
Concurrent Scheme

Robert R. Kessler and Mark R. Swanson1

UUCS-90-014

D epartm ent of Com puter Science
University of U tah

Salt Lake City, UT 84112 USA

August 29, 1990

Abstract

This paper describes an evolution of the Scheme language to support parallelism with tight
coupling of control and data. Mechanisms are presented to address the difficult and related
problems of m utual exclusion and data sharing which arise in concurrent language systems.
The mechanisms are tailored to preserve Scheme semantics as much as possible while allow
ing for efficient implementation. Prototype implementations of the resulting language are
described which have been completed. A third implementation is underway for the Mayfly, a
distributed memory, tw isted-torus communication topology, parallel processor, under devel
opment at the Hewlett-Packard Research Laboratories. The language model is particularly
well suited for the Mayfly processor, as will be shown.

1Work supported by Hewlett-Packard Research Labs-Palo Alto.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report 90-01 February 1990

CONCURRENT SCHEME

Robert R. Kessler and Mark R. Swanson*

U tah Portable A.I. Support Systems Project, Departm ent of Computer Science

University of Utah, Salt Lake City, U tah 84112

Abstract

This paper describes an evolution of the Scheme language to support parallelism

with tight coupling of control and data. Mechanisms are presented to address the

difficult and related problems of mutual exclusion and data sharing which arise in

concurrent language systems. The mechanisms are tailored to preserve Scheme se

mantics as much as possible while allowing for efficient implementation. Prototype

implementations of the resulting language are described which have been completed.

A third implementation is underway for the Mayfly, a distributed memory, twisted-

torus communication topology, parallel processor, under development at the Hewlett-

Packard Research Laboratories. The language model is particularly well suited for

the Mayfly processor, as will be shown.

1 Introduction

The intent in developing Concurrent Scheme (CS) has been to provide an efficient concur

rent Lisp for distributed memory multiprocessors, in particular for the Mayfly architec

ture, a descendent of the FAIM-1 Symbolic Multiprocessing System[DR85]. The approach

adopted has been to minimize the addition of new syntax and mechanism and to limit

*Work supported by Hewlett-Packard Research Labs - Palo A lto.

1

changes in familiar Lisp semantics to a few well-defined areas. CS itself is based on Scheme,

as defined in The Revised3 Report on the Algorithmic Language Scheme (R3RS)[RC86].

The design of the language has been driven by three forces:

1. the expected nature of the computations to be supported;

2. the characteristics of the underlying architecture;

3. a pragmatic requirement of real, demonstrable performance through concurrency.

The structure of a com putation in the original FAIM-1, and in the current Mayfly

system, is an object-oriented one. The design envisions multiple objects, each completely

encapsulating its state, communicating via messages. The design also envisions the ex

istence of multiple threads of control and a sufficiently large population of objects, so

th a t a t any one time evaluation can be occurring within multiple objects. This model of

com putation was chosen both for its desirable programming characteristics of modularity,

encapsulation, abstraction, etc. and for its promise of potential concurrency th a t arises

from the relative independence of objects.

The design of the architecture and the design of the programming model are closely

intertwined. The distributed nature of the Mayfly system constrains the universe of

efficiently implementable mechanisms. For example, a monolithic shared address space

across all processors is not practical. On the other hand, we shall see th a t message passing

and its inherent d ata copying may be quite acceptable.

Finally, the Mayfly is more than an exercise in building a distributed multi-computer.

A real goal exists of producing a system th a t outperforms existing sequential systems

utilizing similar technology.1 Scheme was the Lisp dialect selected because its compactness

and constrained set of language features provide the potential for an efficient uniprocessor

im plementation and for a distributed implementation. Also to this end, certain language

features have been included in or excluded from Concurrent Scheme largely because of

their effects on global efficiency of the language implementation.

1 ActuaUy, the goal is to outperform uniprocessors using faster/m ore expensive circuit technology w ith

a Mayfly system constructed from a large number of less-costly/slow er com ponents.

In the first section, Concurrent Scheme’s reliance on closures is discussed. In the fol

lowing section, new mechanisms are described and m otivated and the deviations from

standard Scheme semantics are likewise described and m otivated. The next section dis

cusses specification of concurrency and synchronization. The fourth section addresses

the existing implementations, their particular strengths and weaknesses. In the final sec

tion, the Mayfly architecture and its suitability for supporting Concurrent Scheme are

described.

2 Threads and Closures

CS provides for the creation of multiple threads of control; the procedure make—th read ,

given a function object as an argument, will create a new thread th a t will apply th a t func

tion to the rest of its arguments. M ake-thread is similar to the future construct[BH77,

HJ85]. The new thread is not necessarily run immediately, so make—th re a d returns an

object called a placeholder[M il87] as soon as the new thread is created. The creating

process can then continue, using the p la c e h o ld e r in place of the value th a t make—th re a d

will eventually return. Unlike future, m ake-th read cannot be wrapped around any arbi

trary form, but rather functions like apply . The reason for this difference will become

clear later in this section.

Concurrent Scheme relies on the closure as its primitive for object-oriented program

ming. A closure exhibits those features of an object th a t we deem most im portant: pairing

of com putational methods with an associated instance of state (the closure’s environment)

and encapsulation of th a t state by the lexical scoping of the environment variables. These

features do not present what is commonly thought of as a complete object system, but do

provide the core upon which an object system can be built.

A further consideration in concentrating upon closures as a key mechanism in Con

current Scheme is th a t closures would have to be supported in a consistent m anner in any

event. In a language such as Scheme, environments can be nested to arbitrary depths, with

sharing occurring at different depths. The lifetimes of these environments is, however, are

3

determined dynamically rather than statically, due to the existence of closures. Introduc

ing the ability to create new threads of control at arbitrary levels in these environments

introduces an expanded need to preserve and share environments.

(d e f in e foo

(lam bda (n)

(l e t ((m n i l))

(to u ch (f u tu r e (s e t ! m (b a r n))))

«))) '

Consider the function foo; note th a t the f u tu r e construct, ra ther than m ake-th read

has been used. W hen fo o creates a new thread to evaluate (s e t ! m (b a r n)) , the

environment defining m must be captured in order for the s e t ! to produce the correct side

effect, for b a r to receive the proper argument, and for the function to return the correct

value.2 In effect, an implicit closure has been generated to capture this environment.

Concurrent Scheme limits the specification of concurrency to function application. A

legal formulation of fo o in CS would be:

(d e f in e foo

(lam bda (n)

(l e t ((m n i l))

(s e t ! m (to u ch (m ake-th read b a r n)))

m)))

No closure need be produced in this formulation, since the arguments to m ake-th read

are evaluated in the existing environment before m ake-th read is invoked. Thus, the

problem of environment preservation for concurrency is removed. Real programs are more

complex than this simple example. Should the new thread need to share an environment

with an existing thread, using explicitly created closures as the functional argument to

m ake-th read can achieve the desired effect, as in the following version of fo o 3.

