
A S - C O M A : A n A d a p t i v e H y b r i d S h a r e d M e m o r y A r c h i t e c t u r e *

C hen-C hi K uo, Jo h n B. C a rte r , R av in d ra K u ram k o te , M ark Sw anson

{ c h e n c h i , r e t r a c , k u ra m k o t, sw a n so n } @ c s .U tah .e d u
WWW: h t t p : //www . c s . u t a h . e d u /p r o j e c t s / a v a l a n c h e

UU CS-98-010

D e p a rtm e n t of C o m p u ter Science
U n ivers ity of U ta h , Salt Lake C ity, U T 84112

M arch 23, 1998

Abstract

shared memory m ultiprocessors traditionally use either a cache coherent non
memory access (CC-NUMA) or simple cache-only memory architecture (S-
memory architecture. Recently, hybrid architectures th a t combine aspects of

both CC-NUMA and S-COMA have emerged. In this paper, we present two improvements
over o ther hybrid architectures. The first improvement is a page allocation algorithm th a t
prefers S-COMA pages a t low memory pressures. Once the local free page pool is drained,
additional pages are m apped in CC-NUM A mode until they suffer sufficient remote misses
to w arran t upgrading to S-COMA mode. The second improvement is a page replacement
algorithm th a t dynamically backs off the rate of page rem appings from CC-NUMA to S-
COM A mode a t high memory pressure. This design dram atically reduces the am ount of
kernel overhead and the num ber of induced cold misses caused by needless thrashing of the
page cache. The resulting hybrid architecture is called adaptive S-COMA (AS-COMA).
AS-COMA exploits the best of S-COMA and CC-NUMA, performing like an S-COMA
machine at low memory pressure and like a CC-NUMA machine a t high memory pressure.
AS-COM A outperform s CC-NUM A under almost all conditions, and outperform s other
hybrid architectures by up to 17% a t low memory pressure and up to 90% a t high memory
pressure.

K e y w o rd s : D istributed shared memory, m ultiprocessor com puter architecture, memory
architecture, CC-NUMA, S-COMA, hybrid.

T e c h n ic a l A re a s : A rchitecture.

“T his work was supported by the Space and Naval Warfare System s Command (SPAW AR) and Advanced Research
Projects Agency (A RPA), Communication and Memory Architectures for Scalable Parallel Computing, ARPA order
B 9 9 0 under SPAWAR contract #N 00039-95-C -0018

Scalable
uniform
COMA)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cs.utah.edu/proj

1 I n t r o d u c t i o n

Scalable hardw are distributed shared memory (DSM) architectures have become increasingly pop

ular as high-end com pute servers. One of the purported advantages of shared memory m ultipro

cessors compared to message passing m ultiprocessors is th a t they are easier to program , because

program m ers are not forced to track the location of every piece of d a ta th a t might be needed.

However, naive exploitation of the shared memory abstraction can cause performance problems,

because the performance of DSM multiprocessors is often limited by the am ount of tim e spent

waiting for rem ote memory accesses to be satisfied. W hen the overhead associated with accessing

rem ote memory im pacts performance, program m ers are forced to spend significant effort managing

d a ta placement, m igration, and replication - the very problem th a t shared memory is designed to

eliminate. Thus, the value of DSM architectures is directly related to the extent to which observable

rem ote memory latency can be reduced to an acceptable level.

The two basic approaches for addressing the memory latency problem are building latency-

tolerating features into the microprocessor and reducing the average memory latency. Because of

the growing gap between microprocessor cycle tim es and main memory latencies, modern micro

processors incorporate a variety of latency-tolerating features such as fine-grained m ultithreading,

lockup free caches, split transaction memory busses, and out-of-order execution [1, 11, 15]. These

features reduce the performance bottleneck of both local and rem ote memory latencies by allow

ing the processor to perform useful work while memory is being accessed. However, o ther than

the fine-grained m ultithreading support of the Tera machine [1], which requires a large am ount

of parallelism and an expensive and proprietary microprocessor, these techniques can hide only a

fraction of the to ta l memory latency. Therefore, it is im portan t to develop memory architectures

th a t reduce the overhead of rem ote mem ory access.

Rem ote memory overhead is governed by three issues: (i) the num ber of cycles required to satisfy

each rem ote memory request, (ii) the frequency with which remote memory accesses occur, and (iii)

the software overhead of managing the mem ory hierarchy. The designers of high-end commercial

DSM system s such as the SUN UE10000 [18] and SGI Origin 2000 [6] have put considerable effort

into reducing the rem ote memory latency by developing specialized high speed interconnects. These

efforts can reduce the ratio of rem ote to local memory latency to as low as 2:1, bu t they require

expensive hardw are available only on high-end servers costing hundreds of thousands of dollars. In

th is paper, we concentrate on the second and th ird issues, namely reducing the frequency of remote

memory accesses while ensuring th a t the software overhead required to do th is rem ains modest.

2

Previous studies have tended to ignore the im pact of software overhead [5, 12, 16], bu t our findings

indicate th a t the effect of this factor can be dram atic.

Scalable shared memory multiprocessors traditionally use either a cache coherent non

uniform memory access (CC-NUMA) architecture or a simple cache-only memory architecture

(S-COMA) [16]. Each architecture performs well under different conditions, as follows.

CC-NUM A is the m ost common DSM memory architecture. It is embodied by such machines

as the Stanford DASH [7], SUN UE10000 [18], and SGI Origin 2000 [6]. In a CC-NUM A, shared

physical memory is evenly d istributed am ongst the nodes in the machine, and each page of shared

memory has a home location. The home node of d a ta can be determined from its global physical

address. Processors can access any piece of global d a ta by m apping a v irtual address to the

appropriate global physical address, but the am ount of rem ote shared d a ta th a t can be replicated

on a node is lim ited by the size of a node’s processor cache(s) and remote access cache (RAC) [8].

Thus, CC-NUM A machines generally perform poorly when the rate of conflict or capacity misses

is high, such as when a node’s caches are too small to hold the entire rem ote working set or when

the d a ta access pa tte rn s and cache organization cause cached rem ote d a ta to be purged frequently.

S-COMA architectures employ any unused DRAM on a node as a cache for rem ote d a ta [16],

which significantly increases the am ount of storage available on each node for caching remote

d ata . The performance of pure S-COMA machines is heavily dependent on the memory pressure

of a particular application. P u t simply, memory pressure is a measure of the am ount of physical

memory in a machine required to hold an application’s instructions and da ta . A 20% memory

pressure indicates th a t 20% of a m achine’s pages m ust be used to hold the initial (home) copy of

the application’s instructions and data . A t this low memory pressure, on average 80% of a node’s

physical memory is available to be used as a page-grained cache of rem ote da ta . A lthough this

ability to cache rem ote d a ta in local memory can dram atically reduce the num ber of rem ote memory

operations, pure S-COMA has a number of drawbacks. Page m anagement can be expensive. The

page-grained allocation of the rem ote d a ta cache can lead to large am ount of internal fragm entation,

and the requirem ent th a t all shared d a ta accessed by a node must be backed by a local DRAM

page can lead to thrashing a t high memory pressures.

Recently, hybrid architectures th a t combine aspects of both CC-NUMA and S-COMA have

emerged, such as the Wisconsin reactive CC-NUMA (R-NUMA) [5] and the USC victim cache

NUMA (VC-NUMA) [12]. Intuitively, these hybrid system s a ttem p t to map the rem ote pages for

which there are the highest num ber of conflict misses to local S-COMA pages, thereby eliminating

the g reatest num ber of expensive rem ote operations. All o ther rem ote pages are m apped in CC-

3

NUMA mode. Ideally, such system s would exploit unused available DRAM for caching w ithout

penalty but the proposed im plem entations fail to achieve this goal under certain conditions.

In this paper, we present two improvements over R-NUMA and VC-NUMA. The first improve

m ent is a page allocation algorithm the prefers S-COMA pages a t low memory pressures. Once the

local free page pool is drained, additional pages are initially m apped in CC-NUMA mode until they

suffer sufficient rem ote misses to w arrant upgrading to S-COMA mode. The second improvement

is a page replacement algorithm th a t dynamically backs off the rate of page rem appings between

CC-NUMA and S-COMA mode a t high memory pressure. This design dram atically reduces the

am ount of kernel overhead and the num ber of induced cold misses caused by needless thrashing of

the page cache. The resulting hybrid architecture is called adaptive S-COMA (AS-COMA).

