy height did not vary significantly between habitats. 265 regeneration of late successional tree species was significantly greater in forest 266 than in shade coffee. Hundera et al., (2013) conclude that cutting of saplings in 267 268 shade coffee inhibits recruitment of late-successional and secondary tree 269 species.

We determined the elevation and mean annual rainfall for all study localities (Table A1). Elevation was extracted from a high resolution digital elevation model (Hijmans et al., 2005), and rainfall values were determined using a world climate database (WorldClim, 2014). All study sites are located in a 110m elevational band. The sites are at least 5 km apart and the maximum distance between the two most distant localities is 57 km. All sites occur within the Moist 276 Evergreen Montane Forest vegetation zone and the Warm Temperate 1 and 2 277 climatic regions as described in Ash et al., (2009). There are distinct weather 278 seasons in the region; a wet season from March to mid-September, with peak 279 rains occurring in April and August, and a dry season from September to 280 February. 281

282 2.2 Study Design and Sampling

283 Birds were sampled at all sites using standard mist-netting procedures as described in Karr (1979). Mist-netting is regarded as an effective method for 284 285 sampling understory bird communities, as it can detect species that are cryptic and/or less vocal and is repeatable with few observer biases (Karr, 1981). 286 Sampling took place during the dry season, from December to February, over a 287 three-year time frame, from 2010 to 2012. At each site, we positioned twenty 12 288 x 2.5 m nets within a 1 ha area and at least 50 m from any bordering habitat type. 289 As much as the terrain and vegetation allowed, net placement approximated a 290 291 square of 60 m on each side. We used the same net lanes throughout the three-292 year study period. Each site was sampled at least six times every season, with 293 approximately two weeks between each sampling session. A sampling session 294 consisted of opening the nets half an hour before sunrise and keeping the nets 295 open for six continuous hours. The nets were routinely checked at 30-minute 296 intervals so as to promptly remove, process, and release the birds. To process 297 each bird we identified the species, banded it, took standard measurements, and 298 released it (Redman et al., 2009; Stevenson and Fanshawe, 2002). 299

2.3 Bird Classification

300 301 We classified each bird species using four main criteria: (i) migratory status, (ii) forest dependence, (iii) foraging guild, and (iv) habitat strata association. Bird 302 taxonomy follows Clement's 6th Edition, updated in 2014 (Clements, 2014). 303 304

We first classified each species as either a Palearctic migrant or an Afrotropical resident. We then used the established classification of East African forest birds (Bennun et al., 1996) to create a forest dependence rank. In this work, species are classified as forest specialists (FF), forest generalists (F), and forest visitors (f). For a small number of study species that were not included in Bennun et al., (1996), we followed the authors' methods to classify species, using habitat association information found in Ash et al., (2009), del Hoyo et al., (1992), and Redman et al., (2009).

Bird species' foraging guilds were determined using a dataset containing 312 313 the ecological traits of all of the bird species in the world (hereafter "Birdbase"), 314 as described in Sekercioğlu et al., (2004). This dataset was initially compiled 315 from an extensive literature survey of 248 sources, is updated regularly, and has been used in numerous ecological studies and meta-analyses of bird populations 316 317 (e.g. Bregman et al., 2014; Burivalova et al., 2014; Redding et al., 2015; 318 Sekercioğlu, 2012a). Herein, seven food categories are identified (plant material, 319 seeds, fleshy fruits, nectar, invertebrates, carrion, and vertebrates) and ordered 320 by priority in each species' diet on a ten-point scale to determine primary diet and 321 foraging strategy. The species' first diet choice was used to classify it into one of

305

306 307

308

309

310

the following guilds that were present in our study: frugivore, nectarivore,
granivore, and insectivore. These bird diet classification methods are further
described in Kissling et al. (2011). Consulting the Birdbase, Ash et al., (2009), del
Hoyo et al., (1992), and Redman et al., (2009), we also categorized each
species' occurrence within the understory, midstory, and canopy.

327 Using these categories, we identified two additional groups: understory 328 insectivores, and resident understory insectivores. These groups are composed 329 of species that are insectivorous and consistently frequent the understory, with the latter including only Afrotropical resident species. These groups are of 330 331 particular interest in this study for two main reasons: (i) pan-tropical studies have shown that understory insectivores are highly impacted by forest modifications 332 (e.g. Bregman et al., 2014; Burivalova et al., 2014), making them good indicators 333 of forest health; (ii) understory insectivores have been shown to contribute 334 ecosystem services to coffee farmers in the form of pest-regulation in other 335 regions of the world (Sekercioğlu et al., in press), and may likewise be of 336 economic importance to coffee farmers in Ethiopia. (See Table A2 for a list of 337 338 species along with their classifications included in the analysis.) 339

340 2.4 Data Analysis

341 We made several modifications to the dataset prior to analysis, to account for 342 limitations and potential biases associated with mist net data (Remsen Jr. and Good, 1996) (see Discussion for full treatment of these issues). We removed 343 344 species that do not consistently frequent the understory and species that are not reliably caught in mist nets due to their large size, such as raptors, owls, and 345 ravens (Wang and Finch, 2002; see Table A3 for a list of species and the reason 346 347 they were excluded from the analysis). Individuals were only counted when 348 trapped first (recaptures were excluded from the analysis) to avoid estimation 349 bias from individuals that were recaptured many times (Remsen and Good, 350 1996). Then, all shade coffee sites and forest sites were combined, so as to 351 compare the two major habitat types.

352 Using EstimateS 9.1.0 (Colwell, 2013), we calculated estimated species 353 richness S(est), estimated shared species V(est), and Morisita-Horn sample 354 similarity. We used the Chao1 estimator to calculate S(est) for our species relative abundance data. The Morisita-Horn index was used because it has 355 minimal sample size biases and is useful for large species assemblages with 356 many rarely recorded species, as was the case in our study (Magurran, 1988). 357 Rarefaction and extrapolation curves of S(est) were computed with 95% 358 359 confidence intervals in both habitat types, extrapolating the smaller sample to the 360 number of captures of the larger sample (1,208 individuals), in order to directly compare observed and estimated species richness in both habitats. Using this 361 method, statistically robust extrapolation of samples is possible to directly 362 363 compare sites with different sample sizes, as was the case in our study (Colwell et al., 2012). 364

Shannon's Diversity (H) was compared between forest and shade coffee
by fitting a generalized linear mixed effects model using the package Ime4 in R
(Bates et al., 2008). Average Shannon's Diversity for each one of the 142

368 sampling sessions from the seven sites was used as the response variable, site 369 as the random effect and habitat (shade coffee or forest) as the fixed effect. The 370 frequency of breeding birds was determined for both habitats, using the number 371 of individuals in breeding condition, as evidenced by cloacal protuberance or brood patch, divided by the total number of captures (Ralph and Dunn, 2004). 372 373 The ratio of juvenile to adult birds was then determined. Birds in their first year 374 were classified as juveniles and all birds in their second year or after were 375 classified as adults, with species of undetermined age excluded. Relative abundance was determined from the capture rate (number of birds per net hour), 376 377 an index which controls for differing effort between habitats (Karr, 1982; Newmark, 1991). To compare relative abundance between habitats, we (i) 378 379 identified the capture rate of each individual species and each bird classification category and (ii) divided this by the total capture rate in each habitat respectively. 380 We then ran a chi-square analysis in SPSS 21.0 (IBM Corp., 2012) to test for 381 significant differences in relative abundance between habitats. 382

384 3 Results

383

385 3.1 Bird Captures, Richness and Diversity

A total of 1,692 individuals of 71 species were captured in 18,177 net-hours; 386 387 1,281 individuals were captured in shade coffee and 411 in forest. Nine species were excluded from analysis due to their large body sizes and 11 species were 388 excluded because they do not consistently frequent the understory. After these 389 390 refinements to the dataset were made, 1,605 individuals (94.9% of all individuals captured) of 51 species (71.8% of all species captured) were included in the 391 analysis. All 51 species were captured in shade coffee, while 19 of these were 392 393 caught in forest. Because shade coffee had more land cover, mist netting effort in shade coffee (13,690 net hours) was more than double the effort in forest sites 394 395 (4,487 net hours), while the overall capture rate was identical (0.085 and 0.082 396 birds per net-hour in forest and shade coffee, respectively). Six species had significantly greater relative abundance in forest, as determined from the capture 397 rate: Lemon Dove (Columba larvata), African Hill Babbler (Sylvia abyssinica), 398 399 Abyssinian Ground-thrush (Geokichla piaggiae), Eastern Olive Sunbird (Cyanomitra olivacea), Abyssinian Crimson-wing (Cryptospiza salvadorii) and 400 Green-backed Twinspot (Mandingoa nitidula). Nine species had significantly 401 greater relative abundance in shade coffee: Tambourine Dove (Turtur 402 tympanistria), Yellow-fronted Tinkerbird (Pogoniulus chrysoconus), Willow 403 Warbler (*Phylloscopus trochilus*), Blackcap (*Sylvia atricapilla*), Common 404 405 Chiffchaff (*Phylloscopus* collybita), Broad-ringed White-eye (*Zosterops* 406 poliogastrus), Abyssinian Slaty-Flycatcher (Melaernornis chocolatinus), African Paradise-flycatcher (Terpsiphone viridis), and Tree Pipit (Anthus trivialis). 407 Palearctic migrants were predominantly found in shade coffee, where they were 408 captured nearly twice as frequently. All but one (Blackcap, S. atricapilla) of the 409 nine migratory species were captured only in shade coffee. (See Table A3 for a 410 full list of species included in the analysis with relative abundance values.) 411 412 The sites had estimated understory bird species richness S(est) of 51.00

413 (95% CI [44.49, 57.51]) and 19.25 (95% CI [17.82, 20.67]), for shade coffee and

414 forest, respectively. While sharing an observed 19 species V(obs), estimated 415 shared species Chao V(est) was 20.96. Despite the large difference in species richness between habitats, the Morisita-Horn sample similarity index was 0.728, 416 417 indicative of a high degree of overlap in bird communities. Species rarefaction and extrapolation curves reached a plateau in forest, while shade coffee curves 418 419 had a positive slope indicating that continued sampling in this habitat might have 420 yielded additional species (Figure 2). Analysis of Shannon's Diversity Index 421 showed no significant difference in bird diversity between shade coffee farms and 422 forest (Table A4).

3.2 Community Structure Analysis

While there were no significant differences in overall bird diversity values
between shade coffee and forest, there were differences in the relative
abundance of bird community categories, as determined from the capture rate.

Forest generalists (F) were frequently captured in both habitat types, 428 429 accounting for 58% of captures in shade coffee and 41% of captures in forest. 430 Forest visitors (f) accounted for over one-third of all captures in shade coffee, 431 whereas they were only one-fifth of captures in forest. There was no significant 432 difference in the composition of these 2 groups between habitats, however. 433 Importantly, though, forest specialists (FF) had a greater relative abundance in forest than in shade coffee by a wide margin; they were captured nearly 5 times 434 as frequently in this habitat (χ^2 =9.877, df=1, p=0.001) (Figure 3). 435

436 Four foraging guilds were found in our study: frugivore, granivore, 437 insectivore, and nectarivore. Frugivores had a greater relative abundance in shade coffee (χ^2 =4.670, df=1, p=0.017), whereas granivores had a greater 438 439 relative abundance in forest (χ^2 =18.900, df=1, p<0.001). Nectarivores constituted less than 1% of all captures, with no significant difference between habitats. 440 441 Insectivores were by far the most frequently captured in both habitats, comprising 442 68% of all captures in shade coffee and 64% in forest. There was no significant difference in the overall relative abundance of insectivores between the habitats. 443 However, both understory insectivores (χ^2 =14.195, df=1, p<0.001) and resident 444 understory insectivores (χ^2 =48.392, df=1, p<0.001) had much greater relative 445 abundance in forest. In contrast, shade coffee sites had much greater relative 446 abundance of Palearctic migrants (χ^2 =21.375, df=1, p<0.001) (Figure 3). 447

There was no significant difference in the frequency of breeding birds (as 448 evidenced by cloacal protuberance or brood patch) between forest and shade 449 450 coffee, with 27% of all captures in breeding condition in shade coffee and 23% in 451 forest (χ^2 =2.476, df=1, p=0.065). The species that most frequently showed signs 452 of breeding in shade coffee were Yellow-fronted Tinkerbird (*P. chrysoconus*), 453 Green-backed Camaroptera (Camaroptera brachyura), Broad-ringed White-eye 454 (Z. poliogastrus), and Eastern Olive Sunbird (C. olivacea). The species that most 455 frequently showed signs of breeding in forest were two of the same species, 456 Broad-ringed White-eye (Z. poliogastrus) and Eastern Olive Sunbird (C. olivacea), plus African Hill Babbler (S. abyssinica) and Abyssinian Crimson-wing 457 458 (C. salvadorii). The juvenile to adult ratio was 0.19 in shade coffee and 0.22 in forest, with no significant difference between sites (χ^2 =2.215, df=1, p=0.080). 459