2 Touch is a system function that blocks the current thread until the thread created by fu tu r e com pletes.

T he value of touch is the value o f its argument.

3 This exam ple also results in deadlock in CS, as will be shown in the next section.

(define loo

(lambda (n)

(let ((m nil))

(touch (make-thread (lambda () (set! m (bar n)))))

m)))

We have taken implicit instances of closures and made them explicit. As the following

section will show, considerable effort has been expended to rationalize closure behav

ior in a distributed, concurrent environment. Having spent this effort on an object-like

mechanism, introducing and supporting a competing object mechanism would be both

redundant and wasteful.

3 D om ains

Any concurrent programming system with shared, m utable da ta must offer mechanisms for

m utual exclusion. Earlier parallel Lisps, such as MultiLisp[HJ85] and MultiScheme[Mil87]

depend on explicit specification and use of locks by the applications programmer. Qlisp

[GM84] provides both locks and closures with queues. While locks provides the program

mer with almost unlimited flexibility and precision in specifying m utual exclusion, three

factors motivate against using this model for CS. First, the commonly used technique

of sharing of structure within Lisp da ta objects is highly dynamic — so much so th a t

Lisp programmers rarely think about it. This sharing can obscure the true boundaries of

m utually exclusive operations and may make it impossible to actually utilize the precise

control which user-specified locks appear to offer. Second, on general purpose architec

tures, even a highly tuned implementation of locks will result in an operation th a t is quite

costly, relative to other constructs in the language such as function call or constructing

a simple data object like a cons cell. Thus, use of locks to provide fine-grained m utual

exclusion is likely to provide only the illusion of fine control. Third, we wished to provide

a programming environment th a t was largely similar to the sequential environments pro

5

grammers are familiar with. The need to specify locks around accesses to shared da ta is

a direct violation of this goal.

3.1 M utual Exclusion

A domain is an entity containing m utable data, specifically in the form of closure en

vironments. It has the property th a t a t most one thread of control can execute within

(“occupy”) it a t any time. The name derives from the domain construct in Hybrid [Nie87].

The mechanism is also very similar to Hoare’s monitor [Hoa74], but with modifications

to address the needs of a highly dynamic language operating in a truly concurrent envi

ronm ent. It provides a guarantee of mutual exclusion. Other threads needing to execute

within an occupied domain are queued outside the domain by the runtim e system. In a CS

program, all com putation occurs within these monitor-like objects; i.e., m utual exclusion

is the norm.

(define foo

(lambda (n)

(let ((m nil))

(touch (make-thread (lajnbda () (set! m (bar n)))))

m)))

This example from the previous section was noted as resulting in deadlock. The

behavior responsible for this outcome is easily explained. The initial thread creates a new

thread and proceeds immediately to wait for tha t th read ’s completion. In waiting, the

initial thread continues to “occupy” the current domain. The new thread, which must

also execute in th a t domain, cannot gain entry and can never begin execution, let alone

complete.

A domain is created by calling the procedure make-domain. Make-domain requires

a t least one argument, a function object. It creates a new domain, enters th a t domain,

and applies the function object to the remaining arguments, if any. The value of that

application is the value returned by m ak e -d o m a in . Note in particular th a t domains are

not hierarchical; the new domain is in no sense “contained” within the domain th a t caused

its creation.

This behavior is also similar to th a t of the qlambda construct of Qlisp, which creates

a closure with an associated queue and a guarantee of m utual exclusion. A dom ain’s

specification of m utual exclusion is more complete than th a t of qlambda, because the

m utual exclusion is a characteristic of entire environments contained within the domain

rather than ju st being an a ttribu te of a particular closure.

(d e f in e (lo o x) ’

(l e t ((s t a t e (l i s t x)))

(cons (qlam bda t (a rg)

(s e t ! s t a t e (cons axg s t a t e)))

(qlam bda t (axg)

(s e t - c a r ! s t a t e a r g)))))

In this example4, the pair of closures resulting from the qlam bda’s each has its own

queue, but since they both access the same environment variable, s t a t e , the consistency

of th a t variable is not protected by the qlambda construct.

(d e f in e (foo x)

(l e t ((s t a t e (l i s t x)))

(cons (lam bda (a rg)

(s e t ! s t a t e (cons a rg s t a t e)))

(lam bda (a rg)

(s e t - c a r ! s t a t e a r g)))))

This version of foo is simply standard Scheme syntax. The domain discipline of CS

guarantees m utual exclusion for both closures, since they must exist in the same domain

and only one thread can execute in tha t domain at any given time.

4 Qlisp is actually based on Com m on Lisp; the exam ple uses Scheme syntax. T he first argument of

qlambda is a concurrency control device which can be ignored for our purposes here.

7

In addition, the domain “operationally” encapsulates data; data th a t “enters” or

“leaves” a domain is copied, not passed by reference. When a domain is created by

calling the procedure make-domain, the first argument, the function object, is applied in

the new domain to copies of the remaining arguments, if any. A copy of the value of th a t

application is the value returned by make-domain.

3.2 Closures

Domains are not first-class objects; references to them are indirect. A program can create

domains and can invoke a closure existing within a domain. To m aintain a domain as

“reachable” or “live,” a program must m aintain a live pointer to a closure in th a t domain.

This in turn implies th a t the function object supplied to m ak e -d o m a in must return a

closure if the domain is to remain reachable.

(d e f in e (m a k e -c o lle c tio n)

(l e t ((s t a t e ()))

(lam bda (method-name . a rg s)

(cond ((eq ? method-name ’add)

(s e t ! s t a t e (cons (c a r axgs) s t a t e))

’ ())

((eq ? method-name ’c o n te n ts)

s t a t e)))))

(s e t ! a - c o l l e c t io n

(make-domain m a k e -c o lle c tio n))

Here an invocation of make-domain returns a closure existing within a newly created

domain. As long as a - c o l le c t io n , or some other reachable location, retains the value

returned by make-domain, th a t new domain will remain “live.” W hen no reachable lo

cation contains th a t object, the domain itself is no longer reachable and will be garbage

collected.

8

This close interaction between closures and domains is entirely intentional. In CS, all

closures exist within domains. A stronger condition exists: a closure’s entire environment

exists within some specific domain. An implication of this is th a t closures th a t share an

environment, even if the sharing is partial, must exist in the same domain. This implica

tion is transitive. The m utual exclusion provided by the domain is sufficient to provide

exclusive access to environment variables shared by multiple closures. Since closures rep

resent the “methods” for primitive “objects” in CS, this encapsulation of closures within

domains makes invocation of methods in CS atomic by default. _

3.3 C opying Sem antics

CS’s domain mechanism goes beyond simple monitors, qlam bda’s, and H ybrid’s domains

in th a t domain boundaries are also the boundaries at which copying semantics is specified

to hold. This congruence is reasonable, considering th a t m utual exclusion is normally

specified to ensure consistent access to and modification of data objects. Exporting point

ers to the structured da ta of a domain would void the utility of the m utual exclusion

provided by the domain.