R-NUMA [5] and VC-NUMA [12] initially m ap all pages in CC-NUMA mode, and then identify

rem ote pages th a t are suffering inordinate numbers of conflict misses to rem ote node, so-called

hot pages. U nfortunately, under heavy memory pressure, there are not enough local pages to

accom m odate all hot rem ote pages and thrashing occurs, which severely degrades performance.

In addition to the in terrup t handling and flushing overheads induced by a rem ap request, page

rem apping also increases the cold miss rate, because the contents of both the hot page and any

victim page th a t was downgraded to make room for it m ust be flushed from the processor cache(s).

AS-COMA initially m aps pages in S-COMA mode to exploit S-COM A’s superior performance

at low memory pressures. Doing so eliminates rem ote conflict misses and rem apping overhead when

there is enough free memory to cache all of a node’s working set in its local memory. To com bat

page thrashing under heavy memory pressures, which occurs in S-COMA and to a lesser degree in

R-NUMA and VC-NUMA, AS-COMA uses a page replication backoff algorithm to detect thrashing

and aggressively reduce its ra te of page remapping. Under extrem e circumstances, AS-COMA goes

so far as to disable CC-NUM A <->■ S-COMA rem appings entirely.

We used detailed execution-driven simulation to evaluate a num ber of AS-COMA design trade

offs and then compared the resulting AS-COMA design against CC-NUMA, pure S-COMA, R-

NUMA, and VC-NUMA. We found th a t AS-COM A’s hybrid design provides the best behavior of

both CC-NUMA and S-COMA. At low memory pressures, AS-COMA acts like S-COMA and out

performs other hybrid architectures by up to 17%. A t high memory pressures, AS-COMA avoids the

performance dropoff induced by thrashing and aggressively converges to CC-NUMA performance,

thereby outperform ing the o ther hybrid architectures by up to 90%. In addition, AS-COMA ou t

performs CC-NUMA under alm ost all conditions, and a t its worst only underperform s CC-NUMA

by 5%.

4

The rem ainder of this paper is organized as follows. In Section 2 we describe the basics of

all scalable shared memory architectures, followed by an in-depth description of existing DSM

models. Section 3 presents the design of our proposed AS-COMA architecture. We describe our

sim ulation environm ent, test applications, and experiments in Section 4, and present the results of

these experim ents in Section 5. Finally, we draw conclusions and discuss fu ture work in Section 6.

2 Background

In th is section, we discuss organization of the existing DSM architectures: CC-NUMA, S-COMA,

R-NUMA, and VC-NUMA.

2 .1 D i r e c t o r y - b a s e d D S M A r c h i t e c t u r e s

All of the shared memory architectures th a t we consider share a common basic design, illustrated

in Figure 1. Individual nodes are composed of one or more comm odity microprocessors with private

caches connected to a coherent split-transaction memory bus. Also on the memory bus is a main

memory controller with shared main memory and a d istributed shared memory controller connected

to a node interconnect. The aggregate main memory of the machine is d istributed across all nodes.

The processor, main memory controller, and DSM controller all snoop the coherent memory bus,

looking for memory transactions to which they m ust respond.

The internals of a typical DSM controller also are illustrated in Figure 1. It consists of a memory

bus snooper, a control unit th a t m anages locally cached shared memory (cache controller), a control

unit th a t retains s ta te associated with shared memory whose “home” is the local main memory

(directory controller) , a network interface, and some local storage. In all of the design alternatives

th a t we explore, the local storage contains DRAM th a t is used to store directory state .

W hen a local processor makes an access to shared d a ta th a t is not satisfied by its cache, a

mem ory request is put on the coherent memory bus where it is observed by the DSM controller.

The bus snooper detects th a t the request was m ade to shared memory and forwards the request

to the DSM cache controller. The DSM cache controller will then take one of the following two

actions. If the d a ta is in main memory, e.g., th is node is the m em ory’s “home” or the d a ta is cached

in a local S-COMA page, a coherency response is given th a t allows the main memory controller to

satisfy the request. Otherwise the request is forwarded to the appropriate remote node. Once a

response has been received, the DSM cache controller supplies the requested d a ta to the processor

and potentially also stores it to main memory.

5

F ig u re 1 Typical Scalable Shared Memory A rchitecture

A request for d a ta th a t is received from a rem ote node is forwarded to the directory controller,

which tracks the s ta tu s of each line of shared d a ta for which it is the home node. If the remote

request can be supplied using the contents of local memory, the directory controller simply responds

with the requested d a ta and updates its directory sta te . If the directory controller is unable to

respond directly, e.g., because a rem ote node has a dirty copy of the requested cache line, it forwards

the request to the appropriate node(s) and updates its directory sta te .

The rem ote access overhead of these architectures can be represented as:

(Npagecache * Tpagecache) {N rem ote * T rem ote) "t~ (-^ cold, * Trem ote) “I- 1 overhead•

Npagecache and Nremote represent the num ber of conflict misses th a t were satisfied by the page

cache or rem ote memory, respectively. N coid represents the num ber of cold misses induced by

flushing and rem apping pages, and thus is zero only in CC-NUMA model. Tpagecache and Tremote

represent the latency of fetching the line from the local page cache or rem ote memory, respectively.

Toverhead represents the software overheads of the S-COMA and the hybrid models to support page

rem apping, e.g., flushing.

Table 1 sum m arizes the remote memory overhead for each architecture and the critical factors

determ ining performance, assuming a fixed am ount of memory. Table 2 provides the cost in term s

6

M o d e l R e m o te O v e r h e a d P e r f o r m a n c e F a c to r s

C C -N U M A (■^remote * I ' r e m o t e) N e tw o r k s p e e d

S -C O M A (N p a g e c a c h e * Tpagecache')~^~
{ N coid * T r e r n o t e ')-\-

T o v e r h e a d

1. N e tw o r k s p e e d
2 . S o f tw a re o v e r h e a d

H y b r id
A r c h i te c tu r e s

{ N p a g e c a c he * T p a g eCache')~\~

{ N r e m o t e * ^ re m o te) -!-
(N coid * T r e m o t e) 1 o v e r h e a d

1. N e tw o rk s p e e d
2 . S o f tw a re o v e r h e a d

T a b le 1 Remote M emory Overhead of Various Models

M o d e l S to r a g e C o s t C o m p le x i ty

C C - N U M A N o n e N o n e

S -C O M A P a g e c a c h e s t a te :
1. 2 b i t s p e r b lo c k
2 . 4 4 b i t s p e r p a g e

1 .P a g e c a c h e s t a t e lo o k u p
2 . lo c a l r e m o te p a g e m a p
3 . P a g e - d a e m o n a n d V M k e rn e l

H y b r id
A r c h i te c tu r e s

P a g e c a c h e s t a te :
1. 2 b i t s p e r b lo c k
2 . 4 4 b i t s p e r p a g e
R e fe tc h C o u n t :
6 b i t s p e r p a g e p e r n o d e

1 .P a g e c a c h e s t a t e c o n t r o l l e r
2 . lo c a l <-»■ r e m o te p a g e m a p
3 . P a g e - d a e m o n a n d V M k e r n e l
4 . R e f e tc h c o u n te r , c o m p a r a t o r
a n d i n t e r r u p t g e n e r a to r

T a b le 2 Cost and Complexity of Various Models

of the storage and complexity for each of the models. These issues will be explained in the following

sections along with how each model works.

2 .2 C C - N U M A

In CC-NUM A, the first page access on each node to a particular page causes a page fault, a t which

tim e the local TLB and page table are loaded with a page translation to the appropriate global

physical page. The home node of each page can be determ ined from its physical address. W hen

the local processor suffers a cache miss to a line in a rem ote page, the DSM controller forwards the

memory request to the m em ory’s home node, incurring a significant access delay. Rem ote d a ta can

only be cached in the processor cache(s) or an optional rem ote access cache (RAC) on the DSM

controller. Applications th a t suffer a large num ber of conflict misses to rem ote da ta , e.g., due to

the limited am ount of caching of rem ote da ta , perform poorly on CC-NUMAs [5]. Unfortunately,

these applications are fairly common [5, 14, 16]. Careful page allocation [2, 9], m igration [21], or

replication [21] can alleviate this problem by carefully selecting or modifying the choice of home

node for a given page of da ta , bu t these techniques have to date only been successful for read-only

or non-shared pages.

7

The conflict miss cost in the CC-NUMA model is represented by (N remote * Tremoie), th a t is,

all misses to shared memory with a remote home m ust be rem ote misses. To reduce this overhead,

designers of some such system s have adopted high speed interconnect to reduce (Tremote) [6, 13,

18].