423

University of Utah Institutional Repository Author Manuscript

461 **4. Discussion**

460

462 4.1 Richness and Diversity

463 Results from rarefaction show that shade coffee had over double the species richness of forest. Despite this, the Morisita-Horn Sample Similarity Index 464 465 indicates high community overlap of nearly 73% between the bird communities. 466 There were no significant differences in Shannon's Diversity. Eight of the nine 467 Palearctic migrants in the study were found only in shade coffee. These results are consistent with numerous tropical studies showing that shade coffee farms 468 469 harbor high bird species richness and diversity, and provide important habitat for temperate migrants (Jones and Ramoni-Perazzi, 2002; Komar, 2006; Perfecto et 470 al., 2003; Sherry, 2000). The fact that every species we captured in forest was 471 also captured in shade coffee indicates that forest specialist birds may rely on 472 shade coffee farms in Ethiopia even more than they do in other regions of the 473 474 world. This is supported by the result that shade coffee had no significant difference from forest in the frequency of birds in breeding condition or the ratio 475 of juveniles to adults. We captured several forest specialist birds in breeding 476 condition in shade coffee, indicating that this habitat may provide viable breeding 477 habitat for some forest specialists, including Lemon Dove (C. larvata), Abyssinian 478 479 Ground-thrush (G. piaggiae), Eastern Olive Sunbird (C. olivacea), and Green-480 backed Twinspot (*M. nitidula*). The lack of chemical use in these traditional shade coffee plantations is also likely to contribute to high bird diversity and abundance. 481 482 However, the viability of shade coffee as breeding habitat for forest birds in this region requires further study. It is possible that shade coffee farms serve mainly 483 as stepping stones for forest birds searching for more suitable habitat, or that 484 485 these shade coffee fragments are an ecological trap (Battin, 2004) for forest bird species in a highly fragmented and human-dominated landscape. Long-term 486 487 studies of population dynamics using capture-mark-recapture methods are 488 needed. Nonetheless, the high species richness, diversity, and presence of forest 489 specialist species in organic shade coffee farms in this region are encouraging findings, illustrating the potential importance of shade coffee farms for bird 490 conservation in Africa. 491

493 4.2 Community Structure

494 Considering species richness alone, however, could be misleading when assessing the importance of shade coffee farms and forest for bird conservation. 495 496 Results from community structure analysis show that there are significant 497 differences in the relative abundance of bird species between the two habitats. 498 illustrating the importance of little-disturbed Afromontane forest for particular 499 groups of birds. For example, forest had a much higher relative abundance of 500 forest specialists, understory insectivores, and resident understory insectivores. 501 These results corroborate studies from around the world that have shown that 502 understory insectivores are among the most susceptible of groups to forest disturbance and are often the first species to disappear from altered forests 503 504 (Sekercioğlu et al., 2002; Stouffer and Bierregaard Jr., 1995; Sodhi et al., 2011; Cordeiro et al. This Issue; Paclacky et al. This Issue; Arcilla et al. This Issue). 505

In order to conserve forest specialists and understory insectivores in the long
term, it is necessary to conserve areas of little-disturbed forest in the Afrotropics
as well.

509 With regard to guild structure, insectivores made up a similar proportion of the community in both forest and shade coffee, a result that is unusual 510 511 (Hernandez et al., 2013; Şekercioğlu, 2012a). This may be explained by the fact 512 that coffee is a native crop within our study area and a larger portion of the 513 invertebrate prey base for insectivores may be maintained in shade coffee farms here. A recent study has shown similar incidence of pests on coffee grown in 514 515 contiguous forest and forest fragments in this region of Ethiopia (Samnegård and Hambäck, 2014). Also of note is a higher proportion of granivores in forest than 516 in shade coffee. This is an unusual result, as well, as granivores typically prefer 517 disturbed and open habitats. Two granivorous species captured frequently in 518 forest, Abyssinian Crimson-wing (C. salvadorii) and Green-backed Twinspot (M. 519 nitidula), account for the greater relative abundance of granivores in forest. 520 These two species were among the most commonly captured species in forest, 521 522 accounting for 18% of all captures in this habitat. Unlike many other tropical 523 studies (Şekercioğlu, 2012a), shade coffee farms in our study did not have high 524 numbers of open country granivores. This is an important result, as granivores 525 can be agricultural pests. Frugivores were more common in shade coffee than in 526 forest, a result consistent with pan-tropical findings (Sekercioğlu, 2012a). An 527 increase in frugivores in shade coffee is perhaps the result of selective thinning 528 of the forest in favor of fruiting trees, a frequent practice in agroforests that helps to increase economic production. 529

These results indicate an important difference in overall community 530 531 composition from specialists in forest to generalists in shade coffee. These 532 findings are consistent with previous research (Komar, 2006; Sekercioğlu, 533 2012a). Generalists are more widespread, relatively common, and less 534 threatened than forest specialists (Sekercioğlu, 2012a). Thus, while the high 535 species richness in shade coffee is an encouraging result, the lower relative 536 abundance of forest specialist species in shade coffee is illustrative of the 537 importance of little disturbed forest for many species.

4.3 Caveats

540 Mist netting is regarded as likely the best technique for assessing the relative abundance of tropical understory birds because it can detect species that are 541 cryptic and/or less vocal and is repeatable with few observer biases (Karr, 1982; 542 Newmark, 1991). Nonetheless, there are limitations and potential biases 543 544 associated with mist netting data (Remsen Jr. and Good, 1996). For example, habitat modifications, such as removal of canopy trees and clearing of the 545 understory may alter flight height of species, thereby changing their susceptibility 546 547 to mist-net capture without changing their relative abundance (Arcilla et al, this 548 issue; Remsen Jr. and Good, 1996). We recognize that the number of captures by species is therefore a result, at least in part, of how susceptible a species is to 549 550 be caught by mist nets and of the habitat structure where the nets are placed. 551 We have therefore made extensive efforts in this study to control for these

538

552 potential biases. Accordingly, we restricted our analysis by removing species that 553 do not consistently frequent the understory, and species that are not reliably caught in mist nets due to their large size, such as raptors, owls, and ravens 554 555 (Wang and Finch, 2002). It should therefore be stressed that our results are 556 restricted to interpreting differences in the understory bird community-not the 557 entire bird community-between these habitats. While there was considerable difference in the structure between our shade coffee and forest sites, the average 558 559 canopy tree height at our sites did not differ (Hundera et al, 2013). We also recognize that the three-year time period of our study could affect the relative 560 561 abundance estimates of long-lived versus short-lived species. However, in one of the most rigorous studies of tropical forest bird longevity, results from Korfanta et 562 al. (2004) show that the average life span of forest species in Tanzania's 563 Usambara Mountains is 11.8 years. Taking this into account, we believe that a 3-564 year study period is relatively short compared to the average longevity of tropical 565 forest species. Furthermore, longevity is positively related to body mass in most 566 terrestrial organisms, including birds (Jones et al., 2003; Laurance, 1991), and 567 we have excluded species of large body size from the analysis, which should 568 help minimize any bias in this regard. Lastly, we believe that audio-visually 569 obtained data, such as from point counts (e.g. Aerts et al., 2008), would 570 571 substantially add to our understanding of bird community composition in Afromontane forest and shade coffee sites. Accordingly, a multi-year point count 572 573 study is currently being conducted to improve our understanding of the bird 574 communities in these habitats.

4.4 Agroforests and Conservation

While shade coffee provides important habitat for many bird species, particularly 577 those migrating from temperate regions, it is substantially different from forests 578 579 and likely does not provide suitable habitat for all forest species. As evidenced in 580 our study sites by the work of Hundera et al., (2013), shade coffee farming 581 practices often involve the clearing of much of the diverse understory and midstory of saplings, shrubs, and forbs, as well as the selective removal of large 582 583 canopy trees. Native tree species are often replaced with those of greater economic value, including fruit and timber producers. Importantly, not all 584 agroforests are created equally, and different farming practices can have 585 profound impacts on biodiversity. For example, agroforests with higher percent 586 shade cover and greater shade tree diversity have been shown to host a greater 587 richness and diversity of birds (Clough et al., 2009a). Retaining shade cover and 588 shade tree diversity on coffee farms may help preserve forest specialist birds, as 589 590 well as insectivores and nectarivores, which can in turn benefit crop production (Johnson et al., 2010; Maas et al., 2009; Şekercioğlu, 2012a; Şekercioğlu et al., 591 592 in press). Further research on bird communities on coffee farms with different 593 structural and floral components is needed to evaluate how these factors may 594 impact bird communities.

595 Shade coffee farms may not provide viable habitat for all species found 596 therein. Rather, some species may use these farms as stepping-stones between 597 forest patches. Research globally has shown that "suboptimal" forest habitats,

598 such as agroforests, secondary forest, plantations, and even individual trees can 599 help increase connectivity of forest patches in agricultural landscapes (Berens et al., 2008; Ferraz et al., 2012; Neuschulz et al., 2011; Uezu et al., 2008). 600 601 Research in northern Ethiopia demonstrated that forest restoration sites with suboptimal habitat can help connect forest fragments and also provide suitable 602 habitat for some forest species (Aerts et al., 2008). Similarly, shade coffee farms 603 604 in southwestern Ethiopia may help connect populations of species that rely on 605 forests for breeding. Thus, the location of shade coffee farms may be important in determining their ecological value as links between forest patches. 606 607

4.5 Climate Change Threats

609 Climate change is predicted to have profound impacts on biodiversity (Thomas et al., 2004). It may cause as many as 900 bird extinctions over the next century. 610 with the vast majority expected to occur in the tropics (Sekercioğlu et al., 2012). 611 Tropical montane forest birds are among the most threatened of all bird species 612 from climate change (Wormworth and Sekercioğlu, 2011) because they are often 613 sedentary and have small ranges. Our study took place in and near Ethiopia's 614 615 montane forests, which have a large number of endemic and range-restricted 616 bird species that are expected to experience further range contractions with 617 climate change. The distributions of montane birds in East Africa are predicted to 618 shrink and become more isolated as arid areas expand in the region (Huntley et al., 2006). Human-induced habitat loss is likely to further exacerbate the effects 619 620 of climate change on forest birds by reducing viable habitat and creating barriers to dispersal (Sekercioğlu et al., 2008). In order to preserve forest birds in 621 Ethiopia—and forest biodiversity in general—reserves should incorporate wide 622 623 elevational distributions and have high connectivity (Noss, 2001; Sekercioğlu et al., 2012). Shade coffee farms that are strategically located near forest patches 624 625 may help improve connectivity of forests and help mitigate the predicted 626 extinction crisis. Furthermore, trees help buffer against climate change impacts, 627 by improving water quality, reducing topsoil erosion, and creating microclimates 628 (Bonan, 2008; Sekercioğlu 2010). Encouragingly, there is evidence that 629 Ethiopian farmers recognize these benefits, and are already working to mitigate 630 the effects of climate change on crops by planting trees (Deressa et al., 2009).

Coffee production is also expected to suffer worldwide as a result of 631 climate change. A global model estimates land suitable for growing coffee will 632 decrease by about 50% by 2050 (Bunn et al., 2014). Interestingly, Ethiopia is one 633 of the few locations where the suitability for coffee production is expected to 634 improve. This model shows suitable land for coffee growing in Ethiopia shifting 635 636 upwards with climate change, from rugged hillsides to the extensive highland 637 plateaus. This scenario presents Ethiopia with a unique opportunity: by investing in shade coffee farming now, it may position itself to control a larger share of the 638 639 lucrative coffee market in the future, while helping to mitigate the local effects of 640 climate change by planting trees, and simultaneously benefiting the countries rich biodiversity by increasing connectivity of native forests. However, in order to 641 642 conserve biodiversity, it is also imperative to preserve remaining forest patches 643 with minimal human disturbance.

4.6 Avian Ecosystem Services and "Shade Grown Coffee" Certification

Approximately half of the global human population relies on subsistence or small-646 647 scale farming (Donald, 2004). Therefore, changes in ecological processes and ecosystem services can have profound impacts on human livelihood and 648 649 wellbeing (Şekercioğlu 2010). With a per-capita GDP of \$374 USD in 2011 650 (World Bank, 2012b), Ethiopia is one of the most impoverished nations on Earth. 651 However, it has tremendous opportunities for sustainable development based on its high biological diversity, abundant natural resources, and potential for 652 653 ecotourism. Shade coffee farming with high canopy cover and shade tree diversity have the potential to benefit not only the local ecology and biodiversity, 654 655 but also the economy.

Birds provide valuable ecosystem services in agricultural areas, including 656 pollination, predation of pests, seed dispersal, and ecosystem engineering 657 (Şekercioğlu, 2006a, 2006b; Wenny et al., 2011; Şekercioğlu et al., in press). In 658 the Neotropics, birds have been shown to provide economically valuable services 659 to coffee farmers in the form of pest control (Clough et al., 2009b; Dietsch et al., 660 2007; Greenberg et al., 2000a, 2000b; Johnson et al., 2010; Perfecto et al., 661 2004; Şekercioğlu, 2006a, 2006b; Van Bael et al., 2008). For example, a study in 662 663 Jamaica concluded that pest reduction by birds economically benefited coffee farmers by \$310 USD per hectare (Johnson et al., 2010). Investigating avian 664 usage of and pest-regulating services in African shade coffee farms is a high 665 666 priority, in order to compare with extensive findings from other regions of the world (Komar, 2006). Our results show that shade coffee farms in southwestern 667 Ethiopia harbor a diverse and abundant insectivorous bird community. This is an 668 669 important finding with implications for pest regulation on shade coffee farms. Fifteen coffee insect pests have been documented in the vicinity of our study, 670 671 including the Coffee Berry Borer (Hypothemus hampei) and Coffee Berry Moth (Prophantis smaragdina), which can drastically damage coffee crops (Abedeta et 672 al., 2014). Indeed, average Coffee Berry Moth incidence on coffee berries in the 673 region was documented at 24.5%, with peak incidence of over 60% in some 674 675 seasons (Mendesil and Tesfave, 2009). Coffee Berry Borer is similarly ubiquitous in the region (Mendesil, 2004). This high prevalence of coffee pests implies that 676 there may be large benefits from avian insectivory on shade coffee farms in 677 Ethiopia. One study within the region documented similar pest infestation rates 678 between shade coffee grown in contiguous forest and forest patches 679 680 (Samnegård and Hambäck, 2014), however there is need for further investigation of the frequency of pest infestation and avian pest regulation in differing habitats 681 682 where coffee is grown.

