
by

Gregory P. Maxey and T.lliott I. Organick

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

• UUCS - 79 - 111

CASL - A Language for Automating the
Implementation of Computer Architectures *

*This research is sponsored in part by the Burroughs Corporation.

by

G r e g o r y F. M a x e y and E l l i o t t I. O r g a n i c k

D e p a r t m e n t of C o m p u t e r Science
U n i v e r s i t y of U t a h

Salt Lake City, U t a h 84112

Abstract

The C o m p u t e r A r c h i t e c t u r e S p e c i f i c a t i o n L a n guage (C A S L) , -
d e s c r i b e d in this paper, is i n t e n d e d for use by c o m p u t e r a r c h i t e c t s
as a D e s i g n A u t o m a t i o n tool for e x p e r i m e n t i n g with new a r c h i t e c t u r e s .
C A S L is a state m a c h i n e d e s c r i p t i o n l a n g u a g e e s p e c i a l l y u s e f u l for
d e s c r i b i n g d i g i t a l systems at the " r e g i s t e r transfer" level and
d e s i g n e d to m e e t the needs of the c o m p u t e r a r c h i t e c t as a d e s i g n
and d o c u m e n t a t i o n medium.

A m a c h i n e d e s c r i b e d in C A S L m a y be d e c o m p o s e d into c o o p e r a t i n g
M o d u l e s , each r e p r e s e n t i n g an a s y n c h r o n o u s finite state machine.
E a c h M o d u l e c o n s i s t s of an A b s t r a c t i o n s , Structure, and P r o c e d u r e
section. An a r c h i t e c t may use the A b s t r a c t i o n s section to define
his own d a t a r e p r e s e n t a t i o n s and p r i m i t i v e o p erations. The S t r u c t u r e
s e c t i o n d e s c r i b e s s t r u c t u r a l e l e m e n t s (combi n a t o r i a l and s e q u e n t i a l
h a r d w a r e " b u i l d i n g blocks") and c o n n e c t i o n s (explicit s p e c i f i c a t i o n s
of each data p a t h) . The P r o c e d u r e s e c t i o n is a t e x t u a l (nearly
A L G O L - l i k e) r e p r e s e n t a t i o n of the state t r a n s i t i o n g r a p h and the
sets of c o n t r o l signals issued c o n c u r r e n t l y in each state to drive
the s tructure. S t a t e m e n t s in e a c h s tate are collateral, r a ther
t h a n s e q u e n t i a l , and CASE s t r u c t u r e s are u s e d . f o r c o n d i t i o n a l
s e l e c t i o n of c o n t r o l signals to be i s s u e d by a state. A m a c r o
f a c i l i t y is p r o v i d e d to encode g r o u p s of control signals. •

Our c u r r e n t e f f o r t c e nters on c o m p i l i n g CASi_into m i c r o c o d e d
i n t e r p r e t e r s for the B u r r o u g h s B 1 7 0 0 / B 1 8 0 0 . We foresee r e s e a r c h
a i m e d at c o m p i l i n g C A S L into c e r t a i n VLSI h a r d w a r e i m p l e m e n t a t i o n s .

C A S L - A L a n g u a g e f o r A u t o m a t i n g t h e #
I m p l e m e n t a t i o n o f C o m p u t e r A r c h i t e c t u r e s

*
This r e s e a r c h is s p o n s o r e d in p a r t by the B u r r o u g h s C o r p o r a t i o n .

Our long range goal is the development of a system that accepts a

description of a digital machine's architecture and implements it (i.e., its

representation) automatically. No constraints are placed on the nature of the

implementation. It may be soft, like a microprogram, or hard, like a VLSI chip.

If our efforts are successful, computer architects should be able to

experiment with new architectural features as easily as programmers now

experiment with programming language features. In principle, the architect

can evaluate a design by "exercising" the machine's executable microcoded

representation or, if implemented in VLSI, the machine itself.

As in software development where short turn-around time is always a key

factor, the potential benefits of the planned system will be realized only

if its use greatly reduces the time and effort required to implement, test,

and refine the machine design. To achieve this, it is crucial that the source

language of this system is a convenient and natural means of conveying the

architect's view of the structure and behavior of his machine.

Certain earlier efforts which led to the design of computer description

languages are the points of departure for the language design reported in

this paper. These earlier efforts (and we make no claim at having a compre­

hensive view) have appeared to us as a bottom-up progression whose steps focus

on successively higher system levels, reflecting the increasing complexity of

computer systems. Chu's CDL (2,3), perhaps the earliest of the "register

transfer" level languages, is aimed primarily at the logic designer's point

of view, while higher in the progression, Bell and Newell's ISPS and PMS lan­

guages (4,5,6) cater more to the view of the system architect. In the latter,

however, certain parts of the system may be described more formally than are

1 . I n t r o d u c t i o n

- 2 -

other parts (5). Our objective is to provide a language in which archi­

tectural- level formal specification of a complete system organization is

feasible and convenient.

We see two essential design principles for a useful architecture des­

cription language.

1. Provide the user

(a) a language whose primitive representational concepts are as

. close as possible to those with which the architect originally

formulated the machine architecture. The architect should not

have a sense of "translating" the machine design into a rela­

tively "foreign" language. .