2 .3 S - C O M A

In the S-COMA model [16], the DSM controller and operating system cooperate to provide access

to remotely homed da ta . In S-COMA, a mapping from a global v irtual address to a local physical

address is created a t the first page fault to th a t shared mem ory page. The page fault handler selects

an available page from the local DRAM page cache. At this tim e, the cache s ta te information is

updated in the local DSM controller to indicate which global page this local page is caching. In

addition, the valid bit associated with each cache line in the page is set to invalid to indicate th a t,

while the page mapping is valid, no remote d a ta is actually cached in the local page yet. If there

are no free pages in the page cache when a page fault occurs, the page fault handler selects another

S-COMA page to replace, flushes this page’s cache lines from the local processor cache, and then

m aps the faulting page.

W hen a local processor suffers a cache miss to rem ote da ta , the DSM cache controller examines

the valid bit for the line. If the valid bit is set, the page cache contains valid d a ta for th a t line, so

it can be supplied directly from main memory, thereby avoiding an expensive rem ote operation. If,

however, the requested line is invalid, the DSM cache controller m ust perform a rem ote request to

acquire a copy of the desired data . W hen the rem ote node responds with the data , it is w ritten to

the page cache, supplied to the processor, and the valid bit is set.

S-COM A’s aggressive use of local memory to replicate rem ote shared d a ta can completely elim

inate Nremote when the memory pressure on a node is low. However, pure S-COMA’s performance

degrades rapidly for some applications as memory pressure increases. Because all rem ote d a ta

must be m apped to a local physical page before it can be accessed, there can be heavy contention

if the number of local physical pages available for S-COMA page replication is small. Under these

circumstances, thrashing occurs, not unlike thrashing in a conventional VM system. Given the high

cost of page replacem ent, this can lead to dismal performance.

In the S-COMA model, the conflict miss cost is represented by (Npagecache * Tpagecache) + (Ncoid *

Tremote) + Toverhead- W hen memory pressure is low enough th a t all of the rem ote d a ta a node needs

can be cached locally, page rem apping does not occur and both N coid and Toverhead are zero. As the

memory pressure increases, and thus more remote pages are accessed by a node than can be cached

locally, N coid and Toverhead increase due to rem apping. N coid increases because the contents of any

8

pages th a t are replaced from th e local page cache m ust be flushed from th e processor cache(s).

Subsequen t accesses to these pages will suffer cold misses in add ition to th e cost of rem apping.

An even worse problem is th a t as m em ory pressure approaches 100%, th e tim e spen t in th e kernel

flushing and rem apping pages (T overhead) skyrockets. Sources of th is overhead include th e tim e

sp en t co n tex t sw itching betw een th e user application and th e pageou t daem on, flushing blocks

from th e v ictim page(s), and rem app ing pages.

2 .4 H y b r i d D S M A r c h i t e c t u r e s

T w o hybrid C C -N U M A /S -C O M A arch itec tu res have been proposed: R -N U M A [5] and VC-NU M A

[12]. We describe these a rch itec tu re s in th is section.

T he basic a rch itec tu re of an R -N U M A m achine [5] is th a t of a C C -N U M A m achine. However,

unlike C C-N U M A , which “w astes” local physical m em ory no t required to hold hom e pages, R-

N UM A uses th is otherw ise unused s to rag e to cache frequently accessed rem ote pages, as in S-

C O M A . T his m echanism requires a num ber of m odest m odifications to a conventional C C -N U M A ’s

DSM engine and o p era tin g system , as described below.

In add ition to its norm al C C -N U M A o p era tio n , th e d irec to ry contro ller in an R -N U M A m achine

m ain ta ins an a rray of coun ters th a t track s for each page th e num ber of tim es th a t each processor

has refetched a line from th a t page, as follows. W henever a d irec to ry contro ller receives a request

for a cache line from a node, it checks to see if th a t node is a lready in th e copyset of nodes for

th a t line. If it is, th is request is a re fe tch caused by a conflict m iss, and no t a coherence or cold

miss, and th e no d e’s refetch co u n te r for th is page is increm ented . T he p er-p ag e /p e r-n o d e coun ter

is used to determ ine which C C -N U M A pages are generating frequen t rem ote refetches, and th u s are

good can d id a tes to be m apped to an S-C O M A page on th e accessing node. W hen a refetch coun ter

crosses a configurable th resh o ld (e.g. 64), th e d irec to ry contro ller piggybacks an indication of th is

event w ith th e d a ta response. T h is causes th e DSM engine on th e requesting node to in te rru p t th e

processor w ith an ind ication th a t a p a rticu la r page should be rem apped to a local S-CO M A page.

Pages are rem apped from C C -N U M A m ode to S-CO M A m ode using essentially th e sam e m ech

anism as is used by S-CO M A to rem ap pages. F irs t, all lines of th e page being upgraded m ust be

flushed from th e local processor cache(s) and RAC. T hen , if a free page a lready exists, th e global

v irtu a l address is m apped to th e selected local physical address, and th e DSM engine is inform ed of

th e new m apping. If no free page ex ists, th e fau lt hand ler first m ust select a v ictim page to replace,

th e v ic tim ’s d a ta m ust be flushed from th e page cache, and its correspond ing global v irtu a l address

m ust be rem apped back to its hom e global physical address.

9

By su p p o rtin g b o th C C-N U M A and S-CO M A access m odes in th e sam e m achine, an R -NUM A

m achine is able to exploit available local m em ory as a large page cache for CC-N U M A pages. By

track ing refetch counts, it is able to select dynam ically which C C -N U M A pages should popu late

th e S-COM A cache based on access behavior. In a recent s tu d y [5], R -N U M A ’s flexibility and

in telligent selection of pages to m ap in S-C O M A m ode caused it to o u tperfo rm th e best of pure

C C -N U M A and pure S-CO M A by up to 37% on som e applications.

However, a lthough R -NUM A frequently ou tperfo rm s bo th C C -N U M A and S-CO M A, it was also

observed to perform as m uch as 57% worse on som e applications [5]. T his poor perform ance can be

a ttr ib u te d to tw o problem s. F irs t, R -N U M A initially m aps all pages in C C -N U M A m ode, and only

upgrades them to S-COM A m ode a fte r som e num ber of rem ote refetches occur, which in troduces

needless rem ote refetches when m em ory pressure is low. Second, R -N U M A alw ays upgrades pages

to S-C O M A m ode when th e ir refetch th resho ld is exceeded, even if it m ust evict an o th er ho t page

to do so. W hen m em ory pressure is high, and th e num ber of ho t pages exceeds th e num ber of free

pages available for caching th em , th is behavior resu lts in frequen t expensive page rem appings for

little value. T his leads to perform ance worse th an CC-N U M A , which never rem aps pages.

V C -N U M A [12] tre a ts its R A C as a victim cache for th e processor cache(s), i.e., only rem ote

d a ta evicted from th e processor cache(s) is placed in its RA C. V C -N U M A reduces m em ory overhead

by using th e v ictim cache tag s and page indices to identify th e re location cand ida tes, instead of

m ain ta in ing m ultip le refetch coun ters per page in th e d irec to ry con tro ller as in R-N UM A . However,

th is solu tion requires significant m odifications to th e processor cache con tro ller and bus protocol,

changes th a t are not feasible in system s built from com m odity nodes. T h e designers of V C-N U M A

noticed th e tendency of hybrid m odels to th ra sh a t high m em ory p ressure and suggested a th rash in g

detec tion schem e to address th e problem . T heir schem e requires a local refetch coun ter per S-CO M A

page, a p rogram m able break e v e n num ber th a t depends on th e netw ork la tency and overhead of

re locating pages, and an e v a lu a t io n th resh o ld th a t depends on th e to ta l num ber of free S-CO M A

pages in th e page cache. A lthough V C -N U M A frequently ou tp erfo rm s R -N U M A , th e stu d y did n o t

iso late th e benefit of th e th rash in g d e tec tion schem e from th a t of th e in teg ra ted victim cache. T hus,

th e effectiveness of th e ir th ra sh in g de tec tio n schem e under d ifferent a rch itec tu re configurations was

n o t m easured and th u s th e necessity of th e e x tra hardw are su p p o rt was no t clearly justified .