To our knowledge, our study documents the only known location in the world where all forest understory bird species recorded in primary forest control sites were also recorded in shade coffee sites (e.g. Wunderle Jr. and Latta, 1996; Tejeda-Cruz and Sutherland, 2004; Philpott et al., 2008; Waltert et al., 2005; Aguilar-Ortiz, 1982). This is not altogether surprising, because coffee is native to our study region, whereas most studies of bird communities on coffee farms have occurred in the Neotropics, where coffee is an exotic crop. However, there is 690 almost no awareness of this in the global "biodiversity friendly" coffee market. 691 Certifying, publicizing and marketing Ethiopian coffee as "shade-grown" and "bird 692 friendly" has the potential to increase incomes of local coffee farmers and provide 693 them a major financial incentive to maintain traditional shade coffee farms 694 instead of converting them into sun coffee plantations that are poor for 695 biodiversity conservation. Farms in Ethiopia that have "shade grown" certification 696 may receive as much as 15-20% more revenue per unit of crop (Takahashi and 697 Todo, 2013). Furthermore, shade coffee is widely regarded to be of superior quality to sun coffee, and is thus more valuable. These factors should be a 698 699 significant consideration for local farmers in developing countries attempting to 700 maximize profits (Philpott and Dietsch, 2003). 701

5. Conclusions

703 In studies around the world, shade coffee has been shown to support high bird species richness, albeit with fewer forest specialist species, particularly 704 understory insectivores. Our results corroborate these findings. Shade coffee 705 706 farms in southwestern Ethiopia had over double the species richness of nearby 707 primary forest, while there was a much higher relative abundance of forest 708 specialists, understory insectivores and Afrotropical-resident understory 709 insectivores in primary forest. These groups are among the most extinction-prone 710 of birds globally. There were also some results that contrast with most global 711 findings: (i) there was no difference in the relative abundance of all insectivores 712 between the two habitats, and (ii) there was a greater relative abundance of 713 granivores in primary forest. Our results support the consensus that shade coffee 714 farms are an important habitat for forest bird conservation in the tropics. 715 However, differences in the relative abundance of species in shade coffee and forest habitats indicate that intact forest must also be conserved in order to 716 717 mitigate declines in forest specialist birds. Conserving all types of forested habitat 718 is increasingly important for biodiversity conservation in the tropics (Gibson et al., 719 2011; Hernandez et al., 2013).

Humans can benefit in turn from conservation of forests and bird 720 721 communities. Shade coffee farmers can benefit from valuable ecosystem services provided by forest bird communities, such as pollination and insect 722 723 regulation. These benefits can be economically significant, and may help 724 contribute to poverty alleviation in Ethiopia—one of the poorest countries in the 725 world. Shade coffee farms located near forest and those that maintain high levels of canopy cover and native tree diversity are particularly likely to benefit from 726 727 avian ecosystem services. Our results imply that Ethiopian shade coffee is 728 among the most "bird friendly" in the world. By promoting, certifying, and 729 marketing shade coffee. Ethiopia has the potential to substantially increase 730 revenue, while simultaneously helping conserve biodiversity. 731

732733 Acknowledgements

734 This research was supported by the USA National Science Foundation, VLIR

735 IUC-JU Programme, University of Utah Global Change and Sustainability Center,

736 the Christensen Fund and National Geographic Society. Fieldwork was a 737 collaboration of the University of Utah, Ghent University, Jimma University, and 738 the Ethiopia Wildlife Conservation Authority. Nils Bunnefeld assisted with data 739 analysis. We are grateful to Khalifa Ali, Abdu Ibrahim, Ian Lees, and Sisay Sayfu 740 for their dedicated field assistance and to the people of Ethiopia for their 741 kindness, friendship and hospitality. We thank Boka Asefa and Dr. Diriba Muleta 742 of the VLIR IUC-JU Programme at Jimma University for their constant help. We 743 also thank our colleagues and friends at the Ethiopian Wildlife and Natural History Society for their support, advice, and friendship through the years. 744 745

747 References

- Abedeta, C., Getu, E., Seyoum, E., Hindorf, H. 2014. Coffee berry insect pests
 and their parasitoids in the Afromontane rainforests of southwestern
 Ethiopia. East African J. Sci. 5, 41–50.
- Aerts, R., Berecha, G., Gijbels, P., Hundera, K., Glabeke, S., Vandepitte, K.,
 Muys, B., Roldán-Ruiz, I., Honnay, O. 2013. Genetic variation and risks of
 introgression in the wild Coffea arabica gene pool in south-western Ethiopian
 montane rainforests. Evol. Appl. 6, 243–52.
- Aerts, R., Hundera, K., Berecha, G., Gijbels, P., Baeten, M., Van Mechelen, M.,
 Hermy, M., Muys, B., Honnay, O. 2011. Semi-forest coffee cultivation and
 the conservation of Ethiopian Afromontane rainforest fragments. For. Ecol.
 Manage. 261, 1034–1041.
- Aerts, R., Lerouge, F., November, E., Lens, L., Hermy, M., Muys, B. 2008. Land
 rehabilitation and the conservation of birds in a degraded Afromontane
 landscape in northern Ethiopia. Biodivers. Conserv. 17, 53–69.
- Aguilar-Ortiz, F. 1982. Estudio ecológico de las aves del cafetal. Pages 103-127
 in E. Jimenez-Avila and A. Gomez-Pompa, editors. Estudios ecológicos en el sistema cafetalero. Instituto Nacional de Investigaciones sobre Recursos Bioticos, Xalapa, Veracruz, Mexico.
- Anjos, L., C. Collins, R. Holt, G. Volpato, E. Lopes, G. Bochio This Issue. Can
 habitat specialization patterns of Neotropical birds highlight vulnerable areas
 for conservation in the Atlantic rainforest, southern Brazil? Biol. Conserv.
- Anthony, F., Bertrand, B., Quiros, O. 2001. Genetic diversity of wild coffee
 (Coffea arabica L.) using molecular markers. Euphytica 118, 53–65.
- Anthony, F., Combes, M., Astorga, C. 2002. The origin of cultivated Coffea
 arabica L. varieties revealed by AFLP and SSR markers. Theor. Appl.
 Genet. 104, 894–900.

774 775 776	Arcilla, N., Holbech, L., Kolani, Z. <u>This issue</u> . Recent declines of Upper Guinea forest understory birds as indicators of unsustainable logging and illegal forest exploitation in Ghana, West Africa. Biol. Conserv.
777 778	Ash, J., Atkins, J., Ash, C.P. 2009. Birds of Ethiopia and Eritrea: an atlas of distribution. A & C Black.
779	Bates, D., Maechler, M., Dai, B. 2008. The Ime4 package.
780 781	Battin, J. 2004. When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491.
782 783	Bekele, M. 2011. Forest plantations and woodlots in Ethiopia: a platform for stakeholders in African forestry. African For. Forum 1.
784 785 786	Bengtsson, J., Ahnström, J., Weibull, AC. 2005. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J. Appl. Ecol. 42, 261–269.
787 788	Bennun, L., Dranzoa, C., Pomeroy, D. 1996. The Forest Birds of Kenya and Uganda. J. East African Nat. Hist. 85, 23–48.
789 790	Berens, D.G., Farwig, N., Schaab, G., Bohning-Gaese, K. 2008. Exotic guavas are foci of forest regeneration in Kenyan farmland. Biotropica 40, 104–112.
791 792	BirdLife International 2014. Birdlife Data Zone [WWW Document]. URL http://www.birdlife.org/datazone/home (accessed 3.19.14).
793 794	Bonan, G. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 320, 1444–1449.
795 796 797	Brashares, J., Arcese, P., Sam, M.K. 2001. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. Biol. Sci. 268, 2473–2478.
798 799 800	Bregman, T.P., Şekercioğlu, Ç.H., Tobias, J.A. 2014. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biol. Conserv. 169, 372–383.
801 802	Brooks, T., Pimm, S., Oyugi, J. 1999. Time lag between deforestation and bird extinction in tropical forest fragments. Conserv. Biol. 13, 1140–1150.
803 804 805	Bunn, C., L\u00e4derach, P., Ovalle Rivera, O., & Kirschke, D. 2014. A bitter cup: climate change profile of global production of Arabica and Robusta coffee. <i>Climatic Change</i> . 1-13.

806 Burivalova, Z., Şekercioğlu, Ç.H., Koh, L.P. 2014. Thresholds of logging intensity 807 to maintain tropical forest biodiversity. Curr. Biol. 24: 1893-1898. 808 Campbell, J. 1991. Land or peasants?: the dilemma confronting Ethiopia resource conservation. Afr. Aff. 90, 5-21. 809 Chapin, F., Sala, O., Burke, I., Grime, J. 1998. Ecosystem consequences of 810 changing biodiversity. Bioscience 45–52. 811 Clements, J.F. 2014. The Clements Checklist of Birds of the World. 6th Edition. 812 813 Updated 2014. Cornell Laboratory of Ornithology, Cornell University Press, 814 Ithaca. Clough, Y., Dwi Putra, D., Pitopang, R., Tscharntke, T. 2009a. Local and 815 landscape factors determine functional bird diversity in Indonesian cacao 816 agroforestry. Biol. Conserv. 142, 1032-1041. 817 Clough, Y., Faust, H., Tscharntke, T. 2009b. Cacao boom and bust: sustainability 818 of agroforests and opportunities for biodiversity conservation. Conserv. Lett. 819 820 2, 197–205. Colwell, R., Chao, A., Gotelli, N. 2012. Models and estimators linking individual-821 based and sample-based rarefaction, extrapolation and comparison of 822 823 assemblages. J. Plant Ecol. 5, 3-21. Colwell, R.K. 2013. EstimateS: Biodiversity Estimation Software. 824 Conservation International 2013. The Biodiversity Hotspots - Conservation 825 826 International [WWW Document]. www.conservation.org. URL http://www.conservation.org/where/priority_areas/hotspots/Pages/hotspots_ 827 main.aspx (accessed 12.12.13). 828 Conservation International 2014. Conservation International: Eastern 829 830 Afromontane Biodiversity Hotspot [WWW Document]. URL http://www.conservation.org/where/priority areas/hotspots/africa/Eastern-831 832 Afromontane/Pages/default.aspx (accessed 3.1.14). 833 Cordeiro, N.J., Borghesio, L., Joho, M.P., Monoski, T.J., Mkongewa, V.J., Dampf, C.J., This Issue. Forest fragmentation in an African biodiversity hotspot impacts mixed-834 835 species bird flocks. Biol. Conserv. Del Hoyo, J., Elliott, A., Sargatal, J., Cabot, J. 1992-2013. Handbook of the Birds 836 837 of the World. Lynx Edicions, Barcelona.

838 839 840	Deressa, T.T., Hassan, R.M., Ringler, C., Alemu, T., Yesuf, M. 2009. Determinants of farmers' choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 19, 248–255.
841 842 843	Dietsch, T. V., Perfecto, I., Greenberg, R. 2007. Avian foraging behavior in two different types of coffee agroecosystem in Chiapas, Mexico. Biotropica 39, 232–240.
844 845	Dirzo, R., Raven, P. 2003. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167.
846 847	Donald, P. 2004. Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18, 17–37.
848 849	FAO 2010. Global Forest Resources Assessment 2010: Main Report. Food and Agriculture Organization of the United Nations.
850 851 852 853	Ferraz, K., De Barros, M.P.M., De Siqueira, M.F., Alexandrino, E.R., Da Luz, D.T.A., Do Couto, H.T.Z. 2012. Environmental suitability of a highly fragmented and heterogeneous landscape for forest bird species in south-eastern Brazil. Environ. Conserv. 39, 316–324.
854 855	Fischer, J., Lindenmayer, D. 2007. Landscape modification and habitat fragmentation: a synthesis. Glob. Ecol. Biogeogr. 16, 265–280.
856 857	Gibson et al. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381.
858 859 860	Gole, T.W., Borsch, T., Denich, M., Teketay, D. 2008. Floristic composition and environmental factors characterizing coffee forests in southwest Ethiopia. For. Ecol. Manage. 255, 2138–2150.
861 862 863	Gove, A.D., Hylander, K., Nemomisa, S., Shimelis, A. 2008. Ethiopian coffee cultivation-implications for bird conservation and environmental certification. Conserv. Lett. 1, 208–216.
864 865 866	Graham, C.H.C. 2001. Factors influencing movement patterns of keel-billed toucans in a fragmented tropical landscape in southern Mexico. Conserv. Biol. 15, 1789–1798.
867 868 869	Greenberg, R., Bichier, P., Angon, A. 2000a. The impact of avian insectivory on arthropods and leaf damage in some Guatemalan coffee plantations. Ecology 81(6), 1750–1755.