(b) constructs that provide expressive power for describing appro­

priate detail.

(c) logical segmentation of the job of machine description, so that

anyone using the language is guided to concentrate on one manage­

able aspect of the machine at a time. (e.g., the separation of

a machine description into structural and procedural parts.)

(d) constructs that allow the control of complexity through abstrac­

tion mechanisms (modularization and suppression of detail).

(e) a language that is as natural for the documentation of archi­

tectural ideas as it is for input to a language processor.

- 3 -

2. Assure that the characteristics of the language will not frustrate

automatic implementation, by

(a) omitting constructs that might be used in combination with certain

other language constructs to express ill-defined systems, leading

to impossible or unpredictable situations (e.g. description of an

intentional "race condition").

(b) minimizing the amount of inference required of the language pro­

cessor. The language should not permit description of structure

or behavior that is syntactically correct but architecturally

vague, since this could require the implementation system to be

\
"intelligent" enough to complete the machine design.

Since a good language for describing computer architecture is essential

to the success of the automatic implementation system, the design of the

Computer Architecture Specification Language (CASL) is the first major focus

of our research, and the primary subject of this paper.

1.1 Overview of the paper

We present the main concepts of CASL in Section 2, and we show the

logical separation of computer descriptions into ABSTRACTIONS (Section 2.1),

STRUCTURE (Section.2.2), and PROCEDURE (Section 2.3). Section 3 introduces

the CASL Module, which is useful not only for modularization and creation

of levels of abstraction in a machine design, but also as a mechanism for

specifying additional concurrency. In Section 4, we explain how Input/Output

is expressed in CASL. Section 5 is an example of a piece of digital hardware

- 4 -

described in CASL and shows particular instances of many of the features dis­

cussed in Section 2. Finally, Sections 6 and 7 report on our current research,

future research plans, and conclusions we have been able to draw from the work

so far.

2. The Computer Architecture Specification Language

CASL is a "register transfer" level language that, like ISPS, is intended

for system architects. However, CASL allows one to specify more architectural

detail than instruction set description languages like ISPS. CASL's universe

includes such components as registers, stacks, memories, data transformation

elements, and control elements, along with cables to interconnect them, pack­

aging to partition them into modules, and even simple I/O devices to communicate

with them.

2.1 The ABSTRACTIONS section

Since data representations and primitive operations used in new computer

architectures may vary widely, CASL lets the architect describe his machine

in terms of its own primitives. CASL adapts to the architect's ideas. The

architect tailors CASL to his machine by making various definitions in the

ABSTRACTIONS section. CASL has no "native" character set, no "native" integer

representation, and not even a "native" kind of bit, (although defaults

such as 'O' and '1' for bit values, etc., are provided).

Examples of CASL flexibility:

1. One can specify the number of possible values of a "bit", and then name

and order these values. For example, a "bit" for use in three-valued

machine logic would be specified as having three ordered possible values

with one-character names such as 'O', '1', and *2', or 'i', 'j', and ' k*.

- 5 -

2. Nearly any integer arithmetic may be built in, e.g., 3's complement arith­

metic, by providing the parameters that describe that arithmetic. There­

after, constants and arithmetic operations may be specified as conponents

in that arithmetic.

3. A machine design may use some specified non-standard set of character codes.

4. One can invent new logical operations (as may be needed, for instance, with

multivalued logic) and define symbols to represent them.

2.2 The STRUCTURE section

As in some other computer hardware description languages, there is an im­

portant distinction between description of the structural and procedural aspects

of a computer. However, the distinction is more pronounced in CASL. The STRUCTURE

section of a CASL description completely describes the data-handling structure

of the computer. This includes not only data storage elements, but also data

transformation elements and data paths. The PROCEDURE section which follows

is concerned only with expressing the actions of the controller which activates

the already-specified structure.

Elements

The STRUCTURE section is divided into two subsections: ELEMENTS and

CONNECTIONS. The ELEMENTS subsection specifies structural elements like

registers (including subfields), stacks, random access memories, and "storage

buses". In CASL, "operators" which transform data (combinational logic) are

also specified as structural elements.

The structural elements available in CASL are a set of pre-selected types

of parts whose pre-defined behavior is that of real pieces of hardware. The

- 6 -

characteristics of, for example, a random access memory are pre-defined

except for the word size, number of words, width of the memory address

input, and integer representation of memory addresses. The pre-defined

properties of CASL structural elements include "electrical" details such

as relative timing (e.g., registers are characterized as being conqposed

of Master/Slave flip-flops, although their exact technology such as TTL

or MOS is never specified). In this way, the system architect using

CASL may safely ignore low-level details such as "race" conditions and fan­

out constraints. We observe that the pre-defined nature of structural

elements applies to operators to the extent of defining their "electrical"

properties, without placing any prior constraints on what arithmetic and

logical functions individual operators may be specified to perform in a

CASL machine description.

Connections

CASL emphasizes the importance of providing explicit and formal speci­

fication of all data path connections between pairs of structural elements.