In these hybrid m odels, th e conflict m iss cost is represented by (N pagecac)le* T pagecach,e) + { N remote*

T'remote) ~l~ { N Cold * ^remote) T'overhead• -^pa^ecac/ie and closely depend on th e re location

m echanism s. R em appings betw een C C -N U M A and S-COM A m odes accoun t for th e increased cold

m iss ra te (N coid), as described earlier. T overhead is th e softw are overhead required for th e kernel to

hand le in te rru p ts , flush pages, and rem ap pages.

10

W hen th ere are plentiful free local pages, th e difference betw een th e hybrid m odels and S-

CO M A is th a t S-CO M A does no t suffer from as m any initial conflict m isses, nor does it pay for

page rem apping . In such a case, th e relative costs betw een th e tw o m odels can be represen ted as:

^remote.hybrid ”1” ^cold.hybrid > Ncold . sc om a ^ (i)

^ o v e r h e a d .h y b r id ^ ^OT/er/ieacf. sc om a ^ 0) (2)

Npagecache.sccima ^ Npagecache.hybrid (3)

As th e m em ory pressure increases, R -N U M A and V C-N U M A suffer from th e sam e problem s

as pu re S-C O M A , although to a lesser degree. Even hot pages already in th e page cache begin to

be rem apped . W hen th is occurs, th e local page cache becom es less effective a t satisfy ing conflict

misses, and N remote.hybrid + N coid.h.ybrid increases. As before, th e e x tra cold m isses a re induced by the

cache flushes perform ed during rem apping . Also as in S-COM A , as m em ory pressure approaches

100%, th rash in g causes kernel overhead (T overhead.hybrid) to becom e significant. As a resu lt, the

perform ance of th e hybrid m odels d rops d ram atica lly under high m em ory pressure, a lbeit no t as

d ram atica lly as pu re S-COM A. T he p rim ary reason th a t th e hybrids’ perfo rm ance dropoff is less

d ra m a tic is th a t rem appings occur only every N (e.g., 64) rem ote refetches, no t on e v e r y rem ote

access as in S-CO M A . In a w orst case, th e re la tive cost betw een th e hybrid m odels and CC-N U M A

under high m em ory pressure can be represen ted as:

Nremote.hybrid “I” ^cold,hybrid ^remote.ccnuma i (4)

Toverhead.hybrid ^overhead.ccnuma ~ 0. (5)

R elations (1), (2) and (3) suggest th a t one way to im prove th e hybrid m odels a t low m em ory

pressure is to accelerate th e ir convergence to S-C O M A . Likewise, re la tions (4) and (5) suggest th a t

perform ance can be im proved by th ro ttlin g C C -N U M A S-COM A tran s itio n s a t high m em ory

pressure. Unlike S-C O M A , in which rem apping is required for th e a rch itec tu re to o p e ra te correctly,

th e hybrid a rch itec tu res can choose to s to p rem apping and leave pages in C C -N U M A m ode.

In sum m ary , th e perform ance of hybrid S -C O M A /C C -N U M A arch itec tu res is significantly in

fluenced by th e m em ory pressure induced by a p a rticu la r application . Since it is com m on for users

to run th e largest app lica tions th ey can on th e ir hardw are , th e perform ance of an arch itec tu re a t

high m em ory pressures is p articu la rly im p o rta n t. T herefore, it is crucial to conduc t perform ance

stud ies of S-C O M A or hybrid a rch itec tu res across a broad spectrum of m em ory pressures. An

im proved hybrid a rch itec tu re , m otiva ted by th e analysis above, th a t perfo rm s well regardless of

m em ory p ressure is discussed in th e following section.

11

3 Adaptive S-COM A

A t low m em ory pressure, S-COM A ou tperfo rm s C C -N U M A , b u t th e converse is tru e a t high m em

ory pressure [16]. T hus, our goal when designing A S-C O M A w as to develop a m em ory a rch itec tu re

th a t perform ed like pure S-CO M A when m em ory for page caching was plentiful, and like CC-N U M A

when it is no t.

To exploit S -C O M A ’s superio r perform ance a t low m em ory pressures, A S-C O M A initially m aps

pages in S-C O M A m ode. T hus, when m em ory pressure is low, A S-CO M A will suffer no rem ote

conflict or capacity misses, nor will it pay th e high cost of rem apping (i.e., cache flushing, page

tab le rem apping , TL B refill, and induced cold m isses). O nly w hen th e page cache becom es em pty

does A S-C O M A begin rem apping.

Like th e previous hybrid arch itectu res, A S-C O M A reac ts to increasing m em ory pressure by

evicting “cold” pages from , and rem apping “h o t” pages to , th e local page cache. However, w ha t

sets A S-C O M A a p a r t from th e o th er hybrid a rch itec tu res is its ab ility to ad a p t to differing m em ory

pressures to fully utilize th e large page cache a t low m em ory pressures and to avoid th rash in g a t

high m em ory pressures. I t does so by dynam ically ad ju stin g th e re fe tch th resh o ld th a t triggers

rem apping, increasing it when it notices th a t m em ory pressure is high. If th e refetch th resho ld is

too low, rem appings will occur too frequently, which leads to th rash in g . If it is to o high, rem appings

th a t could be usefully m ade will be delayed. By dynam ically ad ju stin g th e refetch th resho ld based

on b o th s ta tic in fo rm ation (e.g., th e cost of re locating a page) and dynam ic in form ation (e.g., th e

ra te of page rem appings), A S-C O M A is able to ad a p t sm ooth ly to differing m em ory pressures.

A S-C O M A uses th e kernel’s VM system to d e tec t th rash in g , as follows. T he kernel m ain ta ins

a pool of free local pages th a t it can use to satisfy allocation or relocation requests. T he pageout

daem on a tte m p ts to keep th e size of th is pool betw een f r e e - t a r g e t and f r e e - m i n pages. W henever

th e size of th e free page pool falls below /ree_m m pages, th e pageou t daem on a t te m p ts to evict

enough “cold” pages to refill th e free page pool to f r e e - t a r g e t pages. Only S-C O M A pages are

considered for rep lacem ent. To replace a page, its valid blocks are flushed from th e processor

cache, and th en its corresponding global v irtu a l add ress is rem apped to its hom e physical address.

C o ld pages are d e tec ted using a s e c o n d ch a n ce a lgorithm : th e TLB reference b it associa ted w ith

each S-CO M A page is reset each tim e it is considered for eviction by th e pageout daem on. If th e

reference bit is zero when th e pageou t daem on nex t runs, th e page is considered cold.

U nder low to m o d era te m em ory pressure, allocation or re location requests can be perform ed

im m ediately because th e re will be pages in th e free page pool. However, a t heavy m em ory pressure,

th e pageou t daem on will be unable to find sufficient cold pages to refill th e free page pool. W henever

12

th e pageou t daem on is unable to reclaim a t least f r e e - t a r g e t free pages, A S-COM A begins allocating

pages in CC-N U M A m ode u nder th e assum ption th a t local m em ory can not accom m odate the

ap p lica tio n ’s en tire w orking set. In add ition , it raises th e refetch th resho ld by a fixed am o u n t to

reduce th e ra te a t which “equa lly -ho t” pages in the page cache replace each o th er. It also increases

th e tim e betw een successive invocations of th e pageout daem on. Should th e num ber of h o t pages

d rop , e.g., because of a phase change in th e program th a t causes a num ber of ho t pages to grow

cold, th e pageout daem on will de tec t it by detec ting an increase in th e num ber of cold pages. A t

th is po in t, it can reduce th e refetch threshold .

Using th is backoff schem e, th e ra te a t which d estru c tiv e flushing and rem apping occurs is

decreased, as is th e num ber o f cold misses induced by rem apping . In add ition , th e frequency a t

which th e pageout daem on is invoked is reduced, which elim inates con tex t sw itches and pageout

daem on execution tim e. O verall, we found th is back p ressure on th e replacem ent m echanism to

be ex trem ely im p o rtan t. A s will be shown in Section 5, it alleviates th e perform ance slowdowns

experienced by R -N UM A or V C-N U M A when m em ory p ressure is high.

A S -C O M A ’s conflict m iss cost is identical to S C O M A ’s when th ere a re enough local free pages

to accom m odate th e ap p lica tio n ’s w orking set. In such cases, th e rem ote refetch cost of AS-

C O M A will be close to (N vagecache * Tpagecache). Until m em ory pressure gets high, N rem will grow

slowly. E ventually th e page cache will no longer be large enough to hold all ho t pages. Ideally

A S -C O M A ’s perform ance w ould sim ply degrade sm ooth ly to th a t of C C-N U M A , (N rem * T rem), as

m em ory pressure approaches 100%. Realizable A S-C O M A m odels will fare som ew hat worse due to

th e e x tra kernel overhead incurred before th e system stabilizes. N evertheless, A S-COM A is able to

converge rapidly to e ith e r S-C O M A or CC-N U M A m ode, depending on th e m em ory pressure.