In the c o l l e c t io n object of the example above, the c o n te n ts m ethod returns the

list which contains the object’s state. Were the expression (a - c o l l e c t i o n 'c o n te n ts)

evaluated immediately after the expression th a t created the c o l l e c t io n object, the result

of th a t expression would be a copy, in the current domain, of the list contained in the

c o l l e c t io n object.

This use of copying semantics for interactions between domains is the most far-reaching

divergence of CS semantics from those of Scheme. A domain interacts with another domain

by invoking, as a normal function call, a gateway object th a t corresponds to a closure in

the other domain. The arguments passed to the gateway and the results returned through

it are copied from one domain to the other. Unless otherwise specified, copying preserves

structure sharing. Closures, however, are not really copied. Instead we create and pass

gateway objects. There are three motivations for this use of copying semantics, one at

the language level and the other an implementation consideration:

9

E n c a p s u la tio n - At the language level, we view the closure as a form of object. An

object here is simply some state, or data, with related behavior and an exported

interface. One “virtue” of these objects is the encapsulation of the state of the object.

This encapsulation is an artifact of the lexical scoping of the closure’s environment

variables. Complete encapsulation can only be guaranteed by ensuring th a t not only

names, but the structure of the closure’s component objects be contained. Placing

these objects (closures) within domains ensures this complete encapsulation, since

only copies of the state variables can leave the domain (and hence the closure).

D is t r ib u te d S y s te m s - Since our target architecture falls into the class of distributed

systems, a choice arises between managing external da ta pointers or copying data

between processors. For a variety of complexity and performance reasons, we have

chosen to copy data between processors. Physical placement of objects onto par

ticular processors may differ between different executions of an application. As a

result, copying th a t was simply an artifact of the placement of interacting objects

would potentially yield different results with different placement strategies. Hence

we chose to impose copying semantics as a language feature at the domain level.

P re d ic ta b il i ty - Interactions between separate domains entail possible scheduling activ

ities. The scheduling characteristics are generally not part of the language definition.

It is not possible, in the general case, for a programmer to predict the order of eval

uation of independent threads. This means tha t between the time the invocation

of a closure in a different domain is initiated and the time th a t evaluation actually

occurs, the state of the invoking domain could have changed. This could occur if the

invocation was the result of m ake-th read or by use of d e le g a te (see Section 3.8).

If pointers to structured data were passed as arguments, this unpredicatbility of

actual time of use of the arguments would, without explicit synchronization by the

programmer, lead to unpredictable results. Copying the arguments preserves their

values at the tim e of closure invocation. A similar argument can be made regarding

return values.

10

Although we have introduced copying semantics at the inter-domain level, CS is not

intended to be a purely functional language, even at tha t level. The objects themselves can

be, and are, shared, albeit in a m utually exclusive manner. This sharing is accomplished

through the exported interface, which in CS is defined in term s of closures. Thus, when a

closure is transm itted from one domain to another, it cannot be copied, since this would

be tantam ount to copying the entire object and would preclude sharing of objects. Rather,

the closure is transform ed into a gateway, which is an executable object tha t implements

monitor-like access to the shared closure. There is a further operational characteristic

of gateways: in determining the domain in which to evaluate a form, they ensure tha t

control travels to the location of data, so tha t control never acts upon remote data.

As a result of the imposition of copying semantics on inter-domain transactions, it can

be guaranteed th a t no pointers to a dom ain’s m utable structured data exist outside of

th a t domain. Likewise, if a pointer to m utable da ta is found within a domain, it points

to th a t dom ain’s data. These “invariants” have significant impacts on other language

features, notably global variables and storage management.

3.4 Global Values

Another m ajor divergence from standard Lisp semantics involves CS’s treatm ent of global

values. The combined effects of copying semantics and a distributed implementation result

in severe constraints on the use of globals.

As with all other structured data items, the values of globals must exist within some

domain. A distinguished domain exists th a t contains all global values. The language

supports only single assignment of global values.5 The language does not enforce the

single-assignment discipline; i.e., subsequent assignments can be performed, but the lan

guage does not define the results for such assignments. The language also specifies, and

again does not enforce, th a t global values should not be destructively modified.

These restrictions are necessary to m aintain the invariant stated at the end of the

5 A t the tim e the assignm ent is performed, the value is copied into the distinguished dom ain, m ain

taining the invariant o f the last section.

11

previous section, th a t a domain completely encapsulates pointers to its m utable data.

Since globals are not mutable, it is acceptable to have pointers to global data within a

domain; likewise, the im mutability of globals guarantees tha t a global value cannot be

changed to contain a pointer to some dom ain’s private data.

The distributed nature of CS also serves to motivate against multiple assignments to

global variables. Current implementations employ broadcast of global values to repli

cated symbol tables on each of the physical processors. Thus, for shared, read-only data

structures, fast local references are provided.6 A correct implementation of multiple as

signments would require serialization of “simultaneous” assignments to the same variable.

This would require global synchronization mechanisms th a t the design of CS has purposely

avoided.

3.5 Storage A llocation and R eclam ation

A side effect of the complete encapsulation of m utable da ta is th a t storage allocation and

garbage collection can be limited to the scope of individual domains. This reduces the

size, scope, and latency of garbage collections, since collections become strictly local to

the current domain. The roots of the collection are limited to the stacks of any threads

th a t m ight contain pointers into the domain7 and the list of potentially live closures tha t

have been exported to other domains. Global synchronization for allocation and garbage

collection of normal Scheme data structures is unnecessary.

Garbage collection m ust address exported closures, of course. Export information is

kept externally to the domain and is managed on a reference count basis. Therefore,

although garbage collection does not entail any global synchronization, it often results in

message passing to m aintain the reference count of other domains’ exported objects.

6 Read access tim e to globals in CS is identical to that in sequential Scheme.
7 N ote the use of the plural for threads; this apparent violation of the rule o f m utual exclusion is

addressed in Section 3.8.

12

»

3.6 Open Sem antic Issues

Standard Scheme does not include dynamic, or “special,” variable bindings. CS, with its

previously mentioned constraints on global variables, provides no support whatever for

dynamic variables.

One m ajor facility th a t is not yet provided is fully general continuations. The dis

tributed nature of CS implies tha t the representation of a continuation is distributed. At

a minimum, the continuation includes the stack(s) associated with a thread, portions of

which exist on each node visited by a thread. Full continuations, while not conceptually

difficult, promises to be an expensive facility.

The current error handling facilities are rudim entary at best. Scheme specifies little

in this respect, so we have turned to Common Lisp for a mechanism. Limited forms of

catch and throw are supported. A special error value is provided to communicate an error

term ination of a remote procedure invocation. No facilities currently exist for pruning

task trees descended from error-producing branches.