In the CONNECTIONS subsection, one not only specifies the existence of

all data paths, but also any special features that certain data paths may

have. For example, if sign-extension is needed in data transfers from a

12-bit register to a 16-bit register, it is usually performed in the data

path by connecting the highest-order line of the path to the five higher-

order inputs of the 16-bit register. Of course, CASL doesn't require the

architect to give a wire-by-wire statement of the special connections of

this data path; in this case it is sufficient to indicate that the data

carried by this path have a particular arithmetic type.

- 7 -

The CONNECTIONS subsection is an important feature because:

(1) it leads to clearer thinking for the user; he specifies the connections

explicitly in a special section devoted only to that purpose, rather than

implicitly in the PROCEDURE section.

(2) It is the best place to specify interconnections that have special

properties.

(3) It lets the user treat the connections as the important part of the

machine design that it is (especially with growing significance in VLSI of

interconnections relative to gates), and

(4) The language processor can check that the statements in the PROCEDURE

section are consistent with the information supplied in the CONNECTIONS sub­

section.

2.3 PROCEDURE section

The control mechanism of the computer is described in the PROCEDURE

section as a finite state machine (FSM), or as a collection of related

state machines. Statements in the PROCEDURE section fall into four cate­

gories: , v.

(1) ENABLE statements, which enable actions in the data-handling

structure of this Module, . :

(2) Statements for controlling FSM's in subordinate Modules, if any,

(3) Conditional statements, and

(4) NEXT-STATE statements, which specify the state the FSM will enter

for the next "state time".

- 8 -

CASL's FSM "timing" protocols are modeled after those of the Algo-

righms State Machine (ASM) Charts invented by Clare and Osborne (7,8).

Indeed, we may regard the PROCEDURE section as a textual equivalent of

an ASM chart. For a particular state time of the FSM, all of the actions

to be performed are enabled concurrently. Hence the statements in a state

description are collateral rather than sequential. Sequential dependencies

are expressed in terms of state sequencing in the FSM.

Absence of explicit clocking

In CASL, state transitions are asynchronous. There are no built-in

clocks, because it is easier to impose synchronous operation on a naturally

asynchronous system than to try to make a naturally synchronous system cope

with the demands of asynchronous operation. (We all recognize, of course,

that "synchronous" hardware is really asynchronous until we artificially
%

define regular time frames using clocks). The true significance of this

asynchronous operation does not become apparent until we have multiple

FSM's active concurrently.

3. Modules

A computer or other digital system may be described as a hierarchical

network of CASL Modules. There are several (usually interrelated) reasons

for describing a system in this way.

1. Modularity permits the functional decomposition of large systems.

Breaking up the description into Modules can make the design easier

to think about (and therefore easier to create and debug).

- 9 -

2. Descriptions can often be made more compact through the use of

modularity. There is a direct analogy to conventional programming

languages, where certain frequently duplicated pieces of code are

taken out-of-line and made into procedures.

3. The CASL Module provides an additional mechanism for specifying

concurrency. Often the lack of restrictions in the sequencing of

actions is best described by multiple FSM's operating concurrently.

Each FSM is associated with its own Module.

4. CASL Modules can describe how the hardware of a system is actually

divided into physical modules (e.g., a computer system that has

physically independent CPU's that communicate).

While modularity, per se, is not a unique feature among computer des­

cription languages, this architecturally faithful approach to modularity

is unusual in a language above the logic design level. Languages that we

have seen at the system architecture level use procedures or functions (as

in conventional programming languages) to approach the issue of modularity.

CASL's architecturally realistic Modules make it useful for accurate des­

cription of actual hardware modularization.

As always in CASL, the characteristics of the input and output ports

of Modules, along with the timing protocols of CASL FSM's, assure that

there will be no low-level timing problems with inter-Module communications.

3.1 Description

I n S e c t i o n 2 , we d e s c r i b e d t h e d i v i s i o n o f a m a c h i n e d e s c r i p t i o n i n t o

- 10 -

ABSTRACTIONS, STRUCTURE, and PROCEDURE sections, without mentioning Modules.

In a multi-Modular description, each Module is a complete machine description.

Each Module has its own STRUCTURE section and usually also has its own PROCE­

DURE section. Thus there can be more than one FSM in operation at the same

time, introducing "global" concurrency in CASL, as distinct from the "local"

concurrency within the states of individual FSM's. (Each Module may also

have its own ABSTRACTIONS section.)

Module descriptions are never nested within other Module descriptions.

Also, except for its input and output ports, a Module description is com­

pletely independent of where it will be instantiated. An important impli­

cation of this is that a Module's FSM cannot activate any structural elements

of other Modules.

3.2 Instantiation

A Module is instantiated as a structural element within the description

of another Module. It can be instantiated many times and in many different

environments throughout a computer description. The Module instance is just

an ordinary structural element to the Module that contains it; the containing

Module has no access to any of the structural elements inside the Module in­

stance. All communication with the Module instance is through its input and

output ports.

- 1 1 -

There are statements that can be used in the PROCEDURE section of a

Module to activate, and examine the status of, the FSM of any Module that is

instantiated within it. There is also a statement that allows an FSM to stop

itself.

Alternatively, a Module can be instantiated in such a way that its FSM

will be activated automatically as soon as the FSM of the containing Module

is activated, using no statements in the PROCEDURE section.