4 Performance Evaluation

4 .1 E x p e r i m e n t a l S e t u p

All experim ents were perform ed using an execution-driven sim ulation of th e H P PA -R ISC archi

te c tu re called P a in t (P A -in terp reter)[17 , 19]. P a in t was derived from th e M int sim ulator[20]. O ur

sim ulation environm ent includes detailed sim ulation m odules for a first level cache, system bus,

m em ory controller, netw ork in terconnect, and DSM engine. I t provides a m ultip rogram m ed pro

cess m odel w ith su p p o rt for o p era tin g system code, so th e effects of O S /u se r code in te rac tio n s are

m odeled. T he sim ulation env ironm ent includes a kernel based on 4.4BSD th a t provides schedul

ing, in te rru p t handling, m em ory m anagem ent, and lim ited system call capabilities. T he m odeled

physical page size is 4 kilobytes. T h e VM system was m odified to provide th e page tran s la tio n ,

13

a lloca tion , and replacem ent su p p o rt needed by th e various d is trib u ted shared m em ory m odels. All

th ree hybrid arch itectu res we s tu d y ad o p t B SD 4.4’s page allocation m echanism and paging pol

icy [10] w ith m inor m odifications. F r e e - m i n and f r e e - ta r g e t (see Section 3) were se t to 5% and 7%

of to ta l m em ory, respectively. W e ex tended th e first touch allocation algorithm [9] to d is trib u te

hom e pages equally to nodes by lim iting th e num ber of hom e pages th a t are allocated a t each node

to a p ro p o rtio n a l share of th e to ta l num ber of pages. Once th is lim it is reached, rem aining pages

a re allocated in a round robin fashion to nodes th a t have no t reached th e lim it.

T h e m odeled processor and DSM engine are clocked a t 120M Hz. T h e system bus m odeled is

H P ’s R unw ay bus, which is also clocked a t 120MHz. All cycle coun ts rep o rted herein are w ith

respect to th is clock. T he ch a rac te ris tic s of th e L I cache, RA Cs, and netw ork th a t we m odeled are

shown in Table 3.

For m ost of th e SPLA SH 2 app lica tions we studied , th e d a ta se ts provided have a p rim ary

w orking se t th a t fits in an 8-kbyte cache[22]. We, therefore , m odel a single 8-kilobyte d irect-

m apped processor cache to com pensa te for th e sm all size of th e d a ta sets, which is consisten t w ith

previous s tud ies of hybrid a rc h ite c tu re s^ , 12].

W e m odel a 4-bank m ain m em ory contro ller th a t can supply d a ta from local m em ory in 58

cycles. T h e size of m ain m em ory and th e am o u n t of free m em ory used for page caching was varied

to te s t th e d ifferent m odels u nder varying m em ory pressures.

W e m odeled a sequentia lly -consisten t w rite-invalidate consistency pro tocol. DSM d a ta is moved

in 128-byte (4-line) chunks to am ortize th e cost of rem ote com m unication and reduce th e m em ory

overhead of d irec to ry s ta te in fo rm ation . As p a r t of a rem ote m em ory access, th e DSM engine w rites

th e received d a ta back to th e R A C or m ain m em ory as ap p ro p ria te . O ur C C -N U M A and hybrid

m odels are no t “pu re ,” as we em ploy a 128-byte RA C con tain ing th e las t rem ote d a ta received as

p a r t of perform ing a 4-line fetch . T h is m inor optim ization had a larger im pact on perform ance

th a n we had an tic ip a ted , as is described in th e next section. We do n o t consider different RAC

configurations in th e hybrid a rch itec tu re s for th is study. An in itia l relocation th resho ld of 32,

Component Characteristics
LI Cache Size: 8-kilobytes. 32 byte lines, direct-mapped, virtually indexed, physically tagged,

non-blocking, up to one outstanding miss, write back, 1-cycle hit latency
RAC 128 byte lines, direct-mapped, non-inclusive, non-blocking, up to one outstanding miss.
Networks 1 cycle propagation, 2X2 switch topology, port contention (only) modeled

Fall through delay: 4 cycles (ratio between remote to local memory access latencies - 3:1)

T a b le 3 C ache and N etw ork C h arac te ris tic s

14

th e num ber of rem ote refetches required to in itia te a page rem apping, is used in all th ree hybrid

arch itec tu res. T h e relocation th resho lds were increm ented by 8 w henever th rash in g is d etec ted by

A S-C O M A ’s softw are schem e or by V C -N U M A ’s h ardw are scheme; R -N U M A does no t em ploy a

backoff schem e. V C-NU M A uses a breakeven num ber of 16 for its th ra sh in g detec tion m echanism .

We did no t s im u la te V C -N U M A ’s victim -cache behavior, because we considered th e use of non

com m odity processors or busses to be beyond th e scope of th is study . T hus, th e resu lts reported

for V C -N U M A are only relevant for evaluating its relocation stra tegy , and no t th e value of tre a tin g

th e page cache as a v ictim cache[12].

Finally, Table 4 shows th e m inim um la tency required to satisfy a load or s to re from various

locations in th e global m em ory hierarchy. T h e average latency in our sim ulation is considerably

higher th a n th is m inim um because of con ten tion for various resources (bus, m em ory banks, net

works, e tc .) , which we accurate ly m odel. T he rem ote to local m em ory access ra tio is ab o u t 3:1.

N ote th a t o u r netw ork m odel only accoun ts for in p u t p o rt conten tion .

4 .2 B e n c h m a r k P r o g r a m s

We used six p rogram s to conduct our s tu d y : b a r n e s , f f t , lu , o cean , and r a d ix from th e SPLASH-2

benchm ark su ite [22] and em3d from a shared m em ory im plem entation of th e Split-C benchm ark [4,

3]. Table 5 shows th e in p u ts used for each te s t p rogram . T he colum n labeled H o m e p a g e s ind icates

th e num ber of shared d a ta pages in itially a lloca ted a t each node. T hese num bers ind icate th a t

each node m anages from 0.5 m egabytes (b a rn e s) to 2 m egabytes (l u , em3d, and o cean) of hom e

d a ta .

T h e M a x im u m r e m o te p a g e s colum n ind icates th e m axim um num ber of rem ote pages th a t are

accessed by a node for each application , which gives an indication of th e size of th e ap p lica tio n ’s

global w orking set. T he Idea l p r e s s u r e colum n is th e m em ory pressure below which S-CO M A

and A S-C O M A m achines ac t like a “perfect” S-C O M A , m eaning th a t every node has enough free

m em ory to cache all rem ote pages th a t it will ever access. Below th is m em ory pressure, S-CO M A

Data Location Latency
LI Cache 1 cycle
Local Memory 58 cycles
RAC 23 cycles
Remote Memory 147 cycles

T a b le 4 M in im u m Access La tency

15

and A S-CO M A never experience a conflict m iss to rem ote d a ta , nor will th ey suffer any kernel or

page daem on overhead to rem ap pages.

D ue to its sm all defau lt problem size and long execution tim e, l u was run on ju s t 4 nodes - all

o th e r app lications were run on 8 nodes.

5 Results

F igures 2 and 3 show th e perform ance of C C -N U M A , S-CO M A , and th ree hybrid C C -N U M A /S -

CO M A arch itec tu res (A S-C O M A , VC-N U M A , R-N U M A) on th e six applications. T h e left colum n

in each figure displays th e execution tim e of th e various a rch itec tu res relative to C C-N U M A , and

ind icates w here th is tim e was spen t by each p ro g ram 1. T he righ t colum n in each figure displays

w here cache m isses to shared d a ta were satisfied2. N ote th a t for readability , these g rap h s are

ad justed to focus on th e rem ote d a ta accesses, and th u s th e origin of th e Y -axis is non-zero. We

sim ulated th e app lica tions across a range of m em ory p ressures betw een 10% and 90%. Only one

resu lt is show n for C C-N U M A , since it is no t affected by m em ory pressure. As can be seen in th e

g raphs, th e re la tive perform ance of th e d ifferent a rch itec tu res can vary d ram atica lly as m em ory

pressures change. All resu lts include only th e parallel phase of th e various program s.