- Greenberg, R., Bichier, P., Angon, A.C. 2000b. The conservation value for birds
 of cacao plantations with diverse planted shade in Tabasco, Mexico. Anim.
 Conserv. 3, 105–112.
- Greenberg, R., Bichier, P., Sterling, J. 1997. Bird populations in rustic and
 planted shade coffee plantations of eastern Chiapas, Mexico. Biotropica 29,
 501–514.
- Greenberg, R., Perfecto, I., Philpott, S. 2008. Agroforests as model systems for
 tropical ecology. Ecology 89, 913–914.
- Heine, J., Speir, T. 1989. Ornithogenic soils of the Cape Bird Adelie penguin
 rookeries, Antarctica. Polar Biol. 2, 199–205.
- Hernandez, S.M., Mattsson, B.J., Peters, V.E., Cooper, R.J., Carroll, C.R. 2013.
 Coffee agroforests remain beneficial for neotropical bird community
 conservation across seasons. PLoS One 8, e65101.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. 2005. Very high
 resolution interpolated climate surfaces for global land areas. Int. J. Climatol.
 25, 1965–1978.
- Hundera, K., Aerts, R., Fontaine, A., Van Mechelen, M., Gijbels, P., Honnay, O.,
 Muys, B. 2013. Effects of coffee management intensity on composition,
 structure, and regeneration status of Ethiopian Moist Evergreen
 Afromontane forests. Environ. Manage. 51, 801–9.
- Hurni, H. 1988. Degradation and conservation of the resources in the Ethiopian
 Highlands. Mt. Res. Dev. 8, 123–130.
- 892 IBM Corp. 2012. SPSS Statistical Software, Version 21.0.
- ICO 2012a. International Coffee Organization World Coffee Trade [WWW
 Document]. URL http://www.ico.org/countries/ethiopia.pdf (accessed
 10.12.13).
- ICO 2012b. International Coffee Organization: Ethiopia coffee fact sheet [WWW
 Document]. URL http://www.ico.org/countries/ethiopia.pdf (accessed
 10.12.13).
- Johnson, M.D., Kellermann, J.L., Stercho, a. M. 2010. Pest reduction services by
 birds in shade and sun coffee in Jamaica. Anim. Conserv. 13, 140–147.
- Jones, J., Ramoni-Perazzi, P. 2002. Species composition of bird communities in
 shade coffee plantations in the Venezuelan Andes. Ornitol. Neotrop. 397–
 412.

904 905	Jones, K., Purvis, A., Gittleman, J. 2003. Biological correlates of extinction risk in bats. Am. Nat. 16, 601–614.
906 907	Karr, J. 1979. On the use of mist nets in the study of bird communities. Inl. Bird Band. 51, 1–10.
908	Karr, J. 1981. Surveying birds with mist nets. Stud. Avian Biol. 6, 62–67.
909 910	Karr, J.R. 1982. Population variability and extinction in the avifauna of a tropical land bridge island. Ecology 63, 1975–1978.
911 912 913	Kellermann, J.L., Johnson, M.D., Stercho, A.M., Hackett, S.C. 2008. Ecological and economic services provided by birds on Jamaican Blue Mountain coffee farms. Conserv. Biol. 22, 1177–85.
914 915 916	Kissling, W., Şekercioğlu, Ç.H., Jetz, W. 2011. Bird dietary guild richness across latitudes, environments and biogeographic regions. Glob. Ecol. Biogeogr. 21, 328–340.
917 918	Komar, O. 2006. Ecology and conservation of birds in coffee plantations: a critical review. Bird Conserv. Int. 16, 1.
919 920 921	Korfanta, N., Newmark, W., Kauffman, M. 2004. Long-term demographic consequences of habitat fragmentation to a tropical understory bird community. Ecology 93, 2548–2559.
922 923 924 925	Küper, W., Sommer, J.H., Lovett, J.C., Mutke, J., Linder, H.P., Beentje, H.J., Rompaey, R.S.A.R. Van, Chatelain, C., Sosef, M., Barthlott, W. 2004. Africa's hotspots of biodiversity redefined. Ann. Missouri Bot. Gard. 91, 525– 535.
926 927 928	Labouisse, JP., Bellachew, B., Kotecha, S., Bertrand, B. 2008. Current status of coffee (Coffea arabica L.) genetic resources in Ethiopia: implications for conservation. Genet. Resour. Crop Evol. 55, 1079–1093.
929 930	Laurance, W. 1991. Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv. Biol. 5, 79–89.
931 932 933	Laurance, W., Bierregaard, R. 1997. Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago Press.
934 935	Lees, A., Peres, C. 2006. Rapid avifaunal collapse along the Amazonian deforestation frontier. Biol. Conserv. 133, 198–211.
936	Leica Geosystems 2004. ERDAS Imagine Software.

937 Lens, L., Dongen, S. Van, Norris, K., Githiru, M., Matthysen, E. 2002. Avian 938 persistence in fragmented rainforest. Science. 298(5596), 1236–1238. 939 Maas, B., Putra, D.D., Waltert, M., Clough, Y., Tscharntke, T., Schulze, C.H. 940 2009. Six years of habitat modification in a tropical rainforest margin of Indonesia do not affect bird diversity but endemic forest species. Biol. 941 Conserv. 142, 2665-2671. 942 Magurran, A.E. 1988. Ecological Diversity and Its Measurement. Croom Helm 943 944 Ltd. Mendesil, E. 2004. Population dynamics and distribution of the coffee berry 945 borer, hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) on Coffea 946 947 arabica L. in Southwestern Ethiopia. SINET Ethiop. J. Sci. 27, 127–134. Mendesil, E., Tesfave, A. 2009. The influence of weather on the seasonal 948 incidence of coffee berry moth, Prophantis smaragdina(Butler). J. Asia. Pac. 949 950 Entomol. 12, 203–205. 951 Neuschulz, E.L., Botzat, A., Farwig, N. 2011. Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in 952 953 South Africa. Oikos 120, 1371–1379. Newmark, W.D. 1991. Tropical forest fragmentation and the local extinction of 954 understory birds in the Eastern Usambara Mountains, Tanzania. Conserv. 955 Biol. 5, 67-78. 956 Norris, K. 2008. Agriculture and biodiversity conservation: opportunity knocks. 957 958 Conserv. Lett. 1, 2–11. Noss, R.F. 2001. Beyond Kyoto: Forest Management in a Time of Rapid Climate 959 Change. Conserv. Biol. 15, 578-590. 960 961 O'Brien, T.T., Kinnaird, M.M. 2003. Caffeine and conservation. Science. 962 300(5619), 587. Pavlacky, D.C., Possingham, H.P., Goldizen, A.W., 2014. Integrating life history 963 964 traits and forest structure to evaluate the vulnerability of rainforest birds along gradients of deforestation and fragmentation in eastern Australia. Biol. 965 Conserv. 966 Perfecto, I., Mas, A., Dietsch, T., Vandermeer, J. 2003. Conservation of 967

biodiversity in coffee agroecosystems: a tri-taxa comparison in southern
 Mexico. Biodivers. Conserv. 12, 1239–1252.

970	Perfecto, I., Rice, R.A.R., Greenberg, R., Voort, M. Van der, van der Voort, M.E.
971	1996. Shade coffee: a disappearing refuge for biodiversity. Bioscience 46,
972	598–608.
973 974 975	Perfecto, I., Vandermeer, J. 2008. Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann. N. Y. Acad. Sci. 1134, 173–200.
976 977	Perfecto, I., Vandermeer, J., Bautista, G., 2004. Greater predation in shaded coffee farms: the role of resident neotropical birds. Ecology 85, 2677–2681.
978	 Philpott, S. M., Arendt, W. J., Armbrecht, I., Bichier, P., Diestch, T. V, Gordon, C.,
979	Greenberg, R., Perfecto, I., Reynoso-Santos, R., Soto-Pinto, L., Tejeda-
980	Cruz, C. Williams-Linera, G., Valenzuela, J., Zolotoff, J. M. 2008.
981	Biodiversity loss in Latin American coffee landscapes: review of the
982	evidence on ants, birds, and trees. Conserv. Biol. 5, 1093–1105.
983 984	Philpott, S.M., Dietsch, T. 2003. Coffee and Conservation: a global context and the value of farmer involvement. Conserv. Biol. 17, 1844–1846.
985 986	Pimentel, D., Stachow, U., Takacs, D. 1992. Conserving biological diversity in agricultural/forestry systems. Bioscience 354–362.
987	Pimm, S., Raven, P., Peterson, A., Şekercioğlu, Ç.H., Ehrlich, P.R. 2006. Human
988	impacts on the rates of recent, present, and future bird extinctions. Proc.
989	Natl. Acad. Sci. U. S. A. 103, 10941–10946.
990 991 992	Pollock, H.S., Cheviron, Z. a., Agin, T.J., Brawn, J.D., 2014. Absence of microclimate selectivity in insectivorous birds of the Neotropical forest understory. Biol. Conserv.
993	Railsback, S. F., & Johnson, M. D. 2014. Effects of land use on bird populations
994	and pest control services on coffee farms. Proc. Natl. Acad. Sci. U. S. A.
995	111, 6109–6114.
996	Ralph, C., Dunn, E. 2004. Monitoring bird populations using mist nets. Cooper
997	Ornithological Society.
998	Redding, D. W., Mooers, A. O., Şekercioğlu, Ç. H., Collen, B. 2015. Global
999	evolutionary isolation measures can capture key local conservation species
1000	in Nearctic and Neotropical bird communities. <i>Proceedings of the Royal</i>
1001	<i>Society B: Biological Sciences</i> 370. In press.
1002	Redman, N., Stevenson, T., Fanshawe, J. 2009. Birds of the Horn of Africa:
1003	Ethiopia, Eritrea, Djibouti, Somalia, and Socotra (Princeton Field Guides).
1004	Princeton University Press.

1005 1006	Remsen Jr., J., Good, D. 1996. Misuse of data from mist-net captures to assess relative abundance in bird populations. Auk 381–398.
1007	Rosenzweig, M. 2003. Reconciliation ecology and the future of species diversity.
1008	Oryx 37, 194–205.
1009 1010 1011	Samnegård, U., Hambäck, P. 2014. Local and regional variation in local frequency of multiple coffee pests across a mosaic landscape in Coffea arabica's native range. Biotropica 46, 276–284.
1012	Scholes, R., Kuper, W., Biggs, R. 2006. Biodiversity, in: Africa Environment
1013	Outlook 2: Our Enviornment, Our Wealth. pp. 226–261.
1014	Şekercioğlu, Ç.H. 2006a. Increasing awareness of avian ecological function.
1015	Trends Ecol. Evol. 21, 464–71.
1016	Şekercioğlu, Ç.H. 2006b. Ecological significance of bird populations, in:
1017	Handbook of the Birds of the World. pp. 15–51.
1018	Şekercioğlu, Ç.H. 2010. Ecosystem functions and services. Pp. 45-72 in
1019	Conservation Biology for All. Sodhi, N.S. and Ehrlich, P.R. (Eds.). Oxford
1020	University Press. Oxford.
1021 1022	Şekercioğlu, Ç.H. 2011. Functional extinctions of bird pollinators cause plant declines. Science. 331(6020), 1019–20.
1023	Şekercioğlu, Ç.H. 2012a. Bird functional diversity and ecosystem services in
1024	tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–
1025	161.
1026 1027 1028	Şekercioğlu, Ç.H. 2012b. Promoting community-based bird monitoring in the tropics: conservation, research, environmental education, capacity-building, and local incomes. Biol. Conserv. 151, 69–73.
1029 1030	Şekercioğlu, Ç.H., Daily, G.C., Ehrlich, P.R. 2004. Ecosystem consequences of bird declines. Proc. Natl. Acad. Sci. U. S. A. 101, 18042–18047.
1031	Şekercioğlu, Ç.H., Ehrlich, P.R., Daily, G.C., Aygen, D., Goehring, D., Sandi,
1032	R.F. 2002. Disappearance of insectivorous birds from tropical forest
1033	fragments. Proc. Natl. Acad. Sci. U. S. A. 99, 263–267.
1034 1035	Şekercioğlu, Ç.H., Primack, R.B., Wormworth, J. 2012. The effects of climate change on tropical birds. Biol. Conserv. 148, 1–18.
1036 1037	Şekercioğlu, Ç.H., Schneider, S., Fay, J., Loarie, S. 2008. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150.

- Sekercioğlu, Ç.H., Wenny, D. and Whelan, C.J. (Eds.). In press. *Why Birds Matter*.
 University of Chicago Press. Chicago.
- Sherry, T. 2000. Shade coffee: a good brew even in small doses. Auk 117, 563–568.
- Sigel, B.J., Sherry, T.W., Young, B.E. 2006. Avian community response to
 lowland tropical rainforest isolation: 40 years of change at La Selva
 Biological Station, Costa Rica. Conserv. Biol. 20, 111–21.
- Sodhi, N., Koh, L., Brook, B., Ng, P. 2004. Southeast Asian biodiversity: an
 impending disaster. Trends Ecol. Evol. 19, 654–660.
- Sodhi, N. S., Şekercioğlu, Ç.H., Barlow, J., Robinson, S. K. 2011. Conservation
 of tropical birds. John Wiley & Sons.

Stevenson, T., Fanshawe, J. 2002. The Birds of East Africa: Kenya, Tanzania,
Uganda, Rwanda, Burundi (Princeton Field Guides). Princeton University
Press.