4. Expressing Input/Output

One problem with computer description languages has been that they do

not usually provide any means for expressing I/O. Implementations generated

from computer descriptions have either been unsuitable for running realistic

programs, or require the use of an auxiliary, implementation-dependent, lang­

uage for this purpose (e.g. TRW's PL/l-like SMITE language supplemented by

assembly language to do I/O (9)). CASL not only breaks this tradition by pro­

viding I/O facilities, but does so with a notation that is consistent with the

rest of the language. Thus, we do not insert ALGOL-like READ and WRITE state­

ments, disrupting the computer description. Instead, the PERIPHERAL_DEVICE

structural element may be specified as a unit record device, a tape drive, or

an addressable device like a disk, drum or bubble memory. Data can be trans­

ferred to or from the device by enabling the data paths that connect the device

to the rest of the computer's structure.

3 . 3 A c t i v a t i o n

- 12 -

The PERIPHERAL_DEVICE specification statement is not intended as a

general I/O device description facility, and so has limited descriptive cap­

ability. There are many specific models of I/O devices that cannot be des­

cribed precisely. Therefore, it is perhaps more correct to say that this

statement specifies certain properties of an interface that has an I/O

device plugged into it. In other words, one can specify â disk drive, for

example, even if one cannot always directly specify a particular type of

disk drive.

5. Illustrative example of a CASL machine description

Rather than describe a toy computer, we have chosen to describe in this

report an actual LSI circuit, the Signetics 8X02 Control Store Sequencer

(Figure 1). While the 8X02 illustration does have the advantages that it is

straight forward to understand, and it is real, there is also a slight dis­

advantage. CASL is really intended for describing computer architecture, not

necessarily general digital hardware; there are a few aspects the 8X02 circuit

that are slightly outside of the intended scope of CASL. Therefore, our illus­

tration should sharpen our understanding of CASL's expressibility limits. In

a subsequent paper, we plan to supply an example CASL description of a machine

design for which CASL is more directly appropriate.

The example supplied here includes a Module description that is a complete

8X02 (Figure 2), and excerpts from another module where an 8X02 is instan­

tiated. We consider the 8X02 description first. The Module heading in Figure

2 gives the type name of the Module ('SIGNETICS 8X02') which will be used in

- 13 -

other modules when specifying instances of this Module. The heading also

includes the names and widths of this Module's input and output ports. Note

that the inputs do not include V and GND, since these have to do with elec­

trical rather than logical specification. Also, we do not include an enable

(EN) input. We explain later why this line is not treated as an input port.

In the ABSTRACTIONS section we have used all three of the optional sub­

sections. In the DATA_REPRESENTATIONS subsection we define an arithmetic

type, named 'UBIN', unsigned binary arithmetic, which is how addresses are

represented in the 8X02. Next, in the OPERATION_DEFINITIONS subsection we

define the symbol '$+' to mean addition in UBIN arithmetic. The statements

in the SYMBOLIC_DEFINITIONS subsection merely give names to some constants.

, In the ELEMENTS subsection (of the STRUCTURE section) there are just

three elements. .

CASL structural element Signetics block(s) of Figure lb

(a) addr reg t ADDRESS REGISTER

(b) addr stack STACK
REGISTER FILE

I
STACK POINTER

(c) incr +1, +2 LOGIC

u- aJ. l o - t o n : ; an"

- 1 4 -

Typing addr_stack as a stack 10 bits wide and 4 deep allows us to subsume

the two blocks of the Signetics diagram. Also note that our description of

the incr operator includes names for its input and output ports ('current_addr'

and 'next_addr' respectively, each 10 bits wide.) The two operations which incr

can perform are named 'by__l' and 'by_2', each accompanied by its definition.

Note the use of '$+' unsigned binary addition; and the constants '1' and '2'

which are each typed as unsigned binary values.

In the CONNECTIONS subsection, each data path is stated. Since each one

is of the same length, ten bits, as indicated in Figure lb, the CASL paths in

this example do not need to be typed or otherwise qualified (as might be the

case where truncation or sign extensions occur on a path.) ‘

The PROCEDURE section begins with the CONTROL_COMBINATIONS subsection. -

Here we define the macro 'BUMP_ADDR_REG', which, when used in the STATES

subsection, will be expanded into the three statements shown.

In the STATES subsection we define the states named 'AWAIT_CLK_LOW',

'AWAIT_CLK_HIGH', 'EXECUTE', and 'GATE_OUTPUT' and their interrelationship

(alternatively expressed in the graph of Figure 3).

AWAIT_CLK_LOW is the starting state for the four-state FSM. The se­

quence of the two states, AWAIT_CLK_LOW followed by AWAIT_CLK_HIGH, detects

the level transitions on the elk input port that correspond to the 8X02

triggering on the rising edge of the clock pulse. Each of these states

contains a single statement which selects the state for the next state

time. The choice of which state is the next is performed by a decode

- 15 -

expression, which is similar to a case statement except that it takes the

place of a value. The value selected by these decode expressions depends

on the data found on the elk input port.