3.7 Concurrency

The potential for concurrency exists when multiple threads of control exist and those

threads are executing in different domains. Other factors m ust be considered to deter

mine whether physical concurrency will actually be realized. One factor is the physical

placement of the domains on nodes within the system; this is discussed in Section 5. An

other factor is the interaction of the various threads and their “footprint” within the space

of domains. When a thread executing in one domain invokes a closure residing in another

domain, the thread will execute in (and “occupy”) that other domain if it is not currently

occupied; otherwise it will wait to enter th a t domain. W hat about the invoking closure’s

domain? T hat domain will remain occupied while the thread is executing, and while it

is waiting to execute, if tha t case occurs, in the other domain. The th read’s “footprint”

covers all of the domains th a t it simultaneously occupies.

13

(define (first-fn-maker)

(let ((other-domain (make-domain second-fn-maker ’second-fn)))

(lambda (x)

(other-domain x))))

(define (second-fn-maker name)

(lambda (x)

(display name)

(nevline)

(display x)

(newline)))

(let ((first-fn (make-domain first-fn-maker)))

(first-fn ’some-argument))

In this example, we sta rt by creating a new domain th a t contains and returns just

one closure. This closure is saved in the variable f i r s t - f n . W ithin th a t closure the

variable o ther-dom ain is bound to another closure residing in another newly created

domain. W hen f i r s t - f n is invoked, the current thread of control enters the domain

containing f i r s t - f n . This domain is now occupied; until the call on f i r s t - f n returns,

no other thread can enter tha t domain. Now, in the body of f i r s t - f n , the closure stored

in o ther-dom ain is invoked. The current thread enters the domain in which this second

closure resides, occupying it, too. After displaying the variable name and the argument

x, the second closure returns. Its domain is now “unoccupied.” The first closure likewise

returns, rendering its domain unoccupied, too.

Pairs (or groups) of threads interacting in the same domains must take care to avoid

deadlock. D e leg a te (see Section 3.8 is one way minimize this situation). A single thread

executing in several domains generally can not cause deadlock; an exception is described

in Section 6. The constraint th a t only a single thread may occupy a domain does not

preclude a thread from re-entering a domain multiple times without intervening exits

from the domain. At creation, a thread is assigned a unique, system-wide identifier. Using

14

this identifier, the runtim e system determines whether a thread attem pting to enter an

occupied domain is actually the thread currently occupying it. In th a t case, the thread is

allowed to enter, even if other threads are queued waiting to enter.

3.8 D elegation

There are times when m aintaining the regimen of a thread occupying a domain from clo

sure invocation until return from tha t closure is too restrictive. The function delegate

provides a way for a thread to leave the current domain without exiting the procedure

through the normal return-unwinding route. Delegate takes at least one argument, a

function object, and applies it to the rest of the arguments, if any. Before the application

occurs, however, the thread “leaves” the current domain, causing it to be unoccupied, so

th a t some other thread may enter the domain. The thread then performs the applica

tion, observing the normal rules for entering new domains (or the original domain, if the

function object specifies th a t domain); Section 4.1 describes how a th read’s new location

is determined. W hen the function object returns, the thread must re-enter the original

domain; this re-entry once again observes the rules of exclusive access to the domain. The

thread may well be queued waiting to re-enter the domain. The return value of delegate

is the value returned by the function object.

(define (manager workers)

(let ((jobcount 0))

(do ((w workers (cdr w)))

((null? (cdr w)) (set! (cdr w) workers)))

(lambda (job)

(let ((worker (car workers))

res)

(set! workers (cdr workers))

(set! res (delegate worker job jobcount))

(set! jobcount (+ jobcount 1))

res))))

15

The manager procedure, when called with a list of “worker” closures, circularizes the

list and returns a closure that, given a “job” to be done, assigns tha t “job” in a round-robin

fashion to the next worker. The “manager” uses d e le g a te to make the assignment, so

th a t it is immediately available to respond to another request to assign another job. Note

th a t the manager has been constructed in such a way th a t its state is consistent at the

point d e le g a te is used, since another thread may enter the manager before the delegated

one returns. Also note th a t j obcount is only incremented after the delegated thread re

enters the domain. Suppose th a t v o rk e r returns as its value its third argument, in this

example j obcount. It is not necessarily the case th a t r e s and j obcount will be equal

after the return from d e le g a te , since other threads may have entered and completely

transm itted the procedure in the meantime.

4 Specifying Concurrency and Synchronization

In CS, concurrency is explicitly specified by the programmer through the action of creating

a new thread of control to evaluate some function. The related syntax is (m ake-th read

<procedure> . < args>), which is similar to apply , except th a t the application occurs in

a new thread. M a k e - th re a d was introduced earlier, but its behavior is somewhat more

complex than indicated by th a t simple exposition. The actual activities it performs are

as follows:

• determine from the function object the initial domain of execution for the new

thread;

• perform a structure-preserving copy of the arguments, if any, for the function object;

• initiate creation and subsequent scheduling of a new thread;

• create a placeholder to receive the value of the th read ’s evaluation and return th a t

placeholder.

Each of these activities is explained in more detail in the following sections.

16

4.1 Initial Thread Location

The domain within which a newly created thread initially executes is determined by the

nature of the function argument to m ake-th read . If the function is not a closure, then

the thread will be started in the current domain. The new thread must obey the usual

rule of exclusive access, of course, so, in the la tter case, it will not start until the thread

th a t created it causes the current domain to become unoccupied (either by returning out

of it or by performing a d e le g a te) .

If the function is a closure, the new thread will start in the domain tha t contains the

closure. Were every thread to start in the current domain, a new thread would not actually

s ta rt until its creator left the current domain, severely limiting realizable concurrency.

(define (thread-maker closure-list)

(let ((results #f))

(do ((c closure-list (cdr c)))

((null? c))

(set! results (cons (make-thread (car c)))))

(do ((r results (cdr r))

(ans 0))

((null? r) ans)

(set! ans (+ ans (car r))))))

Assume th a t c l o s u r e - l i s t is a list of closures in domains other the one where

th read -m ak er is invoked. Further assume tha t each of these closures will return some

integer of interest. After creating the threads and collecting the resulting placeholders,

th read -m ak er proceeds to sum the results. Since + is strict in its arguments, it will block

if any of the threads have not completed and returned a value by the time + needs th a t

value. Now consider what would happen if the threads did not s ta rt in the other domains,

but rather started in the current domain. The computation would deadlock, since the

main thread will not leave the th read -m ak er function (and therefore will obviously not

leave th rea d -m ak e r’s domain) until all of the new threads have finished. But the new

threads would not s ta rt until the main thread left the domain.