- Stouffer, P., Bierregaard Jr., R.O. 1995. Use of Amazonian forest fragments by
 understory insectivorous birds. Ecology 76, 2429–2445.
- Stratford, J. A., Stouffer, P.C. 1999. Local extinctions of terrestrial insectivorous
 birds in a fragmented landscape near Manaus, Brazil. Conserv. Biol. 13,
 1416–1423.
- Takahashi, R., Todo, Y. 2013. Impact of a shade coffee certification program on
 forest conservation: a case study from a wild coffee forest in Ethiopia. J.
 Environ. Manage. 130, 48–54.
- Tejeda-Cruz, C., & Sutherland, W. J. 2004. Bird responses to shade coffee
 production. Anim. Cons., 2, 169–179.
- Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J.,
 Collingham, Y.C., Erasmus, B.F.N., De Siqueira, M.F., Grainger, A.,
 Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F.,
 Miles, L., Ortega-Huerta, M. a, Peterson, a T., Phillips, O.L., Williams, S.E.
 2004. Extinction risk from climate change. Nature 427, 145–8.
- Tilman, D., Fargione, J., Wolff, B., D'Antonio, C. 2001. Forecasting agriculturally
 driven global environmental change. Science. 292(5515), 281–284.
- Tobias, J., Şekercioğlu, Ç.H., Vargas, H. 2013. Bird conservation in tropical
 ecosystems: a review of challenges and opportunities. Pp. 258-276 in *Key*

1071 1072	<i>Topics in Conservation Biology</i> . MacDonald, D. (Ed.). Wiley-Blackwell. Oxford.
1073 1074 1075	Tscharntke, T., Klein, A. 2005. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874.
1076 1077	Turner, I. 1996. Species loss in fragments of tropical rain forest: a review of the evidence. J. Appl. Ecol. 200–209.
1078 1079 1080	Uezu, A., Beyer, D.D., Metzger, J.P. 2008. Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodivers. Conserv. 17, 1907–1922.
1081 1082 1083	United Nations 2012. UNdata: Country Profile: Ethiopia [WWW Document]. URL http://data.un.org/CountryProfile.aspx?crName=Ethiopia (accessed 10.13.12).
1084 1085 1086	Van Bael, S.A., Bichier, P., Ochoa, I., Greenberg, R. 2007. Bird diversity in cacao farms and forest fragments of western Panama. Biodivers. Conserv. 16, 2245–2256.
1087 1088 1089	Van Bael, S.A., Philpott, S.M., Greenberg, R., Bichier, P., Barber, N. a, Mooney, K. a, Gruner, D.S. 2008. Birds as predators in tropical agroforestry systems. Ecology 89, 928–34.
1090 1091	Vitousek, P., Mooney, H., Lubchenco, J., Melillo, J. 1997. Human domination of Earth's ecosystems. Science. 277(5325), 494–499.
1092 1093	Waltert, M., Bobo, K., & Sainge, N. 2005. From forest to farmland: habitat effects on Afrotropical forest bird diversity. Ecol. Appl. 4, 1351–1366.
1094 1095 1096	Wang, Y., Finch, D. 2002. Consistency of mist netting and point counts in assessing landbird species richness and relative abundance during migration. Condor 104, 59–72.
1097 1098 1099	Wenny, D.G., Devault, T.L., Johnson, M.D., Kelly, D., Şekercioğlu, Ç.H., Tomback, D.F., Whelan, C.J. 2011. The need to quantify ecosystem services provided by birds. Auk 128, 1–14.
1100 1101 1102	World Bank 2012a. Agricultural land (% of land area) [WWW Document]. URL http://data.worldbank.org/indicator/AG.LND.AGRI.ZS/countries?display=grap h (accessed 10.12.12).
1103 1104	World Bank 2012b. GDP per capita (current US\$) [WWW Document]. URL http://data.worldbank.org/indicator/NY.GDP.PCAP.CD?order=wbapi_data_v

- 1105alue_2011+wbapi_data_value+wbapi_data_value-last&sort=asc (accessed110610.12.12).
- World Bank 2013. World Development Indicators | The World Bank [WWW
 Document]. URL http://wdi.worldbank.org/table/3.2 (accessed 6.1.14).
- WorldClim 2014. Global Climate Data [WWW Document]. URL
 http://www.worldclim.org/ (accessed 3.30.14).
- Wormworth, J., Şekercioğlu, Ç.H. 2011. Winged Sentinels: Birds and Climate
 Change. Cambridge University Press, Cambridge.
- Wunderle Jr., J., & Latta, S. 1996. Avian abundance in sun and shade coffee
 plantations and remnant pine forest in the Cordillera Central, Dominican
 Republic. *Ornitología Neotropical* 7, 19–34.

1117

1118

1119 Figures:

- **Figure 1.** Location of four shade coffee farms (+) and three moist evergreen
- 1121 Afromontane forest sites (\bigstar) where mist netting took place in southwestern
- 1122 Ethiopia. The map shows regional forest cover from a 30 m resolution LandSat
- image (WorldClim.org, 2014) and classified using ERDAS Imagine Software
- 1124 (Leica Geosystems, 2004).

1126 1127

Figure 2. Observed and extrapolated bird species accumulation curves (S(est)) 1128 with 95% confidence intervals (CI) for shade coffee farms and moist evergreen 1129 Afromontane forest sites in southwestern Ethiopia. 1130

1132

1135 Figure 3. Summary of the differences in bird relative abundance between shade coffee farms and moist evergreen Afromontane forest sites in southwestern 1136 1137 Ethiopia. Bars illustrate the relative abundance of each bird classification category, calculated as the capture rate (# of birds/net hour) in each habitat 1138 1139 divided by the total capture rate. Asterisks indicate significant differences in the 1140 relative abundance of a category between habitats at the p<.05 (*), p<.01 (**), 1141 and p<.001 (***) levels, based on chi-square analysis. Nectarivores were not included in the figure because they accounted for only a fraction of a percent of 1142 1143 all captures. 1144

1147 1148

1145 1146

1149

Appendices:

Figure A1. The Ethiopian highlands account for more than 50% of the Eastern
Afromontane eco-region, as indicated in orange. Image courtesy of Conservation
International (2014).

1157 Table A1. Characteristics of four shade coffee and three moist evergreen 1158 Afromontane forest mist-netting sites in southwestern Ethiopia. Location was 1159 acquired from a handheld GPS on site, elevation was extracted from a high 1160 resolution digital elevation model (Hijmans et al., 2005), and rainfall values were 1161 determined using a world climate database (WorldClim, 2014).

1162 1163

1155 1156

Site	Habitat	Latitude	Longitude	Elevation (m)	Rainfall (mm)
Eladale	Shade Coffee	7.70363	36.80863	2062	1811
Fetche	Shade Coffee	7.71753	36.75606	2043	1815
Garuke	Shade Coffee	7.74667	36.73917	2060	1834
Yebu	Shade Coffee	7.76583	36.72639	1982	1843
Abana	Forest	7.76339	36.28510	1954	1849
Afalo	Forest	7.68427	36.24030	1957	1854
Qaccho	Forest	7.78384	36.33443	2012	1879

Table A2. A list of all species and classifications used in the analysis. Taxonomy 1167 follows the 2014 update of Clements 6th Edition. For guild classifications, FRUG 1168 = frugivore, GRAN = granivore, INSE = insectivore, and NECT = nectarivore. 1169 1170 Migr. = Eurasian migrant, UI = understory insectivore, and RUI = resident understory insectivore. Forest Dependency categories are forest specialist (FF), 1171 1172 forest generalist (F), and forest visitor (f) (Bennun et al., 1996). Relative 1173 abundance was calculated from the capture rate (# of birds/net hour), an index 1174 that controls for differing effort between habitats. The last column denotes species that significantly differed (p<.05) in capture rate between shade coffee 1175 1176 and moist evergreen Afromontane forest. Species are listed in descending order 1177 of total captures.