In the EXECUTE state a case statement is used to decode the opcode

that is input to the input port named 'ac'. Note the use of the opcode

mnemonics defined in the ABSTRACTIONS section and used here as selectors

in the case statement. Note also the examples of ENABLE statements. For

example,

ENABLE addr_reg TO incr.current_addr;

enables the data pathway (previously defined in the CONNECTIONS subsection)

that runs from addr_reg to the current_addr port of the operator incr The

next ENABLE statement,

ENABLE incr.by_2;

enables the operator incr to perform the by_2 operation.

It is not necessary to include separate ENABLE statments that push or

pop the stack. This is because statements that enable a data pathway to or

from addr_stack also cause pushing or popping of the stack (also, the stack

can be popped without gating the data to any destination).

After completion of the EXECUTE state, the FSM goes into the state

named GATE_OUTPUT. This seemingly extra state is necessary because the

value that is gated to the input of addr_reg in the EXECUTE state is not

instantly available at the output of the register, as some time is needed

by the register's flip-flops to assume their new states. The new value

appears on the register's outputs only at the very end of the state time

of the EXECUTE state.

t
The other part of the example (Figures 4 and 5) sketches a Module

that contains an instance of the 8X02 (marked by the arrow in the left

margin of Figure 5). The containing Module's STRUCTURE section shows the

specification of some element types that were not demonstrated in Figure 2,

the 8X02 module. For example, we see the use of a subregister (part of the

register named 'control_word'), a random access memory, and of course the

8X02 Module as a structural element. The STRUCTURE shows how the 8X02 might

be connected into a containing system.

Returning to the specification of the 8X02 itself we can point out some

of the more subtle differences between the block diagram description (Figure 1)

and our CASL description (Figure 2).

1. Absence of multiplexers in CASL STRUCTURE section. In Figure lb

there are two multiplexer blocks, yet none is explicitly represented in the

CASL description. In CASL, the fact that more than one data path leads to

the same register as a destination implies the existence of a multiplexer

at the gate level (assuming that tri-state hardware is not used); but multi­

plexers are not given as structural elements. We do not wish to require the

architect to specify (explicitly) the codes to be sent to multiplexers to

select among their input. This detail is to be considered part of the con­

troller rather than part of the data-handling structure. This information is

stated in control terms in the PROCEDURE section, and it is not that difficult

for the language processor to translate it from this form to codes suitable

for controlling multiplexers (and to provide appropriate multiplexers where-

ever multiple data paths have the same destination).

- 16 -

- 17 -

2. No distinction of tri-state, logic. The output of the 8X02 is specified

(Figure la) as tri-state logic. The EN input line (Figure lb) is used to se­

lect whether the output is allowed to be connected to a 0,1 level or is in

a high impedance state. Although there is no specification facility in CASL

to differentiate between tri-state outputs and ordinary two-state outputs,

the definition of CASL data paths is that they affect their data destinations

only when they are enabled. Thus, instead of taking the view that there are

implicit multiplexers wherever needed, as we did above, it is equally valid

to say that there are no multiplexers anywhere, and every data path is tri-state

(held i:n high-impedance unless it is enabled). Therefore, no EN input is

shown i:n the STRUCTURE section of our CASL description, because the question

of enabling or not enabling a data path is a control issue rather than a

data-hafidling structure issue.

3. Clocking. Dealing with the 8X02's explicit elk input (Figure lb)

is somewhat below the intended descriptive level of CASL. The 8X02 actually

contains no FSM. It is composed of storage elements and operators, activated

by a transition on the elk input. CASL is not concerned with low-level de­

scription that would be required to specify the details of clocking of

structural elements. We simulated this detail by adding an FSM to watch

the clock and activate the structure on a rising clock transition. State

transitions in our FSM take place asynchronously, and we observe the elk
input to determine which state to select as the next one. An

FSM description is insensitive to the uniformity of the intervals and dur-

ations of clock pulses. Our attitude, therefore, is simply to assume that

the FSM1s asynchronous state transitions occur fast enough so that no signals

sent to the FSM on the elk input port are ever "missed". (In actual clocked

electronics there is a corresponding requirement that the response of the

circuitry determines the speed of the clock and the pulse duration.)

6. Current Use and Future Efforts

The design of CASL is currently frozen so it will be stable until the

first automatic implementation system can be completed. This will permit

us to get some experience using CASL, and will give us a good idea of the

relative strengths and weaknesses of the language.

The opportunity to use CASL has been limited so far to those involved

in its design, and that use only as a notation since the automatic implemen­

tation is not yet complete. In the Spring of 1979 students at the University

of Utah will begin to experiment with CASL as a documentation medium for

their hardware designs of machines to solve the "Eight Queens" problem (11).

Work is proceeding on a CASL compiler that will convert computer de­

scriptions into microcoded emulators for the Burroughs B1700/B1800. It

would be very gratifying if future research involving CASL could move in the

direction of producing actual VLSI circuitry from CASL descriptions.

Future work on CASL design will probably include attempts to improve

its extensibility. The pre-selected set of structural elements is sometimes

cumbersome when a machine designer has in mind a structural element that is

both a storage element and a transformation element, like a counter or

- 18 -

- 19 -

shift register, and uses it in many places in his machine. Some combination

of the existing constructs for storage element specification and operator

specification should yield a construct that will allow extensions to the

set of CASL structural elements.