17

4.2 A rgum ent Copying

M ake-thread always copies the arguments provided (beyond the first one, the function

object). In the case where the function object is a closure residing in another domain, the

arguments are copied into th a t domain in keeping with the copying semantics discussion

in Section 3.3. In the case of a non-closure function object, or a closure tha t resides in

the current domain, the arguments are still copied, even though there is no crossing of a

domain boundary. This behavior ensures th a t when the thread starts, its arguments will

be unchanged from their values at the time the thread was created. If the actions of the

function are intended to produce side-effects to structured d ata shared with other threads,

such da ta m ust be accessible in the function’s environment rather than being passed as

arguments.

4.3 Thread C reation and Scheduling

M ake-thread initiates the creation of a new thread. This does not imply anything about

when the thread will actually be started, or even when it will be created. It is not

necessarily the case th a t the thread has been created when m ak e-th read has returned,

especially in a multi-node system where the thread may actually be created on a different

physical node. There is, in fact, no guarantee tha t the threads created by sequential calls

on m ake-th read will be created or scheduled in th a t same sequence. Occasionally, some

guarantees about relative scheduling are useful. M ake-acked-thread guarantees th a t the

thread it creates will be scheduled before other threads created in the same target domain

by subsequent calls to m ake-th read by the same originating thread. Suppose two threads

called A and B, executing concurrently (necessarily in different domains), both start a

number of threads in a third domain using m a k e -a c k e d -th re a d . The threads started

by A will s ta rt in the same order tha t A created them; likewise for those created by B.

Nothing, however, is implied or guaranteed about the order of v4’s children with respect

to B's and vice versa.

18

4.4 R eturn Value

Since m ake-th read may return before the new thread has a chance to return a result, a

placeholder is “attached” to a thread and this placeholder is returned by m ake-thread .

An alternative procedure, m ake-orphaned-th read , is provided for use when no result is

expected and the thread is created for the side-effects it will produce. The return value

of m ake-o rphaned-th read is simply # f and no placeholder is created. This form can be

an im portant optimization tool. Not only are the costs associated with creation and later

reclam ation of the placeholder saved, but a return of control by the thread is avoided.

4.5 P laceholders

A p la c e h o ld e r is a first class object in CS th a t can be allocated independently of creation

a new thread. The standard procedure m ake-p laceh o ld er will return a new, unresolved

placeholder. An unresolved placeholder is one tha t has not yet been given a value. At

tem pting to use the value of an unresolved placeholder in a strict operation causes the

current thread to block. The blocked thread will wait until the placeholder receives a

value, a t which time the thread will be allowed to proceed.

Placeholders can receive values in two ways. First, the placeholder associated with

a thread by m ake-th read will receive a value when the thread completes execution. In

this case the value of the placeholder is the value returned by the thread. Second, a

placeholder may be explicitly given a value by the d e te rm in e function, which takes two

arguments, an unresolved placeholder and the value it is to be given. If the placeholder

already has a value, d e term in e signals an error. The programmer can test whether a

placeholder has a value using the function determ ined?. This function takes a single

argument, which should be a placeholder. It returns # t if the placeholder has a value or

f if it does not. Note th a t it is possible to use d e term in e explicitly to set the value of a

placeholder associated with a thread. In this case, the thread will cause an error when it

completes and an a ttem pt is made to place the return value in the placeholder.

Because they can be separately allocated and explicitly determined and tested, place

holders provide a mechanism for explicit synchronization in CS programs. There is an

19

additional function, to u ch which explicitly synchronizes on a placeholder. Given a single

argument which is an unresolved placeholder, to u ch causes the current thread to block

until the placeholder receives a value. If the argument is a resolved placeholder, to u ch

returns the placeholder’s value; if it is any other data type, to u ch simply returns its ar

gument. Touch is analogous to Common Lisp’s i d e n t i ty function, except th a t it is strict

in its argument. -

(d e f in e (m ake-worker obj go-ph done-ph)

(lam bda () '

(to u ch go-ph)

(munge o b j)

(d e te rm in e done-ph ’d o n e)))

(d e f in e (w orker-m gr o b j - l s t)

(l e t ((g o -p h (m ak e -p lace h o ld e r))

(done-phs ’ ()))

(do ((o b js o b j - l s t (c d r o b js)))

((n u l l ? o b js) # f)

(s e t ! done-phs (cons (m ak e-p laceh o ld er) d o n e-p h s))

(m ake-th read

(make-domain

m ake-worker (c a r o b js) go-ph (c a r d o n e -p h s))))

(d o -m a n a g e r ia l- s tu f f o b j - l i s t)

(d e te rm in e go-ph ’go)

(do ((done done-phs (c d r d o n e)))

((n u l l ? done) # f)

(to u ch (c a r d o n e)))))

In this example, m ake-worker returns a closure th a t will perform some task after its

creator frees it to do so. This delay is achieved by touching the argument go-ph, which

should be an undeterm ined placeholder. After it performs the munge task, it signals

20

completion of the task by (d e te rm in e done-ph ’done). Worker-mgr creates one worker

object for each object in the list passed to it. Each of these workers exists in its own

domain (and so can potentially run concurrently with the other workers). In addition, it

starts threads for running each of the worker objects. Then it performs some unspecified

adm inistrative tasks with the list of objects and finally frees the workers to perform their

individual tasks by (d e te rm in e go-ph 'g o) . The manager function waits for all the

workers to finish by touching the list of placeholders associated with the workers.

Touch has an optional second argument. If this second argument is missing or is

t , then to u ch behaves as previously described. If the second argument is given and

is not # f , then to u ch will leave the current domain unoccupied if it is blocked because

the first argument (the placeholder) is unresolved. The motivation for this behavior

is similar to th a t for d e le g a te : the programmer may wish to allow multiple threads

to begin some potentially blocking activity within a domain, w ithout excluding other

threads. This is an exception to the m utual exclusion rule; hence the syntax requires

explicit specification of the exception. As with delegate, the programmer is responsible

for ensuring the consistency of shared data.

5 N od es and G enerators

CS is designed to run on systems of physically distributed processors or nodes. Several

global variables are available to provide the program with information about the configu

ration of the system. * P e -s e lf * contains the zero-relative logical node number; it will, of

course, differ depending on which node a thread is running on. *Maxpes* is the number

of nodes in the system; it will always be greater than zero.

At system startup, each node has (a t least) one domain. The function i th -g e n , given

a non-negative integer argument n, will return a closure residing in the initial domain on

node (mod n *maxpes*). This closure is a generator. Its purpose is to initiate evaluation

on th a t other node. The generator closure takes its first argument, a function object, and

applies it to the rest of the arguments. Its result is the value returned by the application.