1 Blackap Symital attraction NSE X Y X X Y </th <th>Species #</th> <th>Species English</th> <th>Species Latin</th> <th>Guild</th> <th>Migr.</th> <th>UI</th> <th>RUI</th> <th>Forest Dep.</th> <th>Coffee Captures</th> <th>Coffee Capture Rate</th> <th>Forest Captures</th> <th>Forest Capture Rate</th> <th>Total Captures</th> <th>Total Capture Rate</th> <th>Sig. Diff. Between Habitats</th>	Species #	Species English	Species Latin	Guild	Migr.	UI	RUI	Forest Dep.	Coffee Captures	Coffee Capture Rate	Forest Captures	Forest Capture Rate	Total Captures	Total Capture Rate	Sig. Diff. Between Habitats
2. Rungeoffs Robin-tarit Cossynta aeminuf NSE X X I 115 0.008 52.0 0.0015 120 0.0033 X X F 131 0.008 200 0.0033 107 0.0033 X 4 Tambourne Dows Turtur preparation RRAW X X F 92 0.0005 240 0.0003 0.003 X 0.0004 480 0.0005 X X F 92 0.0005 140 0.0014 480 0.0005 2 0.0004 480 0.0005 2 0.0004 480 0.0005 2 0.0004 480 0.0005 2 0.0004 480 0.0005 2 0.0004 480 0.0000 450 0.0007 480 0.0005 440 0.0005 440 0.0005 440 0.0005 440 0.0005 440 0.0005 440 0.0005 440 0.0005 440 0.0005 440 0.0005	1	Blackcap	Sylvia atricapilla	INSE	Х	Х		F	232	0.0169	57	0.0127	289	0.0159	Х
3 Brade-ringed/Minke-rye Zouthamp prolongers/mail FRUG I F 131 0.006 2 0.0051 11 0.0083 X 5 Eastern Orive Surbind Cymumite advance INSE X FF 92 0.0081 2 0.0080 7 0.0083 X 6 Aryssinin Staty-Fycatcher Melanomic horizon/mail INSE X X IF 64 0.0081 2 0.006 2 0.007 3 8 8 Aryssinin Grusson-regarding Andration Common advanta INSE X X IF 19 0.0012 40 0.0026 X 0.0026	2	Rueppell's Robin-chat	Cossypha semirufa	INSE		Х	X	f	135	0.0099	52	0.0116	187	0.0103	
4 Tambourne Dove Tark trympaniatria GRAN Image: Proceedings of the second secon	3	Broad-ringed White-eye	Zosterops poliogastrus	FRUG				F	131	0.0096	20	0.0045	151	0.0083	Х
S Eastern Ones Submint Cynamitra Oxivacea INSE X FF 67 0.0021 2 0.004 60 0.0050 7 0.0057 X 7 Green-backed Camaroptera Camaroptera Camaroptera Camaroptera F 64 0.0051 7 X 0.0051 X X 7 6 0.0051 64 0.0056 X 0.0051 X X F 16 10 0.0052 X X F 19 0.0071 30 0.0026 X 0.0026	4	Tambourine Dove	Turtur tympanistria	GRAN				F	92	0.0067	15	0.0033	107	0.0059	Х
6 Abyssinan Slash-Proteche Methoensis choosabius INSE I F 64 0.001 42 0.001 84 0.0000 83 0.0010 83 0.002 73 0.0021 84 0.0000 73 0.0000 73 0.0000 73 0.0000 73 0.0000 73 0.0000 74 0.0010 74 0.0010 74 0.0010 74 0.0010 74 0.0010 74 0.0010 74 0.0010 74 0.0010 74 0.0010 74 0.0010	5	Eastern Olive Sunbird	Cyanomitra olivacea	INSE		Х	X	FF	57	0.0042	40	0.0089	97	0.0053	Х
7 Green-backed Camaropten Camaropten backy/or New Second Seco	6	Abyssinian Slaty-Flycatcher	Melaenornis chocolatinus	INSE				F	84	0.0061	2	0.0004	86	0.0047	Х
8. Abysinian Cimeson-wing Cyclopapica askadom GRAN F 16. 0.0016 0.0016 65. 0.0035 X 10 Affican Paradise-flycatcher Perspiknone virdia INSE X X FF 40 0.0034 11 0.0025 63. 0.0035 X 11 Lemon Dove Columba favata FRUG V FF 40 0.0017 36. 0.0060 45. 0.0025 X 12 Abysinian Cirunch Virus Gookich la joggine INSE X FF 40 0.0007 36. 0.0060 34. 0.0019 X 13 Wilkow Warther Physioscopus torohlinu INSE X FF 11 0.0001 22. 0.0045 31. 0.0017 X 16 Andrainy Bababus GRAN K FF 12. 0.0011 4 0.0006 34. 0.001 X 0.0011 40. 0.0001 X 0.0011 X <t< td=""><td>7</td><td>Green-backed Camaroptera</td><td>Camaroptera brachyura</td><td>INSE</td><td></td><td>X</td><td>X</td><td>f</td><td>68</td><td>0.0050</td><td>14</td><td>0.0031</td><td>82</td><td>0.0045</td><td></td></t<>	7	Green-backed Camaroptera	Camaroptera brachyura	INSE		X	X	f	68	0.0050	14	0.0031	82	0.0045	
9 Dusky-brown Prycatcher Maceicapa adusta INSE X F 52 0.0038 11 0.025 6.30 0.0030 10 Arcan Paralise-Synchatter Targatise-Synchatter Targatise-Synchatter<	8	Abyssinian Crimson-wing	Cryptospiza salvadorii	GRAN				F	16	0.0012	49	0.0109	65	0.0036	Х
10 Alfican Paradis-Plycatcher Topsphone urising INSE I f 49 0.008 5. 0.0018 42 0.0026 X 11 Lemon Dove Columba lanvata FIE I 0.0007 38 0.0082 47 0.0025 X 13 Willow Warbier Phylicscopus frodhus INSE X X FF 9 0.0007 38 0.0000 37 0.0025 X 14 Vellow-Aroried Tinkerbid Phylicscopus frodhus INSE X X FF 9 0.0007 38 0.0010 X 0.0016 X 15 Green-backed Twinsport Mandingaa nitidual GRN X X FF 11 0.0016 72 0.0016 23 0.0113 X 0.001 X X 0.001 24 0.0001 X 0.001 X X X X X X X X X X X X X	9	Dusky-brown Flycatcher	Muscicapa adusta	INSE		Х	X	F	52	0.0038	11	0.0025	63	0.0035	
11 Lemon Dove Columba harvata FRUG IN FFF 19 0.0017 36.8 0.0028 X 0.0018 X X X F 14 0.0011 X 0.0000 14 0.0001 X X X X X X X X X X X X X X <	10	African Paradise-flycatcher	Terpsiphone viridis	INSE				f	49	0.0036	5	0.0011	54	0.0030	Х
12 Abysinian Groun-thrush Geokicha plaggian INSE X X F 9 0.000 36 0.0000 X 0.0010 X X F 1 0.0001 2.0 0.0010 X X X F 1 0.0001 1.0 0.0000 1.0 0.0001 X	11	Lemon Dove	Columba larvata	FRUG				FF	19	0.0014	28	0.0062	47	0.0026	Х
13 Willow Warbler Phylloscopus trochluis INSE X I 37 0.0027 0 0.0000 37 0.0020 X 14 Yellow-Interd Timkinsch PRUG I F 34 0.0027 0 0.0000 34 0.0018 X 15 Green-backed Twinspot Mandingoe nilidula GRAN I F 14 0.0005 22 0.0049 33 0.0015 X 16 African Hill Babbler Sylvia abyssinicu GRAN I F 22 0.0016 7 0.0016 20 0.0016 18 Common Bublul Pyronotus barbatus FRUG I F 14 0.0001 0 0.0007 18 0.0011 X X I F 14 0.0001 0 0.0007 13 0.0007 20 Tree Pipit Antus trials athiopina netalensis INSE X F 14 0.0000 0 0.0000 13 0.0007	12	Abyssinian Ground-thrush	Geokichla piaggiae	INSE		X	X	FF	9	0.0007	36	0.0080	45	0.0025	Х
14 Yellow-fonted Thinkapide Pagoniulus chrysocous FRUG F 34 0.0025 0 0.0008 34 0.0018 X 15 Green-backed Twinspot Mandingoe nitidule GRAN I FF 21 0.0016 22 0.0049 33 0.0017 X 16 African Hill Babler Sylvin abyssinica GRAN I F 22 0.0016 7 0.0016 29 0.0013 X 17 Black-billed Wood-dove Turtur abyssinicus GRAN I F 22 0.0016 7 0.0016 23 0.0013 X 18 Common Dulificant Plasterine yrane INSE X I 1 18 0.0001 4 0.0001 X 23 0.0016 T 0.0007 13 0.0007 13 0.0007 13 0.0004 X X F 10 0.0006 0 0.0000 8 0.0004 1 0.0002 0.0003	13	Willow Warbler	Phylloscopus trochilus	INSE	X			f	37	0.0027	0	0.0000	37	0.0020	Х
15 Green-backed Twinspot Mandingen ritikula GRAN Image: Construct of the second	14	Yellow-fronted Tinkerbird	Pogoniulus chrysoconus	FRUG				F	34	0.0025	0	0.0000	34	0.0019	Х
16 Artican Hill Babbler Sykia abyssinica INSE X X FF 2 0.001 29 0.0065 31 0.0016 17 Black-billed Wood-dove Turtur abyssinicus GRAN F 22 0.0016 7 0.0016 29 0.0018 18 Common Bulbul Pycononius barbatus FRUG f 121 0.0011 4 0.0000 18 0.0010 20 Tree Pipit Anthus trivialis INSE X X F 14 0.0010 0 0.0000 14 0.0000 X 21 Common Chilfichaff Phylloscopus collybila INSE X X F 14 0.0007 3 0.0007 13 0.0007 23 Etinojanis Boubou Laniarius aethopicus INSE I f 8 0.0006 0 0.0000 8 0.0004 24 Red-billed Frefinch Lagonosticia sonegala GRAN I f 6 0.00	15	Green-backed Twinspot	Mandingoa nitidula	GRAN				FF	11	0.0008	22	0.0049	33	0.0018	X
17 Biack-billed Wood-dove Turtur abysinicus GRAN F 22 0.0016 7 0.0016 29 0.0013 18 Common Bulbul Pyconotus barbatus FRUG f 21 0.0016 7 0.0016 23 0.0013 X 19 Brown-throaded Wattle-eye Platstara cyanes INSE X I 15 0.0011 4 0.0000 18 0.0010 X 20 Tree Pipit Anthus trivialis INSE X X F 14 0.0007 13 0.0007 13 0.0007 21 Ecormon Chiftchaff Prijoscopis colybita INSE X X F 10 0.0007 3 0.0007 13 0.0007 22 Red-capped Robin-Chat Cossypha nataliensis INSE X X F 10 0.0007 8 0.0004 24 Red-billed Firefinch Lagorosticla songia GRAN f 4 0.0003 0 <td< td=""><td>16</td><td>African Hill Babbler</td><td>Sylvia abyssinica</td><td>INSE</td><td></td><td>X</td><td>X</td><td>FF</td><td>2</td><td>0.0001</td><td>29</td><td>0.0065</td><td>31</td><td>0.0017</td><td>X</td></td<>	16	African Hill Babbler	Sylvia abyssinica	INSE		X	X	FF	2	0.0001	29	0.0065	31	0.0017	X
18 Common Bulbul Pycinonolus barbatus FRUG r 21 0.0015 2 0.0004 23 0.0013 X 19 Brown-throated Wattle-ye Platsiara granea INSE f 15 0.0011 4 0.0000 18 0.0010 X 20 Tree Pipit Anthus trivialis INSE X X F 14 0.0000 18 0.0001 X 21 Common Chiffchaff Phytloscopus collpidia INSE X X F 14 0.0007 3 0.0007 13 0.0007 23 Ethiopian Boubou Lainiarius aethiopicus INSE X F 16 0.0006 0 0.0000 8 0.0004 24 Red-slind Firefinch Lagonosticta senegala GRAN f 6 0.0004 0 0.0000 8 0.0004 26 Variable Starling Speculpasticta rubricata GRAN f 4 0.0003 0 0.0000	17	Black-billed Wood-dove	Turtur abyssinicus	GRAN				F	22	0.0016	7	0.0016	29	0.0016	
19 Brown-throated Wattle-eye Platsteira cyanea INSE r f 15 0.0011 4 0.0000 19 0.0010 20 Tree Pipit Anthus trivialis INSE X f 18 0.0010 0 0.0000 14 0.0000 X 21 Common Chiffeaff Phylicscepus callybin INSE X X F 14 0.0001 0 0.0000 18 0.0004 22 Red-capped Robin-Chat Cossypha natalensis INSE X F 10 0.0007 3 0.0000 8 0.0004 24 Red-capped Robin-Chat Consorticta sengal INSE I f 8 0.0006 0 0.0000 8 0.0004 25 Variable Subird Cinnyris venustus INSE I f 8 0.0000 8 0.0000 8 0.0002 26 African Figmir, Specilizator biorica IRSE F 1 0.0000 0 0	18	Common Bulbul	Pycnonotus barbatus	FRUG				f	21	0.0015	2	0.0004	23	0.0013	Х
20 Tree Pipit Anthus trivialis INSE X X F 18 0.0013 0 0.0000 18 0.0010 X 21 Common Chiffichaff Philoscopus collybita INSE X F 14 0.0017 0 0.0000 14 0.0008 X 22 Red-capped Robin-Chat Cossypha nations INSE X F 10 0.0007 0 0.0000 8 0.0004 23 Ethiopian Boubou Laniarus aethiopicus INSE I f 8 0.0006 0 0.0000 8 0.0004 24 Red-billed Frefinch Lagonostica rubinas INSE I f 8 0.0006 0 0.0000 8 0.0004 25 Variable Starling Specilipastor bicolor FRUG I f 4 0.0003 0 0.0000 4 0.0002 28 African Firefinch Lagonosticar rubinetas GRAN I f 4	19	Brown-throated Wattle-eye	Platsteira cyanea	INSE				f	15	0.0011	4	0.0009	19	0.0010	
21 Common Chiffchaff Phylloscopus collybita INSE X X F 14 0.0010 0 0.0000 14 0.0008 X 22 Red-capped Robin-Chat Cossypha natalensis INSE X X F 10 0.0007 13 0.0007 23 Ethopian Boubou Larinitra aethopicatios INSE K X F 10 0.0007 3 0.0007 13 0.0007 24 Red-billed Firefinch Lagonosticta senegala GRAN F 8 0.0006 0 0.0000 8 0.0004 26 African Prygmy-kingfisher Lispdina picta INSE f 6 0.0001 1 0.0002 6 0.0003 27 Magpie Starting Speculipastor bicolor FRUG f 4 0.0003 0 0.0000 4 0.0002 28 Red-seque Dove Streptopelia semilarguata GRAN f 4 0.0003 0 0.0002 2<	20	Tree Pipit	Anthus trivialis	INSE	X	X		f	18	0.0013	0	0.0000	18	0.0010	Х
22 Red-capped Robin-Chat Cossypha natalensis INSE X X F 10 0.0007 3 0.0007 13 0.0007 23 Ethiopian Boubou Laniarus aethiopicus INSE f 8 0.0006 0 0.0000 8 0.0004 24 Red-billed Firefinch Lagonosticta senegale GRAN f 8 0.0006 0 0.0000 8 0.0004 25 Variable Sunbird Cinnyris venustus INSE f 6 0.0004 0 0.0000 8 0.0004 26 African Firefinch Lagonostica rubricata GRAN f 4 0.0003 0 0.0000 4 0.0002 29 Red-shoudered Cuckooshrike Campephage phoeniceurus INSE f 4 0.0003 0 0.0000 4 0.0002 30 Red-shoudered Cuckooshrike Campephage aphoeniceurus INSE X F 3 0.0002 0 0.0000 3 0.000	21	Common Chiffchaff	Phylloscopus collybita	INSE	X	X		F	14	0.0010	0	0.0000	14	0.0008	Х
23 Ethiopian Boubou Laniarius aethiopicus INSE f 8 0.0006 0 0.0000 8 0.0004 24 Red-billed Firefinch Lagonosticat senegala GRAN f 8 0.0006 0 0.0000 8 0.0004 25 Variable Sunbird Cimyris venusitus INSE f 8 0.0006 0 0.0000 8 0.0004 26 African Pygmy-kinglisher Ispidina picta INSE f 6 0.0004 0 0.0000 6 0.0003 27 Magpie Starling Speculipastor bicolor FRUG f 4 0.0003 0 0.0000 4 0.0002 28 African Firefinch Lagonosticta rubricata GRAN f 4 0.0003 0 0.0000 4 0.0002 30 Red-syed Dove Streptopelia semitorquata GRAN f 4 0.0000 3 0.0002 31 Scarelet-obseted Sunbird Chaicomitra senegalensis <td>22</td> <td>Red-capped Robin-Chat</td> <td>Cossypha natalensis</td> <td>INSE</td> <td></td> <td>x</td> <td>X</td> <td>F</td> <td>10</td> <td>0.0007</td> <td>3</td> <td>0.0007</td> <td>13</td> <td>0.0007</td> <td></td>	22	Red-capped Robin-Chat	Cossypha natalensis	INSE		x	X	F	10	0.0007	3	0.0007	13	0.0007	
24 Red-billed Firefinch Lagonosticta senegala GRAN r f 8 0.0066 0 0.0000 8 0.0004 25 Variable Sunbird Cimryris venustus INSE I f 8 0.0006 0 0.0000 8 0.0004 26 African Prgmy-kingfisher Ispldina picta INSE I f 6 0.0004 1 0.0002 6 0.0003 27 Magpie Starting Speculpastor bicolor FRUG I f 4 0.0003 0 0.0000 4 0.0002 28 African Firefinch Lagonostictar ubricata GRAN I f 4 0.0003 0 0.0000 4 0.0002 30 Red-shouldered Cuckoosthike Chalcomitra senegalensis NECT I f 4 0.0002 0 0.0000 3 0.0002 33 Streaky Seedeater Serinus striolatus GRAN I f 2 0.0001 0	23	Ethiopian Boubou	Laniarius aethiopicus	INSE				f	8	0.0006	0	0.0000	8	0.0004	
25 Variable Sunbird Cinnyris venustus INSE f 8 0.0006 0 0.0000 8 0.0004 26 African Fygmy-kingfisher Ispeculipastor bicolor FRUG f 6 0.0004 0 0.0000 6 0.0003 27 Magpie Starling Speculipastor bicolor FRUG f 5 0.0004 1 0.0002 6 0.0002 28 African Firefinch Lagonosticat rubricata GRAN f 4 0.0003 0 0.0000 4 0.0002 29 Red-eyed Dove Streptopelia semitorquata GRAN f 4 0.0003 0 0.0000 4 0.0002 30 Red-shouldered Cuckooshnike Campenhaga phoeniceurs INSE X F 3 0.0002 0 0.0000 3 0.0002 31 Scarel-chested Sunbird Chenicurus phoenicurus INSE X F 3 0.0000 3 0.0002 33 Streaky Seedeater	24	Red-billed Firefinch	Lagonosticta senegala	GRAN				f	8	0.0006	0	0.0000	8	0.0004	
26 African Pygmy-kingfisher Ispidina picta INSE Imstern of the starting Speculipastor bicolor FRUG f 6 0.0004 1 0.0002 6 0.0003 28 African Firefinch Lagonosticar urbricata GRAN Imsterna f 4 0.0003 0 0.0000 4 0.0002 29 Red-sped Dove Straptopalia semitorquata GRAN Imsterna f 4 0.0003 0 0.0000 4 0.0002 30 Red-shouldered Cuckooshrike Campephaga phoenicear INSE Imsterna f 4 0.0003 0 0.0000 4 0.0002 31 Scarlet-Chested Sunbird Chalcomitra senegalensis NECT Imsterna f 3 0.0002 0 0.0000 3 0.0002 33 Streaky Seedeater Serinus striolatus GRAN Imsterna f 2 0.0001 0 0.0000 2 0.0001 36 Yellow-bellied Wabilli Coccopygia quari	25	Variable Sunbird	Cinnyris venustus	INSE				f	8	0.0006	0	0.0000	8	0.0004	
27 Magpie Starling Speculipastor bicolor FRUG f 5 0.0004 1 0.0002 6 0.0003 28 African Firefinch Lagonostica rubricata GRAN f 4 0.0003 0 0.0000 4 0.0002 29 Red-shouldered Cuckooshnike Campephaga phoenicea INSE f 4 0.0003 0 0.0000 4 0.0002 30 Red-shouldered Cuckooshnike Campephaga phoenicear INSE X F 3 0.0002 0 0.0000 4 0.0002 31 Scarlet-chested Sunbird Chacomira senegalensis NECT f 4 0.0002 0 0.0000 3 0.0002 33 Streaky Seedeater Serinus striolatus GRAN f 2 0.0001 0 0.0000 2 0.0001 34 Bronze Manikin Spermestes cuculata GRAN f 2 0.0001 0 0.0000 2 0.0001 36	26	African Pygmy-kingfisher	Ispidina picta	INSE				f	6	0.0004	0	0.0000	6	0.0003	