Program Input parameters Home Pages
(per node)

Maximum
Remote Pages

Ideal
Pressure

barnes 16K particles 102 552 16
em3d 40K nodes, 15%remote,

20 iters
491 778 39

FFT 256K Points,
tuned for cache sizes

390 1254 24

LU 1024x1024 matrix,
16x16 blocks, contiguous

514 405 56

ocean 258x258 ocean 473 356 57
radix 1M Keys, Radix = 1024 259 1306 17

T a b le 5 P ro g ram s and P rob lem Sizes Used in E xperim ents

1 U-SH-MEM: stalled on shared memory. K - B A S E : performing essential kernel operations (i.e., those required by
all architectures). K-OVERHD: performing architecture-specific kernel operations, such as remapping pages and
handling relocation interrupts. U-INSTR and U-LC-MEM: performing user-level instructions or non-shared memory
operations. SYNC : performing synchronization operations.

2HOME: the local node is the data’s home, so it is supplied from local DRAM . S-COMA: misses satisfied from
the local page cache. RAC: misses satisfied from the local RAC. COLD: cold misses satisfied on a remote node,
including both essential cold misses and cold misses induced by remapping. CON F/CAPC: conflict/capacity misses
not satisfied locally but that instead result in remote accesses.

16

BARNES
* SYNC« U-LC-MEM s?U-INSTR ■,f K-OVERHD* K-BASE' U-SH-MEM

i I I * £ I< < ?2 2 23 3 35 g I

BARNES
= CONF/CAPC 8 COLD a RAC « SCOMA

i i

a a 5 &

i i i
S * I

F ig u r e 2 P erfo rm ance C h a rts for b a rn e s , em3d and f f t . (Left: R elative Execution
T im e. R ight: W here M isses W ere Satisfied)

17

! I ! I

OCEAN

__ 1

I f f

F ig u r e 3 Perfo rm ance C h a rts for lu , o cean , and r a d ix . (Left: R elative E xecution
T im e. R ight: W here M isses W ere Satisfied)

= CONF/CAPC
RADIX SCOLDRACs SCOMAHOME

18

5 .1 I n i t i a l A l l o c a t i o n S c h e m e s

We will first focus on th e effect of th e in itial allocation policies. Recall from Table 5 th a t th e “ideal”

m em ory pressure for th e six applica tions ranged from 16% to 57%. Below th is m em ory pressure,

th e local page cache is large enough to sto re th e en tire working se t of a node. To isolate th e im pact

of in itially a lloca ting pages in S-CO M A, we sim ulated S-COM A and th e hybrid arch itectu res a t

a m em ory pressure of 10%, when no page rem appings beyond any in itial ones will occur. Table 6

shows th e percen tage of rem ote pages th a t are refetched a t least 32 tim es, and th u s will be rem apped

from C C -N U M A to S-CO M A m ode in R -N U M A or V C -N U M A , versus of th e to ta l num ber of rem ote

pages accessed. T h is percentage exhib its a b road range from under 1% in f f t to over 95% in l u

and r a d ix .

F irs t, to illu s tra te th e im portance of em ploying a hybrid m em ory a rch itec tu re over a vanilla

C C -N U M A arch itec tu re , exam ine th e ir re la tive resu lts a t 10% m em ory pressures, in F igures 2 and

3. U nder these circum stances, A S-CO M A , like S-CO M A , ou tperfo rm s C C -N U M A by 20-35% for

four of th e app lica tions (lu , r a d ix , b a r n e s , and era3d). Looking a t th e hybrid arch itec tu res in

iso lation, we can see th a t for r a d ix , A S-C O M A o u tperfo rm s R -N U M A and V C -N U M A by 17%.

In r a d ix , th e percen tage and to ta l num ber of rem ote pages th a t need to be rem apped are both

qu ite high, 98% and 10236 respectively. In th e o th e r applications, th e in itia l page allocation policy

had little im p ac t on perform ance. T here is no s tro n g correlation betw een th e num ber of pages th a t

need to be rem apped and perform ance. We can observe a 5% perform ance benefit in lu , where

th e percen tage of relocated rem ote pages is very high (99%), b u t th e to ta l num ber is fairly small

(1606).

T h ere a re tw o p rim ary reasons why th e in itial allocation policy did no t have a s tro n g er im pact

on perform ance. F irs t, our in te rru p t and re location op era tio n s are highly op tim ized , requiring only

2000 and 6000 cycles, respectively, to perform . T hus, th e im pact of th e unnecessary rem appings

and flushes is overw helm ed by o th er facto rs . Second, as an a r tifa c t of our experim ental setup ,

Program Total Remote Pages Relocated Pages % of Relocated Pages
barnes 4416 3498 80%
em3d 6224 1868 29%
FFT 10032 5 0.05%
LU 1620 1606 99%
ocean 2848 569 20%
radix 10448 10236 98%

T a b le 6 N um ber of R em ote P ages E ver Accessed versus C onflicted F requently

19

th e in itial rem appings for several applica tions were no t included in th e perform ance resu lts, as

th ey took place before the parallel phase when ou r m easurem ents are taken . T h is was th e case

for b a rn e s and era3d. T he final tw o applications, f f t and o cean , only access a sm all num ber of

rem ote pages enough tim es to w a rran t rem apping , and th u s th e im pact of initially m apping pages

in S-CO M A m ode is negligible.

In sum m ary, if m em ory pressure is low and local pages for replication are ab u n d an t, an S-CO M A-

preferred in itia l allocation policy can im prove th e perform ance hybrid a rch itec tu res m odera te ly by

accelerating th e ir convergence to pu re S-C O M A behavior. However, th e perform ance bo o st is

m odest.

5 .2 T h r a s h i n g D e t e c t i o n a n d B a c k o f f S c h e m e s

T he perform ance of hybrid DSM arch itectu res depends heavily on th e m em ory pressure. P erfo r

m ance seriously degrades when th e page cache can n o t hold all “h o t” pages and those pages s ta r t

to evict one an o th er. Intuitively, when th is begins to occur, th e m em ory system should sim ply

t re a t th e page cache as a place to sto re a rea so n a b le se t of h o t pages, and s to p try in g to fine tu n e

its con ten ts since th is tu n in g adds significant overhead. P rev ious stud ies have no t considered th e

kernel overhead (T overhead), b u t we found it to be very significant a t high m em ory pressures. Once

th e page cache holds only h o t pages, fu r th e r a tte m p ts to refine its con ten ts lead to th rash in g , which

involves unnecessary flushing of ho t d a ta , cache flushes, and induced cold misses. Since one ho t

page is replacing an o th er, th e benefit of th is rem apping is likely to be m inim al com pared to the

cost of th e rem apping itself. As a resu lt, th e perform ance of a hybrid a rch itec tu re will quickly drop

below th a t of C C -N U M A if a m echanism is no t p u t in place to avoid th rash in g . As described in

Section 3, th e pageout daem on in A S-C O M A d e tec ts th rash in g when it canno t find cold pages to

replace, a t which po in t it reduces th e ra te of page rem appings, going so far as to sto p it com pletely if

necessary. As can be seen in F igures 2 and 3, th is can lead to significant perform ance im provem ents

com pared to R -N U M A and V C-NU M A under heavy m em ory pressure.

We can divide th e six app lica tions into tw o groups: (i) app lications w here th e re a re sufficient re

m ote conflict m isses th a t handling th rash in g effectively can lead to large perform ance gains (b a rn e s ,

em3d, and r a d ix) , and (ii) app lications in which m inim al efforts to avoid th rash in g are sufficient

for handling high m em ory pressure (f f t , o cean , and lu) .

T he behavior of em3d shows th e d anger of focusing solely on reducing rem ote conflict misses

when designing a m em ory arch itec tu re . As show n in F igu re 2, th e perform ance of em3d on the

hybrid a rch itec tu res is q u ite sensitive to m em ory pressure. R -N U M A ou tp erfo rm s C C -N U M A

until m em ory p ressure approaches 70%, a fte r which tim e its perform ance d rops quickly. C C -N U M A

20

o u tperfo rm s R-N U M A by 5% a t 70% m em ory pressure and by 50% a t 90%. Looking a t th e detailed

breakdow n of w here tim e is sp en t, we can see th a t increasing kernel overhead is the cu lp rit. In em3d,

approx im ate ly 29% of rem ote pages, i.e., 230 pages, are eligible for re location (see Table 6), b u t a t

70% m em ory pressure th ere are only 210 free local pages. It tu rn s o u t th a t for em3d, m ost of th e

rem ote pages ever accessed are in th e node’s w orking set, i.e., th ey are “h o t” pages. T hus, above

70% m em ory pressure, R -N U M A begins to th rash and its perform ance degrades badly. Looking a t

th e righ t colum n of F igu re 2, we can see th a t th is perform ance d ropoff occurs even th ough th ere

are significantly fewer rem ote conflict m isses (C O N F /C A P C) in R-N U M A th an in C C -N U M A or

A S-C O M A . T he cost of co n stan tly rem apping pages betw een C C -N U M A and S-CO M A m ode and

th e increase in rem ote cold misses overw helm s th e benefit of th e reduced num ber of rem ote conflict

m isses. T h is behavior em phasizes th e im portance of d e tec tin g th ra sh in g and reducing th e ra te of

rem appings when it occurs.