21

Since the generator is a closure, it will enter the domain it resides in on whatever node

the domain exists ju st as any other closure. It is usually the case tha t the function object

passed to the generator should not be a closure, since invoking tha t closure within the

generator will entail entering the closure’s domain. This is not usually the intended use

of a generator. Generators are usually used either to distribute “pure” com putations or

to create new domains on other nodes. '

(let ((i (+ *pe-self* 1)))

(set! a ((ith-gen i) fact 99)))

Assume tha t f a c t is not a closure, tha t *maxpes* is greater than 1, and th a t * p e - s e l f *

is 0. This sequence will result in the evaluation of (f a c t 99) on node 1 within the domain

th a t contains node l ’s generator closure. We have here an example of distribution of

com putation with no concurrency, since only one thread is involved. Note th a t the first

assumption is crucial. If f a c t were a closure, then evaluation of (f a c t 99) within the

generator (and its domain) would in fact entail entry into the domain containing f a c t , as

noted above.

(set! i (+ *pe-self* 1))

(set! a (make-thread (ith-gen i) fact 99))

(do-something-else)

(print a)

W ith the same assumptions as before, this sequence not only distributes the com

putation but contains potential concurrency, since a new thread has been introduced.

D o -so m eth in g -e lse may execute concurrently with f a c t provided tha t node 1 is not

busy, node l ’s generator is not currently “occupied,” and d o -so m e th in g -e lse takes long

enough for f a c t to be invoked on node 1.

In normal practice, the function argument to the generator is often make-domain. The

new domain created by make-domain resides on the node where make-domain is invoked.

Thus, generators can be used to spread domains and the closures they contain across the

available nodes.

22

(define (worker-mgr obj-lst)

(let ((go-ph (make-placeholder))

(done-phs ’()))

(do ((objs obj-lst (cdr objs))

(node 0 (+ node 1)))

((null? objs) #f)

(set! done-phs (cons (make-placeholder) done-phs))

(make-thread

((ith-gen node) ’

make-domain

make-worker (car objs) go-ph (car done-phs))))

(do-managerial-stuff obj-list)

(determine go-ph ’go)

(do ((done done-phs (cdr done)))

((null? done) #f)

(touch (car done)))))

Worker-mgr is the same function used in Section 4.5 except th a t it now produces

potential concurrency. The do-variable node is used in conjunction with i th -g e n to

spread the workers across the available nodes in a round-robin fashion. The sequence of

events for each invocation of m ake-th read is as follows:

1. the argument to m ake-th read is evaluated; this results in the next four events;

2. (i th -g e n node) returns a closure which is the generator for some node;

3. the generator closure, which resides in its own domain, applies make-domain to the

arguments m ake-worker, (c a r o b js) , etc.;

4. make-domain creates a new domain on the same node as the generator, enters tha t

domain, and applies make-worker to the remaining arguments;

5. m ake-worker returns a closure to make-domain, which returns it to the generator

which also returns it; this is the argument to m ake-thread;

23

6. m ak e-th read creates a thread with initial domain determined by the its argument

and which may well be on another node;

7. m ake-th read returns a placeholder.

6 D elay Q ueues .

Although placeholders provide a powerful synchronization device, they are not always ap

propriate. For instance, it is sometimes desirable th a t the interacting dbjects not contain

specific synchronization which would limit the generality of their use. Another mechanism,

the delay queue[Nie87], is provided th a t allows methods within an object to control the

availability of its methods. A delay queue is similar to a condition variable in the monitor

construct[Hoa74], The function m ake-delay-queue, given a closure, creates a delay queue

and associates it with tha t closure. The delay queue can be either “open” or “closed.” A

thread invoking a delay-queue associated closure from outside the closure’s domain can

only proceed, i.e., enter the domain, if the delay queue is “open.” This constraint is in

addition to the m utual exclusion property of domains. If the delay queue is “closed,” the

thread will wait outside the domain until the delay queue is opened. The thread does not,

therefore, occupy the domain, which would prevent other threads from entering it. This is

necessary, since a closed delay queue can only be opened by some other closure (method)

which contains the closed delay queue in its environment. T hat is, a thread must be able

to enter a domain in order to open a delay queue belonging to th a t domain.

(define (bounded-buffer)

(letrec

((buffer #f)

(full? #f)

(get-method

(make-delay-queue

(lambda ()

(set! full? #f)

24

(dqopen put-method)

(dqclose get-method)

buffer)))

(put-method

(make-delay-queue

(lambda (val)

(set! full? #t)

(set! buffer val)

(dqclose put-method)

(dqopen get-method)))))

(dqclose get-method)

(dqopen put-method)

(lambda (m)

(if (eq? m ’get-method)

get-method

(if (eq? m ’put-method)

put-method

(error "bounded-buffer: no such method"))))))

(define (producer sink)

(do () ()

(sink (produce-a-datum))))

(define (consumer source)

(do () ()

(consume-a-datum (source))))

(define (manager)

(let* ((buf (bounded-buffer))

(p (make-thread

(ith-gen 1) producer (buf ’put-method))))

25

9

(c (make-thread

(ith-gen 2) consumer (buf ’get-method)))))))

In this example, the manager function creates a bounded buffer (which, for simplic

ity ’s sake is of size one) and two other objects, a producer and a consumer. The man

ager connects the producer and consumer by passing them the bounded buffer p u t and

g e t methods, respectively. The buffer performs the necessary synchronization without

any “knowledge” of this synchronization in either the producer or consumer. It uses

m ake-delay-queue to cause the two methods (closures) tha t it exports to be associated

with delay queues. It then opens and closes the delay queues as its internal state dictates.

6.1 D elay Q ueues and Dom ains

Delay queues are attributes of a domain; this has a number of implications for their use.

Their scheduling characteristics are only enforced at domain boundaries. This means tha t

a thread already executing within a domain can invoke a “closed” delay queue/closure

and it will not block. Were it to block, the domain would be permanently deadlocked,

since the occupying thread would be blocked and no other thread could enter the domain

to open the delay queue. If it is necessary for such a thread to observe the delay queue

regimen, it should use d e le g a te to leave the domain before trying to enter the delay

queue.

The delay queue primitives (those already mentioned, plus dq-open?) are only valid

within the domain containing the closure and associated delay queue. Calling any of these

functions with a closure residing in another domain is an error. One implication of this is

th a t control of delay queues can only occur within the domain containing the associated

closure. Further, it is not possible to determine the state of a delay queue from outside

the domain it resides in; in fact, it is not even possible to find out if it is a delay queue.

7 A Short Exam ple

The following simple example computes factorial in a distributed manner.

26

(define g ra in - s iz e 10)

(d e f in e (p a r t i a l - f a c t s t a r t end p ro d u c t)

(i f (= s t a x t end) '

(* end p ro d u c t)

(p a r t i a l - f a c t (- s t a r t 1) end (* s t a r t p ro d u c t)))) .