CASL is, and needs to be, very flexible. However, it is obvious that

there are limits to CASL's ability to adapt to the primitives of various

machine designs. Some future effort is likely to be devoted to extending

these limits. In particular, it is difficult (or impossible) to provide

a descriptive scheme that parameterizes every possible form of arithmetic.

Not only have we chosen to omit real arithmetic from the present arithmetic

description statement, but we have also restricted the facility to certain

classes of arithmetic (e.g., modular arithmetic can not be described, at

present). Additional development in this area would probably be very useful.

There are other new features that may prove useful. We may want a means

for representing elapsed time, for such diverse purposes as performance

evaluation and providing a means for an I/O interrupt to occur at a "rea­

sonable" time after I/O has been initiated. We may also wish to generalize

the PERIPHERAL_DEVICE to describe, in detail, the special characteristics

of actual devices (e.g., disk track sizes).

Finally, long range future plans for CASL (other than generation of

VLSI circuitry that we mentioned) must be concerned with

(1) Verification of CASL computer descriptions,

(2) Performance studies of CASL-described architectures, and

(3) The possible use of CASL as a "base" upon which to build an auto-

- 20 -

mated system that actually performs the architectural design of

machines from very-high-level specifications. We have yet to de­

termine how this relates to the language design efforts begun by

Teichroew and others (ISDOS Problem Statement Language (PSL) (10)).

Perhaps that language might serve as a point of departure for a

language useful in an automated design and implementation system.

7. Conclusions

At the present time, CASL appears to meet most of our needs well. It

seems to be a natural medium for computer description. While the language

is not very terse, we think it is easy to use; so computer descriptions

can be written rapidly. The syntax of CASL looks familiar enough that it

is relatively easy to read. At the same time, CASL is suitable for pro­

cessing by a compiler. .

There are unusual (and even unique) concepts and features in CASL that

represent a step forward in architectural-level description language:

1. CASL provides complete representation of data-handling structure,

including operators and hardware modules, rather than just storage

elements.

2. CASL provides explicit description of all data pathways.

3. The FSM representation of control expresses both concurrency and

sequentiality in a natural way.

4. Modularity is treated in an architecturally faithful way, and is

- 21 -

recognized as the mechanism for specifying "global" concurrency.

5. CASL is a protean language that adapts to the data representation

and data transformation primitives of each machine design.

6. CASL has an I/O specification facility that is consistent with the

rest of the language.

The successful design effort on CASL has taken us a long way toward

our goal. It paves the way for the completion of the automatic implementation

system.

In this paper we have presented the concepts embodied in CASL, rather

than the details of CASL syntax. The complete details of the language can

be found in the dissertation on this research (1).

- 22 -

1. Maxey, G.F., "The Computer Architecture Specification Language" (tentative

title) Ph.D. Dissertation, University of Utah, (work in progress).

2. Chu, Y.,"Conputer Organization and Microprogramming” Prentice-Hall, 1972

3. Chu, Y . , "An ALGOL-like Computer Design Language", Comm, of the ACM,
Oct. 1965, pp. 607-615.

4. Barbacci, M., Barnes, G., Cattell, R., Siewiorek, D., "The Symbolic •

Manipulation of Coirputer Descriptions; The ISPS Coirputer Description

Language." Department of Computer Science, Camegie-Mellon University,

Pittsburgh, PA, March, 1978.

5. Barbacci, M.R., "A Comparison of Register Transfer Languages for Describing

Computers and Digital Systems", IEEE Transactions on Computers, C-24 #2,

Feb. 1975, pp 137-150.

6. Bell, C.G., Mudge, J.C., and McNamara, J.E.,"Computer Engineering: A DEC

View of Hardware Systems Design", Digital Press, Digital Equipment Corp.,

1978.
t* # M ,7. Clare, C.R., Designing Logic Systems Using State Machines, McGraw-Hill, 1973

8. Clare, C.R., and Osborne, T.E., "Design of Small Machines (The Algorithmic

State Machine)", in AFIPS Workshop on the Influence of Programming Languages

on Computer Systems Architecture, May 1971, pp 46-62.

9. Press, B., SMITE Language Specification, TRW, Redondo Beach, Cal., 1975,

8. References

-23-

1 0 .

11.

Koch, R.F., Krohn, M.J., McGrew, P.W., and Sibley, E.H.,

"PSL Version 2 Release 1: A PSL Language Primer",

ISDOS Working Paper #33, ISDOS Research Project, Department of

Industrial Engineering, University of Michigan, August 1970, (Re­

vised May 1971). •

Wirth, N. , Algorithms + Data Structures = Programs", Prentice-Hall,
Englewood Cliffs, N.J., 1976.

OBJECTIVE SPECIFICATION

. FEATURES
• Uw-powM Schotlky ptoetu ',
• 60ne cycle tlmo (TYP) '
• 1024 microinstruction iddriiMklDly
• N-way branch
• 4-level (tack regUtw til* (UFO lyp*)
• Automatic puah/pop etack operation
• *T*»t A •kip’* operation on Iasi Input
. .