28 African Firefinch Lagonosticta rubricata GRAN f 4 0.0003 0 0.0000 4 0.0002 29 Red-eyed Dove Streptopelia semitorquata GRAN f 4 0.0003 0 0.0000 4 0.0002 30 Red-shouldered Cuckooshrike Campephaga phoenicea INSE f 4 0.0003 0 0.0000 4 0.0002 31 Scarlet-chested Sunbird Chalcomitra senegalensis INSE X X F 3 0.0002 0 0.0000 3 0.0002 32 Common Redstart Phoenicurus phoenicurus INSE X X F 3 0.0002 0 0.0000 3 0.0002 34 Bronze Mannikin Spermestes cucultata GRAN f 2 0.0001 0 0.0000 2 0.0001 35 Common Cuckoo Cuculus canorus INSE X F 2 0.0001 0 0.0000 2 </td <td>27</td> <td>Magpie Starling</td> <td>Speculipastor bicolor</td> <td>FRUG</td> <td></td> <td></td> <td></td> <td>f</td> <td>5</td> <td>0.0004</td> <td>1</td> <td>0.0002</td> <td>6</td> <td>0.0003</td> <td></td>	27	Magpie Starling	Speculipastor bicolor	FRUG				f	5	0.0004	1	0.0002	6	0.0003	
29 Red-eyed Dove Streptopelia semilorquata GRAN f 4 0.0003 0 0.0000 4 0.0002 30 Red-shouldered Cuckooshrike Campephaga phoenicea INSE f 4 0.0003 0 0.0000 4 0.0002 31 Scalet-chested Sunbird Chalcomitra senegalensis NECT f 4 0.0002 0 0.0000 4 0.0002 32 Common Redstart Phoenicurus phoenicurus INSE X F 3 0.0002 0 0.0000 3 0.0002 33 Streaky Seedeater Serinus striolatus GRAN I f 2 0.0001 0 0.0000 2 0.0001 34 Bronze Mannikin Spermestes cucullata GRAN I f 2 0.0001 0 0.0000 2 0.0001 35 Common Cuckoo Cuculus canorus INSE X F 2 0.0001 0 0.0000 2 0.0001 </td <td>28</td> <td>African Firefinch</td> <td>Lagonosticta rubricata</td> <td>GRAN</td> <td></td> <td></td> <td></td> <td>f</td> <td>4</td> <td>0.0003</td> <td>0</td> <td>0.0000</td> <td>4</td> <td>0.0002</td> <td></td>	28	African Firefinch	Lagonosticta rubricata	GRAN				f	4	0.0003	0	0.0000	4	0.0002	
30 Red-shouldered Cuckooshrike Campephaga phoenicea INSE I f 4 0.0003 0 0.0000 4 0.0002 31 Scarlet-chested Sunbird Chalcomitra senegalensis NECT I f 4 0.0003 0 0.0000 4 0.0002 32 Common Redstart Phoenicurus phoenicurus INSE X X F 3 0.0002 0 0.0000 3 0.0002 33 Streaky Seedeater Serinus striolatus GRAN f 2 0.0001 0 0.0000 2 0.0001 34 Bronze Mannikin Spermestes cucultata GRAN f 2 0.0001 0 0.0000 2 0.0001 35 Common Cuckoo Cuculus canorus INSE X F 2 0.0001 0 0.0000 2 0.0001 36 Yellow-bellied Waxbill Coccopygia quartinia GRAN f 1 0.0001 0 0.0000 2 </td <td>29</td> <td>Red-eyed Dove</td> <td>Streptopelia semitorquata</td> <td>GRAN</td> <td></td> <td></td> <td></td> <td>f</td> <td>4</td> <td>0.0003</td> <td>0</td> <td>0.0000</td> <td>4</td> <td>0.0002</td> <td></td>	29	Red-eyed Dove	Streptopelia semitorquata	GRAN				f	4	0.0003	0	0.0000	4	0.0002	
31 Scarlet-chested Sunbird Chalcomitra senegalensis NECT f 4 0.0003 0 0.0000 4 0.0002 32 Common Redstart Phoenicurus phoenicurus INSE X X F 3 0.0002 0 0.0000 3 0.0002 33 Streaky Seedeater Serinus striolatus GRAN f 3 0.0002 0 0.0000 3 0.0002 34 Bronze Mannikin Spermestes cucullata GRAN f 2 0.0001 0 0.0000 2 0.0001 35 Common Cuckoo Cuculus canorus INSE X F 2 0.0001 0 0.0000 2 0.0001 36 Yellow-bellied Waxbill Coccopygia quartinia GRAN f 1 0.0001 0 0.0000 2 0.0001 37 Tacazze Sunbird Nectarinia tacazze NECT f 1 0.0001 0 0.0000 2 0.0001	30	Red-shouldered Cuckooshrike	Campephaga phoenicea	INSE				f	4	0.0003	0	0.0000	4	0.0002	
32 Common Redstart Phoenicurus phoenicurus INSE X X F 3 0.0002 0 0.0000 3 0.0002 33 Streaky Seedeater Serinus striolatus GRAN f 3 0.0002 0 0.0000 3 0.0002 34 Bronze Mannikin Spermestes cucullata GRAN f 2 0.0001 0 0.0000 2 0.0001 35 Common Cuckoo Cuculus canorus INSE X F 2 0.0001 0 0.0000 2 0.0001 36 Yellow-bellied Waxbill Coccopygia quartinia GRAN f 2 0.0001 0 0.0000 2 0.0001 37 Tacaze Sunbird Nectarinia tacaze NECT f 2 0.0001 0 0.0000 2 0.0001 38 Northern Black-Flycatcher Melaenornis edolioides INSE X F 2 0.0001 0 0.0000 1 0.0001 <td>31</td> <td>Scarlet-chested Sunbird</td> <td>Chalcomitra senegalensis</td> <td>NECT</td> <td></td> <td></td> <td></td> <td>f</td> <td>4</td> <td>0.0003</td> <td>0</td> <td>0.0000</td> <td>4</td> <td>0.0002</td> <td></td>	31	Scarlet-chested Sunbird	Chalcomitra senegalensis	NECT				f	4	0.0003	0	0.0000	4	0.0002	
33 Streaky Seedeater Serinus striolatus GRAN f 3 0.0002 0 0.0000 3 0.0002 34 Bronze Mannikin Spermestes cucullata GRAN f 2 0.0001 0 0.0000 2 0.0001 35 Common Cuckoo Cuculus canorus INSE X F 2 0.0001 0 0.0000 2 0.0001 36 Yellow-bellied Waxbill Coccopygia quartinia GRAN f 2 0.0001 0 0.0000 2 0.0001 37 Tacazze Sunbird Nectarinia tacazze NECT f 2 0.0001 0 0.0000 2 0.0001 38 Northem Black-Flycatcher Melaenornis edolicides GRAN f 1 0.0001 0 0.0000 1 0.0001 40 Baglafecht Weaver Ploceus baglafecht INSE f 1 0.0001 0 0.0000 1 0.0001 41 Blue-spotted Wo	32	Common Redstart	Phoenicurus phoenicurus	INSE	x	x		F	3	0.0002	0	0.0000	3	0.0002	
34 Bronze Mannikin Spermestes cucullata GRAN f 2 0.0001 0 0.0000 2 0.0001 35 Common Cuckoo Cuculus canorus INSE X F 2 0.0001 0 0.0000 2 0.0001 36 Yellow-bellied Waxbill Coccopygia quartinia GRAN f 2 0.0001 0 0.0000 2 0.0001 37 Tacazze Sunbird Nectarinia tacazze NECT f 2 0.0001 0 0.0000 2 0.0001 38 Northern Black-Flycatcher Melaenornis edolioides INSE X X F 2 0.0001 0 0.0000 2 0.0001 39 African Citri Serinus citrinelloides GRAN f 1 0.0001 0 0.0000 1 0.0001 40 Baglafecht Weaver Ploceus baglafecht INSE f 1 0.0001 0 0.0000 1 0.0001 41 <td>33</td> <td>Streaky Seedeater</td> <td>Serinus striolatus</td> <td>GRAN</td> <td></td> <td></td> <td></td> <td>f</td> <td>3</td> <td>0.0002</td> <td>0</td> <td>0.0000</td> <td>3</td> <td>0.0002</td> <td></td>	33	Streaky Seedeater	Serinus striolatus	GRAN				f	3	0.0002	0	0.0000	3	0.0002	
35 Common Cuckoo Cuculus canorus INSE X F 2 0.0001 0 0.0000 2 0.0001 36 Yellow-bellied Waxbill Coccopygia quartinia GRAN Image: figure f	34	Bronze Mannikin	Spermestes cucullata	GRAN				f	2	0.0001	0	0.0000	2	0.0001	
36 Yellow-bellied Waxbill Coccopygia quartinia GRAN I f 2 0.001 0 0.0000 2 0.0001 37 Tacazze Sunbird Nectarinia tacazze NECT I f 2 0.001 0 0.0000 2 0.0001 38 Northern Black-Flycatcher Melaenornis edolioides INSE X X F 2 0.0001 0 0.0000 2 0.0001 39 African Citril Serinus citrinelloides GRAN f 1 0.0001 0 0.0000 1 0.0001 40 Baglafecht Weaver Ploceus baglafecht INSE f 1 0.0001 0 0.0000 1 0.0001 41 Blue-spotted Wood-dove Turtur afer GRAN f 1 0.0001 0 0.0000 1 0.0001 42 Cardinal Woodpecker Dendropicos fuscescens INSE X X f 1 0.0000 1 0.0001	35	Common Cuckoo	Cuculus canorus	INSE	x			F	2	0.0001	0	0.0000	2	0.0001	
37 Tacazze Sunbird Nectarinia tacazze NECT f 2 0.0001 0 0.0000 2 0.0001 38 Northern Black-Flycatcher Melaenornis edolioides INSE X X F 2 0.0001 0 0.0000 2 0.0001 39 African Citril Serinus citrinelloides GRAN f 1 0.0001 0 0.0000 1 0.0001 40 Baglafecht Weaver Ploceus baglafecht INSE f 1 0.0001 0 0.0000 1 0.0001 41 Blue-spotted Wood-dove Turtur afer GRAN f 1 0.0001 0 0.0000 1 0.0001 42 Cardinal Woodpecker Dendropicos fuscescens INSE X X f 1 0.0001 0 0.0000 1 0.0001 43 Eurasian Reed-warbler Acrocephalus scirpaceus INSE X X f 1 0.0001 0 0.0000	36	Yellow-bellied Waxbill	Coccopygia guartinia	GRAN				f	2	0.0001	0	0.0000	2	0.0001	
38 Northern Black-Flycatcher Melaenornis edolioides INSE X X F 2 0.001 0 0.0000 2 0.001 39 African Citril Serinus citrinelloides GRAN I f 1 0.001 0 0.0000 1 0.0001 40 Baglafecht Weaver Ploceus baglafecht INSE I f 1 0.001 0 0.0000 1 0.0001 41 Blue-spotted Wood-dove Tutur afer GRAN I f 1 0.001 0 0.0000 1 0.0001 42 Cardinal Woodpecker Dendropicos fuscescens INSE X X f 1 0.001 0 0.0000 1 0.001 43 Eurasian Reed-warbler Acrocephalus scirpaceus INSE X X F 1 0.001 0 0.0000 1 0.001 44 Gray Wagtail Motacilla cinerea INSE X X F	37	Tacazze Sunbird	Nectarinia tacazze	NECT				f	2	0.0001	0	0.0000	2	0.0001	
39 African Citril Serinus citrinelloides GRAN f 1 0.0001 0 0.0000 1 0.0001 40 Baglafecht Weaver Ploceus baglafecht INSE i f 1 0.0001 0 0.0000 1 0.0001 41 Blue-spotted Wood-dove Turtur afer GRAN i f 1 0.0001 0 0.0000 1 0.0001 42 Cardinal Woodpecker Dendropicos fuscescens INSE X f 1 0.0001 0 0.0000 1 0.0001 43 Eurasian Reed-warbler Acrocephalus scirpaceus INSE X X f 1 0.0001 0 0.0000 1 0.0001 44 Gray Wagtail Motacilla cinerea INSE X X F 1 0.0001 0 0.0000 1 0.0001 45 African Grey Woodpecker Dendropicos goertae INSE X X f 1 0.0001	38	Northern Black-Flycatcher	Melaenornis edolioides	INSE		x	x	F	2	0.0001	0	0.0000	2	0.0001	
40 Baglafecht Weaver Ploceus baglafecht INSE f 1 0.0001 0 0.0000 1 0.0001 41 Blue-spotted Wood-dove Turtur afer GRAN f 1 0.0001 0 0.0000 1 0.0001 42 Cardinal Woodpecker Dendropicos fuscescens INSE f 1 0.0001 0 0.0000 1 0.0001 43 Eurasian Reed-warbler Acrocephalus scirpaceus INSE X X f 1 0.0001 0 0.0000 1 0.0001 44 Gray Wagtail Motacilla cinerea INSE X X F 1 0.0001 0 0.0000 1 0.0001 45 African Grey Woodpecker Dendropicos goertae INSE X X f 1 0.0001 0 0.0000 1 0.0001 46 Lesser Whitethroat Sylvia curruca INSE X X f 1 0.0001 0 <td>39</td> <td>African Citril</td> <td>Serinus citrinelloides</td> <td>GRAN</td> <td></td> <td></td> <td></td> <td>f</td> <td>1</td> <td>0.0001</td> <td>0</td> <td>0.0000</td> <td>1</td> <td>0.0001</td> <td></td>	39	African Citril	Serinus citrinelloides	GRAN				f	1	0.0001	0	0.0000	1	0.0001	
41Blue-spotted Wood-doveTurtur aferGRANff10.000100.000010.000142Cardinal WoodpeckerDendropicos fuscescensINSEf10.000100.000010.000143Eurasian Reed-warblerAcrocephalus scirpaceusINSEXXf10.000100.000010.000144Gray WagtailMotacilla cinereaINSEXXF10.000100.000010.000145African Grey WoodpeckerDendropicos goertaeINSEXXF10.000100.000010.000146Lesser WhitethroatSylvia currucaINSEXXf10.000100.000010.000147Pale FlycatcherBradornis pallidusINSEXXf10.000100.000010.000148Red-cheeked CordonbleuUraeginthus bengalusGRANKKf10.000100.000010.000149Red-winged StarlingOnychognathus morioFRUGF10.000100.000010.000150Swainson's SparrowPasser swainsoniiGRANKf10.000100.000010.000151Yellow-breasted ApalisApalis flavidaINSEKf10.000100.000010.0	40	Baglafecht Weaver	Ploceus baglafecht	INSE				f	1	0.0001	0	0.0000	1	0.0001	
42Cardinal WoodpeckerDendropicos fuscescensINSEINSEf10.000100.000010.000143Eurasian Reed-warblerAcrocephalus scirpaceusINSEXXf10.000100.000010.000144Gray WagtailMotacilla cinereaINSEXXF10.000100.000010.000145African Grey WoodpeckerDendropicos goertaeINSEXXF10.000100.000010.000146Lesser WhitethroatSylvia currucaINSEXXf10.000100.000010.000147Pale FlycatcherBradornis pallidusINSEXXf10.000100.000010.000148Red-cheeked CordonbleuUraeginthus bengalusGRANKKf10.000100.000010.000149Red-winged StarlingOnychognathus morioFRUGF10.000100.000010.000150Swainson's SparrowPasser swainsoniiGRANKf10.000100.000010.000151Yellow-breasted ApalisApalis flavidaINSEKf10.000100.000010.0001	41	Blue-spotted Wood-dove	Turtur afer	GRAN				f	1	0.0001	0	0.0000	1	0.0001	
43 Eurasian Reed-warbler Acrocephalus scirpaceus INSE X X f 1 0.0001 0 0.0000 1 0.0001 44 Gray Wagtail Motacilla cinerea INSE X X F 1 0.0001 0 0.0000 1 0.0001 45 African Grey Woodpecker Dendropicos goertae INSE X X F 1 0.0001 0 0.0000 1 0.0001 46 Lesser Whitethroat Sylvia curruca INSE X X f 1 0.0001 0 0.0000 1 0.0001 47 Pale Flycatcher Bradornis pallidus INSE X X f 1 0.0001 0 0.0000 1 0.0001 48 Red-cheeked Cordonbleu Uraeginthus bengalus GRAN Image: Fluid for the structure for the str	42	Cardinal Woodpecker	Dendropicos fuscescens	INSE				f	1	0.0001	0	0.0000	1	0.0001	
44 Gray Wagtail Motacilla cinerea INSE X X F 1 0.0001 0 0.0000 1 0.0001 45 African Grey Woodpecker Dendropicos goertae INSE X X f 1 0.0001 0 0.0000 1 0.0001 46 Lesser Whitethroat Sylvia curruca INSE X X f 1 0.0001 0 0.0000 1 0.0001 47 Pale Flycatcher Bradornis pallidus INSE X X f 1 0.0001 0 0.0000 1 0.0001 48 Red-cheeked Cordonbleu Uraeginthus bengalus GRAN Image: Fluid for the second condition of the second cond the second cond cond condition of the second cond	43	Eurasian Reed-warbler	Acrocephalus scirpaceus	INSE	x	x		f	1	0.0001	0	0.0000	1	0.0001	
45 African Grey Woodpecker Dendropicos goertae INSE f 1 0.0001 0 0.0000 1 0.0001 46 Lesser Whitethroat Sylvia curruca INSE X X f 1 0.0001 0 0.0000 1 0.0001 47 Pale Flycatcher Bradornis pallidus INSE X X f 1 0.0001 0 0.0000 1 0.0001 48 Red-cheeked Cordonbleu Uraeginthus bengalus GRAN f 1 0.0001 0 0.0000 1 0.0001 49 Red-winged Starling Onychognathus morio FRUG F 1 0.0001 0 0.0000 1 0.0001 50 Swainson's Sparrow Passer swainsoniii GRAN F 1 0.0001 0 0.0000 1 0.0001 51 Yellow-breasted Apalis Apalis flavida INSE F 1 0.0001 0 0.0000 1 0.0001	44	Gray Waqtail	Motacilla cinerea	INSE	x	x		F	1	0.0001	0	0.0000	1	0.0001	
46 Lesser Whitethroat Sylvia curruca INSE X X f 1 0.0001 0 0.0000 1 0.0001 47 Pale Flycatcher Bradomis pallidus INSE X X f 1 0.0001 0 0.0000 1 0.0001 48 Red-cheeked Cordonbleu Uraeginthus bengalus GRAN f 1 0.0001 0 0.0000 1 0.0001 49 Red-winged Starling Onychognathus morio FRUG F 1 0.0001 0 0.0000 1 0.0001 50 Swainson's Sparrow Passer swainsoniii GRAN f 1 0.0001 0 0.0000 1 0.0001 51 Yellow-breasted Apalis Apalis flavida INSE f 1 0.0001 0 0.0000 1 0.0001	45	African Grey Woodpecker	Dendropicos goertae	INSE	-			f	1	0.0001	0	0.0000	1	0.0001	
47 Pale Flycatcher Bradornis pallidus INSE X X f 1 0.0001 0 0.0000 1 0.0001 48 Red-cheeked Cordonbleu Uraeginthus bengalus GRAN f 1 0.0001 0 0.0000 1 0.0001 49 Red-winged Starling Onychognathus morio FRUG F 1 0.0001 0 0.0000 1 0.0001 50 Swainson's Sparrow Passer swainsoniii GRAN f 1 0.0001 0 0.0000 1 0.0001 51 Yellow-breasted Apalis Apalis flavida INSE f 1 0.0001 0 0.0000 1 0.0001	46	Lesser Whitethroat	Sylvia curruca	INSE	x	x		f	1	0.0001	0	0.0000	1	0.0001	
48 Red-cheeked Cordonbleu Uraeginthus bengalus GRAN f 1 0.0001 0 0.0000 1 0.0001 49 Red-winged Starling Onychognathus morio FRUG F 1 0.0001 0 0.0000 1 0.0001 50 Swainson's Sparrow Passer swainsoniii GRAN f 1 0.0001 0 0.0000 1 0.0001 51 Yellow-breasted Apalis Apalis flavida INSE f 1 0.0001 0 0.0000 1 0.0001	47	Pale Flycatcher	Bradornis pallidus	INSE		x	x	f	1	0.0001	0	0.0000	1	0.0001	
49 Red-winged Starling Onychognathus morio FRUG F 1 0.0001 0 0.0000 1 0.0001 50 Swainson's Sparrow Passer swainsonii GRAN f 1 0.0001 0 0.0000 1 0.0001 51 Yellow-breasted Apalis Apalis flavida INSE f 1 0.0001 0 0.0000 1 0.0001	48	Red-cheeked Cordonbleu	Uraeginthus bengalus	GRAN				f	1	0.0001	0	0.0000	1	0.0001	
50 Swainson's Sparrow Passer swainsonii GRAN f 1 0.0001 0 0.0000 1 0.0001 51 Yellow-breasted Apalis Apalis flavida INSE f 1 0.0001 0 0.0000 1 0.0001	49	Red-winged Starling	Onychognathus morio	FRUG				F	1	0.0001	0	0.0000	1	0.0001	
51 Yellow-breasted Apalis Apalis flavida INSE f 1 0.0001 0 0.0000 1 0.0001	50	Swainson's Sparrow	Passer swainsonii	GRAN				f	1	0.0001	0	0.0000	1	0.0001	
	51	Yellow-breasted Apalis	Apalis flavida	INSE				f	1	0.0001	0	0.0000	1	0.0001	