; ; ; P o r t io n o u t th e work in g r a in - s iz e chunks

(d e f in e f a c t- a u x

(lam bda (low h ig h)

(i f (> (- h ig h low) g r a in - s iz e)

(l e t ((r e s t

(m ake-th read (i th -g e n (+ * p e - s e l f * 1))

f a c t- a u x low (- h ig h g r a in - s i z e))))

(* (p a r t i a l - f a c t h ig h (- h ig h (- g r a in - s iz e 1)) 1)

(to u ch r e s t # t)))

(p a r t i a l - f a c t h ig h low 1))))

(d e f in e (f a c t n)

(f a c t - a u x I n))

The function p a r t i a l - f a c t recursively computes the product of the integers in the

range s t a x t through end (inclusive). F ac t-au x is the actual agent of distribution. It

partitions the range of (assumed positive) integers passed as arguments: one portion to

be passed to partial fact within the current thread and the rest to be processed by a new

thread on another node (by means of i th -g e n) . Note the use of to u ch with its optional

second argument; for a sufficiently large range of integers, i th - g e n ’s modulo calculation

; ; ; Compute a p a r t i a l range fo r the f a c t o r i a l .

27

will eventually wrap around to a node already in use. To avoid deadlock, the domain

is left unoccupied so th a t subsequent threads, whose values will be needed to complete

earlier threads, will be available.

8 T he P rototyp e Im plem entations

8.1 A rchitectural Support

The decision to avoid implementing external data pointers was based in part on the

expectation th a t concurrent Lisp would always be run on general-purpose processors; tha t

is, on processors with no integral support for runtim e detection and resolution of external

references. It was expected, however, th a t support external to the processor would be

available to absorb some of the cost of communications. This, in fact, is the case with the

Mayfly architecture and to a lesser extent with the BBN GP1000.

To date, three different implementations of CS have been produced. They vary in how

they utilize the Mayfly model in which each processing element is really a shared memory

parallel processor with an Evaluation Processor (EP) which executes the current task and

a Message Processor (MP) which is responsible for task management, inter-node message

traffic, and message preparation. The first of these is a uniprocessor im plementation,

which served as a testbed for the basic mechanisms of multiple threads, m utual exclusion,

and copying semantics. It remains as a baseline implementation on which initial devel

opment and debugging of CS programs can be performed, free from the effects of “true”

concurrency. The other two implementations, the BBN GP1000 multiprocessor version

and the networked workstation version, both deliver true concurrency but at widely sep

arated points in the spectrum of m ultiple/cooperating computers. Each implementation

has made different contributions to the ongoing development of the CS model.

8.2 The G P1000 Im plem entation

The GP1000 is a shared memory multiprocessor of the NUMA (non-uniform memory ac

cess) variety. As a shared memory machine, it offered the opportunity to experiment with

28

9

the Mayfly model in which message transmission and reception time, including copying

time necessitated by copying semantics, could be overlapped with evaluation of application

code. Therefore, we implemented individual PEs as asymmetric pairs of GP1000 nodes,

sharing memory. Message passing communication between the MPs was straightforward

to implement using shared memory.

Using the GP1000, it has been possible to develop and test the kernel mechanisms

for creating, managing, and scheduling threads and performing communications tasks on

an MP while concurrently running application code on an EP sharing the same physical

memory. We have a high degree of confidence tha t the large portion of CS support code

comprising these mechanisms will perform correctly on the Mayfly architecture when it

becomes available, which was the initial motivation for the GP1000 implementation.

While GP1000 is a NUMA machine, the Mayfly PE is an Uniform Memory Access

(UMA) machine, and the CS support code is currently tailored for the UMA architecture.

As a result, the performance of the current GP1000 implementation is poor and its primary

value is as a prototype.

8.3 T he N etw ork Im plem entation

A networked implementation is used for debugging the CS runtim e system and to develop

parallel application programs in a truly concurrent environment. Although the m ajority

of the software is identical for all of the implementations, the networked version differs

markedly from the Mayfly model since we use only one physical processor for each PE. The

single processor divides its time between MP tasks and applications code. Communication

between PEs is implemented as point-to-point UDP links [FJSW85], with a minimal

reliability protocol provided by the CS kernel.

The communication characteristics of the networked version differ from the Mayfly

model. Not only is message overhead not offloaded to an MP, but message latency is

much higher than in either the GP1000 or the Mayfly architecture. In addition to these

direct effects, there are indirect effects. For instance, message passing activity involves

a switch to the kernel’s context, and potentially can result in another process being run

29

while CS waits. Such context switches will not occur on the Mayfly, and on the GP1000

will never occur as a side-effect of message passing. This difference in communications

costs has an effect on the granularity of tasks th a t can be usefully run in parallel.

One useful capability available with the network implementation is the ability to start

fully interactive Lisp sessions on each of the remote processors. This allows the applica

tion programmer to use the debugging tools provided by Lisp such as trace, backtrace,

etc., on each node. Interaction is provided using optional “xterm ”8 windows which are

“connected” to each Lisp session using TC P sockets. W hen xterm windows are not used,

only the “root” node is interactive, and output from remote nodes is displayed by sending

normal CS messages to the root node. In this way, the remote nodes function more like

Mayfly processing elements, waiting for messages to arrive to initiate work. The value of

the networked version is in prototyping applications. Its advantages are the common avail

ability of networked workstations and the debugging environment of separate toploops for

each physical processor.

9 T he M ayfly A rchitecture

To provide high performance support of Concurrent Scheme, an architecture needs at

least the following characteristics:

• low latency, high-bandwidth inter-node communications;

• fast (or overlapped) message preparation, transmission, and receipt;

• fast (or overlapped) task scheduling;

• fast (or overlapped) context switch;

• sufficient memory to hold a reasonable population of tasks;

• sufficient memory bandwidth to support concurrent evaluation and message passing

activities.

8 X te r m is the term inal em ulator for the X W indow System .

30

The Mayfly architecture[Dav89] is a distributed memory machine consisting of a num

ber of nodes or PEs. Each PE is connected to six of its neighbors in a twisted torus via

fast serial lines. Fully configured Mayfly “surfaces” come in a selection of sizes; the first

version will be a nineteen PE surface. The Mayfly is scalable in terms of these surfaces;

i.e., one could imagine tiling a plane with these nineteen PE surfaces. The Mayfly nodes

and interconnect are designed to display the characteristics listed above. Each node ig

comprised of 9 subsystems:

1. a Post Office chip;

2. a message processor (MP);

3. an evaluation processor (EP);

4. a floating-point coprocessor;

5. a dual-ported da ta cache;

6. separate instruction caches for each of the two processors;

7. a moderately-sized (8 megabytes) main memory;

8. a custom context cache device.

The Post Office chip[SRD86] is the communications engine connecting each individual

PE with six of its neighbors. Together with the topology, it provides the low latency

and high-bandwidth necessary to support many distributed, message-passing objects. It

provides packet buffering, flow control, and routing services, so the task of message-passing

as seen by the rest of the PE consists largely of address calculation (which can be table

driven) and packetization/de-packetization.