Recognizing th is problem , V C-N U M A uses ex tra h ardw are to d e tec t th rash ing . However, its

m echanism is no t as effective as A S-C O M A ’s. V C-N U M A s ta r ts to underperform C C -N U M A a t

th e sam e m em ory pressure th a t R -NU M A does, 70%. W hile V C -N U M A ou tperfo rm s R -N U M A by

22% a t 90% m em ory pressure, it underperfo rm s C C-N U M A by 27% and A S-CO M A by 31%. In

co n tra s t, A S-CO M A o u tp erfo rm s CC-N U M A even a t 90% m em ory pressure, when th e o th er hybrid

a rch itec tu res are th rash in g . It does so by dynam ically tu rn in g off relocation as it determ ines th a t

th is relocation has no benefits because it is sim ply replacing ho t pages w ith o th er ho t pages. T his

resu lts in m ore rem ote co n flic t/cap ac ity misses th an th e o th er hybrid a rch itec tu res, b u t it reduces

th e num ber of cold m isses caused by flushing pages during rem apping and th e kernel overhead

associa ted w ith handling in te rru p ts and rem apping. As a resu lt, A S-COM A o u tperfo rm s VC-

NUM A by 31% and R -N U M A by 53% a t 90% m em ory pressure. M oreover, desp ite having only

a sm all page cache available to it and a rem ote w orking se t larger th a n th is cache, A S-C O M A

o u tperfo rm s CC-N U M A .

B arn e s exh ib its very high sp a tia l locality. It accesses large dense regions of rem ote m em ory, and

th u s can m ake good use of a local S-COM A page cache3. As shown in in Table 5, b a r n e s ’s ideal

m em ory pressure is 16%. Like em3d, m ost of th e rem ote pages th a t are accessed are p a r t of th e

w orking set and “h o t” for long periods of execution. W e observed th a t th rash in g begins to occur

a t 50% m em ory pressure. As in em3d, R -N UM A reduces th e num ber of rem ote co n flic t/cap acity

m isses a t high m em ory pressures, a t th e cost of increasing kernel overhead and rem ote cold misses.

3N ote that b arn es is very com pute-intensive, and a problem size that can be simulated in a reasonable amount of
tim e requires only approximately 100 home pages per node of data. Since there are only about 50 free pages per
node available for page replication at 70% memory pressure, we did not simulate barn es at higher memory pressures
since the results would be heavily skewed by small sample size effects.

21

As a result, it is able to ou tperfo rm C C -N U M A a t low m em ory pressure, b u t is only able to break

even by the tim e m em ory pressure reaches 70%. Similarly, V C -N U M A ’s backoff m echanism is not

sufficiently aggressive a t m o d era te m em ory pressures to stop th e increase in kernel overhead or cold

misses. In p articu la r, V C -N U M A only checks its backoff in d ica to r when an average of tw o replace

m ents per cached page have occurred , which is no t sufficiently often to avoid th rash in g . As shown

in th e previous stu d y [12], V C -N U M A does no t significantly o u tp erfo rm R -N U M A until m em ory

pressure exceeds 87.5%. O nce again , A S-C O M A ’s adap tive rep lacem ent algorithm d etec ts th ra sh

ing as soon as it s ta r ts to occur, and th e resu lting backoff m echanism causes perform ance to degrade

only slightly as m em ory pressure increases. As a result, it consisten tly o u tperfo rm s C C-N U M A by

20% across all ranges of m em ory pressures, and ou tperfo rm s th e o th e r hybrid arch itec tu res by a

sim ilar m argin a t high m em ory pressures.

Unlike b a r n e s , r a d ix exh ib its a lm ost no sp a tia l locality. E very node accesses every page of

shared d a ta a t som e tim e during execution. As such, it is an ex trem e exam ple of an application

w here fine tu n in g of th e S-CO M A page cache will backfire - each page is roughly as “h o t” as any

o th er, so th e page cache should sim ply be loaded w ith som e reasonable se t of “h o t” pages and

left alone. W ith an ideal m em ory pressure of 17% and low sp a tia l locality, th e perform ance of

pu re S-C O M A is 6.7 tim es worse th an C C -N U M A ’s a t m em ory pressures as low as 30%. A lthough

th e perfo rm ance of bo th R -N U M A and VC-NUM A are significantly m ore s tab le th a n th a t of S-

C O M A , th ey to o suffer from th rash in g by th e tim e m em ory pressure reaches 70%. T he source of

th is perform ance deg radation is th e sam e as in em3d and b a r n e s - increasing kernel overhead and

(to a lesser degree) induced cold misses. O nce again, R -N U M A induces fewer rem ote accesses th an

C C -N U M A , b u t th e kernel overhead required to su p p o rt page relocation is such th a t R-N U M A

underperfo rm s C C-N U M A by 75% a t 70% m em ory pressure and by a lm ost a fac to r of tw o a t 90%

m em ory pressure. Once again, V C -N U M A ’s backoff a lgorithm proves to be m ore effective th a n

R -N U M A ’s, b u t it still underperfo rm s C C -N U M A by roughly 40% a t high m em ory pressures. AS-

C O M A , on th e o th er hand , deposits a reasonable subset of “h o t” pages in to th e page cache and then

backs off from replacing fu rth e r pages once it de tec ts th rash in g . As a resu lt, even for a program

w ith a lm ost no sp a tia l locality, A S-C O M A is able to converge to CC-N U M A -like perform ance (or

b e tte r) across all m em ory pressures. A t 90% m em ory pressure, A S-C O M A o u tperfo rm s V C-NU M A

by 35% and R -N U M A by 90% a t high m em ory pressures, and it rem ains w ith in 5% of C C -N U M A ’s

perform ance. T h e slight d eg rad a tio n com pared to CC-N U M A is due to th e sh o rt period of th rash in g

th a t occurs before A S-C O M A can de tec t it and com pletely s to p relocations.

A pplications in th e second ca tegory (f f t , o cean , and lu) exh ib it good page-grained locality.

All th ree app lica tions only have a sm all se t of “h o t” pages, which can be easily replicated using

22

a sm all page cache, or references to rem ote pages are so localized th a t th e sm all (128-byte) RAC

in our sim ulation was able to satisfy a high percen tage of rem ote accesses. As a resu lt, th rash in g

never occurs and th e various backoff schem es are n o t invoked. T hus, th e perform ance of th e th ree

hybrid algo rithm s is alm ost identical.

T he perform ance resu lts for f f t and o c e a n are alm ost identical, a lbeit for different reasons.

For these app lications, all of th e a rch itec tu re s perform ed equally well, except for pure S-COM A,

which perform s poorly a t high m em ory pressures. As can be seen in Table 6, only a tiny fraction

of pages in f f t are accessed enough to be eligible for relocation, so all of th e hybrid arch itectu res

effectively becom e CC-N U M A s. S-C O M A m ust m ain ta in inclusion betw een th e processor cache

and th e page cache, so kernel overhead due to th rash in g occurs a t 90% m em ory pressure, which

causes perfo rm ance to d rop significantly. Som ew hat surprisingly, f f t has such high sp a tia l locality

in its references to rem ote m em ory th a t th e 128-byte RAC plays a m a jo r role in satisfy ing rem ote

accesses locally. T h e reason th a t perform ance is s tab le across all m em ory pressures in o ce an can

be seen in th e righ t hand g raph of F igu re 3. Even a t 90% m em ory pressure, only 3% of cache

m isses are to rem ote d a ta , and m ost such accesses can be supplied from a local S-CO M A page or

th e R A C . As a resu lt, all of th e a rch itec tu res o th e r th a n pure S-CO M A , which suffers th e sam e

problem as in f f t , perform w ithin 3% of one an o th er.