Table A3. List of species excluded from the analysis, including the reason they
were excluded, number of captures by habitat, and total number of captures.
Species are listed in descending order of the total number of captures.

1182

Species English	Species Latin	Reason Excluded	Coffee	Forest	Total
	•		Captures	Captures	Captures
Narina Trogon	Apaloderma narina	Midstory/Canopy Species	14	1	15
African Goshawk	Accipiter tachiro	Large Size	11	2	13
Little Sparrowhawk	Accipiter minullus	Large Size	3	3	6
Ethiopian Black-headed Oriole	Oriolus monacha	Midstory/Canopy Species	5	0	5
Lesser Honeyguide	Indicator minor	Midstory/Canopy Species	4	1	5
Northern Puffback	Dryoscopus gambensis	Midstory/Canopy Species	5	0	5
White-breasted White-eye	Zosterops abyssinicus	Midstory/Canopy Species	5	0	5
Spectacled Weaver	Ploceus ocularis	Midstory/Canopy Species	1	3	4
African Emerald Cuckoo	Chrysococcyx cupreus	Midstory/Canopy Species	3	0	3
Brown Woodland-warbler	Phylloscopus umbrovirens	Midstory/Canopy Species	0	3	3
Black-headed Batis	Batis minor	Midstory/Canopy Species	1	0	1
White-cheeked Turaco	Tauraco leucotis	Midstory/Canopy Species	1	0	1
Woodland Kingfisher	Halcyon senegalensis	Midstory/Canopy Species	0	1	1
African Wood-owl	Strix woodfordii	Large Size	1	0	1
European Scops-Owl	Otus scops	Large Size	1	0	1
Levant Sparrowhawk	Accipiter brevipes	Large Size	1	0	1
Long-crested Eagle	Lophaetus occipitalis	Large Size	1	0	1
Scaly Francolin	Francolinus squamatus	Large Size	1	0	1
Thick-billed Raven	Corvus crassirostris	Large Size	1	0	1
Wattled Ibis	Bostrychia carunculata	Large Size	1	0	1

1184 1185

1183

Table A4. Estimates, standard errors (SE), t-values, and p-values from a linear
mixed effects model. Average Shannon's Diversity (H) for each one of the 140
nets was used as the response variable, site as the random effect and habitat
(shade coffee or moist evergreen Afromontane forest in southwestern Ethiopia)
as the fixed effect.

	Estimate	SE	t value	p-value
Intercept	1.2781	0.11	11.64	0.00
Forest	-0.0773	0.18	-0.44	0.68

UU IR Author Manuscript

UU IR Author Manuscript