Each PE is actually an asymmetric shared memory parallel processor with an EP and

an MP; both of which are one chip implementations of the HP Precision Architecture.

The EP evaluates application code. A task on the EP runs to completion, times out, or

requests a service from the MP, such as invocation of a gateway procedure. When the EP

cannot continue execution of the current thread for any of these reasons, it performs a

31

context switch and starts another available thread from a queue of threads m aintained by

the MP. The MP performs system services such as task scheduling, message preparation

(including copying) and reception, and driving packets to/from th& Post Office chip.

Message preparation includes the overhead of copying values between domains. This

is true even for in tra-PE domain interactions, so th a t on a Mayfly system the costs of

copying semantics will be absorbed by the MP through the overlap of its execution with

th a t of the EP. The same approach is used to absorb the cost of scheduling.

Achieving fast context switch using general purpose processors is more difficult. Early

designs of the Mayfly actually included a second EP; it was intended th a t the two E P ’s

could alternate roles, one actively processing while the other performed a context switch.

This design was considerably more complex, requiring a third instruction cache, a third

port to the data cache, switching logic for FP the coprocessor, and inter-EP interrupt

logic. The second EP was abandoned in favor of a context cache. The context cache (CC)

is actually a separate memory module divided into a fixed number of caches. The CC also

has a co-processor interface to each of the EP and MP. Through these interfaces, each of

the EP and MP can select a particular module which will respond to memory requests lying

within a pre-defined context cache address range. Values comprising a task descriptor are

assigned addresses in this range. A context switch then reduces to selecting the number

of a new context module (presumably from a queue of ready contexts) and making th a t

the current context via the CC coprocessor interface. The CC also implements a cache

for the top 128 entries of the control stack.

Adequate memory bandwidth is provided by the combination of caches: separate

instruction caches for the EP and MP, the shared data cache, and the CC. In addition to

speeding up context switches, the CC serves to diminish demands on da ta cache and main

memory bandwidth, since references to values in the task descriptor and the control stack

are serviced by the CC. Furthermore, since contexts need not be saved to /restored from

main memory (except in the case of context cache overflow), main memory bandwidth

demand is further reduced.

32

10 R ecent Changes

Since the time the workshop was held, Concurrent Scheme has m atured. One m ajor area

of change has been scheduling and synchronization. The introduction of delay queues was

the prim ary development, with the addition of a version of to u ch th a t left the domain

unoccupied was a pragm atic addition motivated by certain areas of application (notably,

non-object oriented applications). The other m ajor development lay in coalescing the two

m ajor functions of domains. Originally two kinds of domains were specified: temporal

and spatial, which, respectively, addressed the issues of m utual exclusion and copying

semantics. Experience in developing applications indicated th a t copying semantics was

generally not specified except in the presence of m utual exclusion; hence, the two kinds

of domains are presented as one to users. At the implementation level, spatial domains

remain a useful device.

11 C onclusion and Future Work

Make—th re a d ’s similarity to future make it the least interesting mechanism added in cre

ating Concurrent Scheme. The more pervasive change of copying semantics and the fun

dam ental mechanisms of domains and gateways are the contributions th a t set Concurrent

Scheme apart from previous efforts.

Our main parallel constructs, domains, are small, dynamically-created, monitor-like

objects, which provide the basic m utual exclusion mechanism. We are currently tuning

the existing implementations and preparing to transport the system to a two PE Mayfly

in May 1990.

We have handled the problem of data in a distributed system by specifying m utual

exclusion between threads and by copying da ta sent across domain boundaries. Aside

from the m ajor im pact of copying semantics, the language supported is standard Scheme.

The most problematic part of our current system is th a t it requires an understanding

of closures and an appreciation for the subtle issues of what syntax leads to creation

of closures. It is easy for an application programmers to produce a closed procedure

33

unwittingly by macro expansion (our Scheme does have compile-time macros). Conversely,

not all parallelism fits into our model; programmers needing to distribute computation

of a non-closed function are forced either to use the generator functions, or to create

closed functions based on unused environment’s.9 We are investigating making domains

a first-class da ta type, but the problem remains open.

As noted earlier, the cost of fully-general, structure-preserving copying can be sub

stantial. We are exploring methods to decrease this cost in two ways:

• by providing syntax to specify th a t structure preservation is not required;

• by providing copiers tailored to types of the arguments and /o r result values specific

to a particular gateway.

In the longer term , implementation of an object system is envisioned which implicitly

uses the CS mechanisms, thereby hiding them from the programmer. Eventually, we plan

to create a parallel Utah Common Lisp, but the size of Common Lisp persuades us not

to divert our efforts in this direction at the current time.

R eferences
[BH77] H. Baker and C. Hewitt. The Incremental Garbage Collection of Processes. Al

Memo AIM-454, MIT Al Laboratory, Cambridge MA, December 1977.

[Dav89] A. Davis. The Mayfly Parallel Processing System. Technical Report HPL-
SAL-89-22, Hewlett-Packard Research Laboratory, March 1989.

[DR85] A. L. Davis and S. V Robison. The Architecture of the FAIM-1 Symbolic
Multiprocessing System. In Proc. IJCAI-85, pages 32-38, 1985.

[FJSW85] E .J. Feinler, O.J. Jacobsen, M.K. Stahl, and C.A. W ard. DDN Protocol Hand
book, Volume Two, DARPA Internet Protocols. Sri International, 1985.

[GM84] R.P. Gabriel and J. McCarthy. Queue-based Multi-processing Lisp. In Con
ference Record of the 1984 AC M Symposium on Lisp and Functional Program
ming , pages 25-44, August 1984.

9T his practice is suspect, since com piler technology can som etim es optim ize away the unneeded

en vironment s .

34

9

[HJ85] R.H. Halstead Jr. Multilisp: A Language for Concurrent Symbolic Compu
tation. Transactions of Programming Languages and Systems, 7(4):501-538,
October 1985.

[Hoa74]

[Mil87]

[Nie87]

[RC86]

[SRD86]

C.A.R. Hoare. Monitors: An Operating System Structuring Concept. Com
munications of the ACM, 17(10):549-557, October 1974.

J. S. Miller. MultiScheme, A Parallel Processing System Based on M IT
Scheme. PhD thesis, Departm ent of Electrical Engineering and Computer
Science, MIT, August 1987.

O. M. Nierstrasz. Active Objects in Hybrid. In Object-Oriented Program
ming Systems, Languages, and Applications 1987 Conference Proceedings,
pages 243-253, 1987.

J. Rees and W. Clinger. Revised3 Report on the Algorithmic Language Scheme.
SIG P LA N Notices, 21(12):37-79, December 1986.

K. Stevens, S. Robison, and A. L. Davis. The Post Office: Communications
Support for D istributed Ensemble Architectures. In Proceedings of the 6th
International Conference on Distributed Computing Systems, pages 160-166,
May 1986.

35