' • 3-bll command code .
Trl'ilili buKirtd oolpvlt •

• Auto-reset I* addraaa 0 during power-up
• Conditional branching, pop alack, A

puah alack .
♦ • Poiltlva edge trigger .
■ (low-to-hlgM'amlUon) •

(a)

BLOCK DIAGRAM

IUI MM Itt tu M
on int m m mi

11) AC,
Uti AC,
UTI AC,
Oil Cl> o—l
i to VK o—j
in omjo—{

•>. *7 lock:

J-OTrst
• i

| »i«c» roisim | *
IMI

I
<»«• aii no nr) nu

ini imi nn n«i imi

Figure 1

(b)

excj

FUNCTIONAL DESCRIPTION
Tha tollowing Is a description ol each ol the eight Next Address Control Functions
(AC; - ACq)___ _

MNEMONIC FUNCTION DESCRIPTION

TSK AC2.o-000: TEST 1 SKIP
Perform test on TEST INPUT LINE.
II lest Is Next Address-Current Address +1
FALSE (LOW): Stack Pointer unchanged .
II test Is Next Address-Current Address +2
TRUE (HIGH) (I.e. Skip next microinstruction)

Slack Pointer unchanged

INC AC2.0-OOV INCREMENT
Next Adress-Current Address + 1 '
Stack Pointer unchanged *

BIT AC2.0—010: BRANCH TO LOOP
IF TEST CONDITION TRUE.

Perform test on TEST INPUT LINE. *
II test Is Next Address-Current Address-l-1
FALSE (LOW): Stack Pointer decremented by 1
II test Is Next Address-Address Irom Stack
TRUE (HIGH): Register Fits (POP)

Slack Pointer decremented by 1

POP ACj^j-011: POP STACK .
Next Address-Addiess from Stack Reglsler File (POP)
Slack Pointer decremented by 1

BSR AC2-0- 100: BRANCH TO SUBROUTINE
IF TEST CONDITION TRU£. •

Perform lest on TEST INPUT LINE.
II test Is Next Address*Current Address +1
FALSE (LOW): Slack Pointer unchanged
II lest Is Next Address-Branch Address Input (Bo.g)
TRUE (HIGH): Slack Pointer Incremented by 1

PUSH (write) Current Address +1—Stack Register File

PLP ACj.o-101: PUSH FOR LOOPING
Next Address-Current Address +1
Slick Pointer Incremented by 1

PUSH (write) Current Address—Slack Register File

BRT ACj.o-110: BRANCH ON TEST CONDITION TRUE
Perform test on TEST INPUT LINE. .
II lest Is Next Address-Current Address +1
FALSE (LOW): Slack Pointer unchanged
II lest Is Next Address-Branch Address Input (B0.9)
TRUE (HIGH): Slack Pointer unchanged

RST ACj.o-111: RESET TO ZERO
Next Address-0
Slack Pointer unchanged .

* T h i s C A S L m o d u l e is a d e s c r i p t i o n of the S i g n e t i c s 8 X 0 2 c o n t r o l
* s t o r e s e q u e n c e r (s h o w n in F i g u r e 1).
* . .

* -

m o d u l e . ; 1
t y p e (s i g n e t i c s _ 8 X 0 2) .

in put (ac(3 b i t s) , b (1 0 b i t s) , t e s t d b i t) , c l k (l bit))
o u t p u t (a(10 b i t s)) . •

A B S T R A C T I O N S :

, D A T A R E P R E S E N T A T I O N S :
u E i n : a r i t h m e t i c (b a s e (2) , u n s i g n e d)

O P E R A T I O N _ D E F I N I T I O N S :
$+ : ' + 'u b i n . *

1 f n
S Y M B O L _ D E F I N I T I O N S :

* O p - c o d e m n e m o n i c s .

Xt~

tsk
inc
bi t
po p j
bsr
p i p
br t
rst

N a m e s for
l o w

h i a h

' 0 0 0 ' b i t .
' 0 0 1 'bit.
' 0 1 0 ' bit.
• 0 1 1 ' b i t .
•1 0 0 ' b i t .
• 1 0 1 'bit.
• 1 1 0 ' b i t .
• I l l ' b i t .

C L K l e v e l s .
' 0 'bit.

' 1 ' b i t .

93

s?

S T R U C T U R E :

E L E M E N T S :

a d d r _ r e g r e q i s t e r (10 b i t s) . ».

a d d r _ s t a c k s t a c k (10 b i t s b y 4). - -

incr o p e r a t o r -
input (c u r r e n t _ a d d r (10 bits))
o u t p u t (n e x t _ a d d r (10 bits)) ; , .

by_l (n e x t _ a d d r <- c u r r e n t _ a d d r $+ 'l'ubin)

by 2 (next a d d r < - c u r r e n t a d d r $+ '2'ubin)

C O N N E C T I O N S : - ■

a d d r _ r e g to i n c r . c u r r e n t _ a d d r , a d d r _ s t a c k , a.
b to a d d r reg.
addr_stacl< to a d d r _ r e q .
i n c r . n e x t a d d r to a d d r reg, a d d r s t a c k .

P R O C E D U R E :

b u n p _ a d d r _ r e g

e n a b l e a d d r _ r e g to i n c r . c u r r e n t _ a d d r ;
e n a b l e . i n c r . b y _ l ; ' .
e n a b l e i n c r . n e x t a d d r to ad d r regv

C O N T R O L _ C O M B I N A T I O N S :

S T A T E S :

awa i t _ c l k _ l o w
n e x t _ s t a t e is d e c o d e (elk, (low : a w a i t _ c l k _ h i g h ,

e l s e : a w a i t _ c l k _ l o w)).

a w a i t _ c l k _ h i q h •
n e x t _ s t a t e is d e c o d e (elk, (high : e x e c u t e ,

e l s e : a w a i t _ c l k _ h i q h)).

e x e c u t e
n e x t _ s t a t e is g a t e _ o u t p u t ;
c a s e ac of

* " T e s t and S k i p (if t e s t i nput t r u e) " op.
tsk: do;

e n a b l e a d d r reg to i n c r , c u r r e n t _ a d d r ;
c a s e test o T

' 1 1 b i t : do; .
e n a b l e i n c r . b y _ 2 ;

e n d ;
e l s e : do;

e n a b l e i n c r . b y _ l ;
e n d ;

e n a b l e i n c r . n e x t _ a d d r to a d d r _ r e g ;
end; *

* " I n c r e m e n t " op.
inc: do;

b u m p _ a d d r _ r e g ;
e n d ;

* " B r a n c h to L o o p if T e s t i n p u t true" op.
bit: do;

c a s e t e s t o f
' l ' b i t : do; .

e n a b l e a d d r _ s t a c k to a d d r _ r e g ;
end;

e l s e : do;
e n a b l e p o p (a d d r _ s t a c k) ;
b u m p _ a d d r_reg;

e n d ;
end; •

* " P o p s t a c k " op.
p o p j : do;

e n a b l e a d d r _ s t a c k to a d d r _ r e g ;
e n d ;

F i g u r e 2 (c o n t i n u e d) .

* " B r a n c h to S u b r o u t i n e if t e s t i n p u t t r ue" op.
bsr: do; ' •

e n a b l e a d d r _ r e g to i n c r .c u r r e n t _ a d d r ;
e n a b l e i n c r . b y _ l ;

' c a s e t e s t o f

' 1 ' b i t : do; . '
‘ e n a b l e i n c r . n e x t _ a d d r to addr__stack;

• e n a b l e b to a d d r _ r e g ;
* end;

e l s e : do;
e n a b l e i n c r . n e x t _ a d d r to a d d r _ r e g ;

end; '
‘ end;
* " P u s h for L o o p i n g " op.

p i p : do; ■
. e n a b l e a d d r _ r e g to a d d r _ s t a c k ;

b u m p _ a d d r _ r e g ; •
end;

* " B r a n c h if T e s t i n p u t t rue" op.
brt: do;

c a s e t e s t o f
’ 11 1bi t : d o ;

e n a b l e b to a d d r _ r e g ;
e n d ;

e l s e : do;
bump__addr_reg;

e n d ;
end; •

* " R e s e t a d d r e s s r e g i s t e r to zero" op.
rst: do;

• e n a b l e ' 0 ' u b i n to a d d r _ r e g ;
e n d ;

* T h e " e l s e " p a r t o f t h i s c a s e w i l l n e v e r be used.
e l s e : .

g a t e _o u t p u t

enable addr reg to a;

next s tate Ts await elk low .

Figure 2 (continued).

CUC=//IGH

Figure 3. State Transition Diagram of the 4-state FSM

^L Z L Z L \ / ‘ • _ Z L Z .
GOfiJTACL

C€*

coHrffri+srteC lAf
40. w (K

y .n$mony.AOb/t(ZS fQ
t . _.

T T

F i g u r e 4.

★

* T h e following, e x c e r p t s a r e from a C A S L m o d u l e that is a d e s c r i p t i o n
* of a m a c h i n e (shown in F i q u r e 4) t h a t c o n t a i n s a S i a n e t i c s 8 X 0 2
* C o n t r o l S t o r e S e q u e n c e r . •
*

*

S T R U C T U R E :

E L E M E N T S :

f

c o n t r o l _ w o r d r e g i s t e r (40 b i t s) .

m i c r o _ o p : c o n t r o l _ w o r d (bit 0, 3 bit s) .
m i c r o _ a d d r : c o n t r o l _ w o r d (bit 3, 10 bi t s) .
c o n t r o l _ b i t s : c o n t r o l w o r d (bit 3, 37 bi t s) .
c o n t r o l _ b i t s _ v a l i d : m T c r o _ o p (bit 0, 1 bit).

c o n t r o l _ s t o r e m e m o r y (40 h i t s b y l k) ,
m e m o r y _ a d d r e s s (10 bits) b i n a r y a d dr. •

I'

m a i n _ s e q u e n c e r m o d u l e t y p e (s i g n e t i c s _ R X 0 2) -
i n p u t (ac(3 b i t s) , b(10 bits), t e s t (l b i t) , c l k (l bit))
o u t p u t (a(10 b i t s)) .

C O N N E C T I O N S :

m a i n _ s e q u e n c e r .a to c o n t r o l _ s t o r e . m e m o r y _ a d d r e s s .
c o n t r o l _ s t o r e to c o n t r o l w o rd.
m i c r o _ o p to m a i n s e q u e n c e r . a c .
m i c r o a d d r to m a T n s e q u e n c e r . b .

F i q u r e 5.