Finally, in lu , each process accesses every rem ote page enough tim es to w a rran t rem apping (see

Table 6), sim ilar to r a d ix . However, every process uses each set of shared pages in th e problem

set for only a sh o rt tim e before m oving to an o th e r set of pages. T hus, unlike r a d ix , only a sm all

set of rem ote pages are active a t any tim e, and a sm all page cache can hold each process’s active

w orking set com pletely. So, while 7% of C C -N U M A ’s cache m isses m ust be satisfied by rem ote

nodes, p ractically all cache misses a re satisfied locally in th e o th er a rch itec tu res . As a result,

all of th e hybrid arch itec tu res ou tperfo rm C C -N U M A by approx im ate ly 33% across all m em ory

pressures. Even pu re S-COM A ou tp erfo rm s C C -N U M A a t a 90% m em ory pressure, although its

overall perform ance is 15% worse th a n th e hybrid arch itec tu res because of load im balance.

In sum m ary , for applica tions th a t do n o t suffer frequen t rem ote cache m isses or for which the

active w orking se t of rem ote pages is sm all a t any given tim e, all of th e hybrid a rch itec tu res perform

qu ite well, often ou tperfo rm ing C C -N U M A . However, for applica tions w ith less sp a tia l locality or

larger w orking sets, th e m ore aggressive rem app ing backoff m echanism used by A S-C O M A is crucial

to achieving good perform ance. In such app lica tions, A S-CO M A o u tperfo rm ed th e o th er hybrid

a rch itec tu re s by 20% to 90%, and e ith er o u tperfo rm ed or broke even w ith C C -N U M A even a t

ex trem e m em ory pressures. G iven p ro g ram m ers’ desire to run th e largest problem size th a t they

23

can on their m achines, th is s tab ility of A S-CO M A a t high m em ory pressures could prove to be an

im p o rtan t fac to r in g e ttin g hybrid a rch itec tu res adop ted .

6 Conclusions

T he perform ance of hardw are d is trib u ted shared m em ory is governed by th ree facto rs: (i) rem ote

m em ory latency, (ii) th e num ber of rem ote misses, and (iii) th e softw are overhead of m anaging

th e m em ory hierarchy. In th is paper, we evaluated th e perform ance of five DSM arch itec tu res

(CC-N U M A , S-C O M A , R -N U M A , VC-N U M A , and A S-C O M A) w ith special a tten tio n to th e th ird

facto r, system softw are overhead. F u rtherm ore , since users of SM Ps tend to run th e largest applica

tions possible on th e ir hardw are , we paid special a tte n tio n to how well each arch itec tu re perform ed

under high m e m o r y p re ssu re .

We found th a t a t low m em ory pressure, a rch itec tu res th a t were m ost aggressive ab o u t m apping

rem ote pages in to th e local page cache (S-COM A and A S-C O M A) perform ed best. In o u r study , S-

C O M A and A S-C O M A ou tperfo rm ed th e o th e r a rch itec tu res by up to 17% a t low m em ory pressures.

As m em ory pressure increased, however, it becam e increasingly im p o rtan t to reduce th e ra te a t

which rem ote pages were rem apped in to th e local page cache. S -C O M A ’s perform ance usually

dropped d ram atica lly a t high m em ory pressures. T h e perform ance of V C-NU M A and R -N U M A

also dropped a t high m em ory pressures, a lbeit n o t as severely as S-COM A, due to th rash in g . T his

th rash in g phenom enom has been largely ignored in previous stud ies, b u t we found th a t it had a

significant im pact on perform ance, especially a t th e high m em ory pressures likely to be preferred

by power users.

In co n tra s t, A S -C O M A ’s softw are-based schem e to d e tec t th rash in g and reduce th e ra te of page

rem appings caused it to ou tperfo rm V C-N U M A and R -N U M A by up to 90% a t high m em ory

pressures. A S-C O M A is able to fully utilize even a sm all page cache by m apping a su b se t of

“h o t” pages locally, and th en backing off fu r th e r rem apping . T his m echanism caused A S-C O M A to

ou tperfo rm even C C -N U M A in five o u t of th e six app lica tions we studied, and only underperfo rm

CC-N U M A by 5% in th e six th .

C onsequently, we believe th a t hybrid C C -N U M A /S -C O M A arch itec tu res can be m ade to per

form effectively a t all ranges of m em ory pressures. A t low m em ory pressures, aggressive use of

available D R A M can elim inate m ost rem ote conflict m isses. A t high m em ory pressures, reducing

th e ra te of page rem appings and keeping only a subse t of “h o t” pages in th e sm all local page cache

can lead to perfo rm ance close to or b e tte r th a n C C -N U M A . To achieve th is level o f perform ance,

24

th e overhead of system softw are m ust be carefully considered, and careful a tten tio n m ust given to

avoiding needless system overhead. A S-COM A achieves these goals.

References
[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. The Tera computer

system. In Proceedings o f the 1990 International Conference on Supercomputing, pages 1-6, September
1990.

[2] W.J. Bolosky, R.P. Fitzgerald, and M.L. Scott. Simple but effective techniques for NUMA memory
management. In Proceedings of the 12th A C M Symposium on Operating S ystem s Principles, pages
19-31, December 1989.

[3] S. Chandra, J.R. Larus, and A. Rogers. Where is time spent in message-passing and shared-memory
programs? In Proceedings o f the 6th Symposium on Architectural Support fo r Programming Languages
and Operating Systems, pages 61-73, October 1994.

[4] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel programming in spit-c. In Proceedings of Supercomputing ’93, pages 262-273, November 1993.

[5] B. Falsafi and D.A. Wood. Reactive NUMA: A design for unifying S-COMA and CC-NUMA. In
Proceedings of the 24th Annual International Symposium on C om puter Architecture, pages 229-240,
June 1997.

[6] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable server. In SIGA RC H 97, pages
241-251, June 1997.

[7] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based cache
coherence protocol for the DASH multiprocessor. In Proceedings o f the 17th Annual In ternational
Symposium on C om puter Architecture, pages 148-159, May 1990.

[8] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and M. S.
Lam. The Stanford DASH multiprocessor. IEEE Computer, 25(3):63—79, March 1992.

[9] M. Marchetti, L. Kontothonassis, R. Bianchini, and M.L. Scott. Using simple page placement policies
to reduce the code of cache fills in coherent shared-memory systems. In Proceedings o f the Ninth
A C M /I E E E In ternational Parallel Processing Symposium (IPPS), April 1995.

[10] M.K. Mckusick, K. Bostic, M.J. Karels, and J.S. Quarterman. The Design and Implementation o f the
4-4BSD operating system , chapter 5 Memory Management, pages 117-190. Addison-Wesley Publishing
Company Inc, 1996.

[11] MIPS Technologies Inc. M IP S R 10000 Microprocessor U ser ’s Manual, Version 2.0, December 1996.

[12] A. Moga and M. Dubois. The effectiveness of SRAM network caches in clustered DSMs. In Proceedings
o f the Fourth Annual Symposium on High Perform ance C om puter Architecture, 1998.

[13] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, B. Radke, and S. Vishin. The S3.mp
scalable shared memory multiprocessor. In Proceedings o f the 1995 International Conference on Parallel
Processing, 1995.

[14] S. E. Perl and R.L. Sites. Studies of Windows NT performance using dynamic execution traces. In
Proceedings of the Second Symposium on Operating S ys tem Design and Implementation, pages 169-184,
October 1996.

[15] V. Santhanam, E.H. Fornish, and W.-C. Hsu. Data prefetching on the HP PA-8000. In Proceedings of
the 24th Annual In ternational Symposium on Com puter Architecture, pages 264-273, June 1997.

[16] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin. An argument for Simple COMA. In Proceedings
of the F irst Annual Symposium on High Performance C om puter Architecture, pages 276-285, January
1995.

25

[17] L.B. Stoller, R. Kuramkote, and M.R. Swanson. PAINT- PA instruction set interpreter. Technical
Report UUCS-96-009, University of Utah - Computer Science Department, September 1996.

[18] Sun Microsystems. Ultra Enterprise 10000 System Overview. http://hhh.sun.com/sarvers/datacenter/products/starfi r « .

[19] M. Swanson and L. Stoller. Shared memory as a basis for conservative distributed architectural simu
lation. In Parallel and D istr ibuted Simulation (P A D S ’97), 1997. Submitted for publication.

[20] J.E. Veenstra and R.J. Fowler. Mint: A front end for efficient simulation of shared-memory multipro
cessors. In M A S C O T S 1994, January 1994.

[21] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating system support for improving data
locality on CC-NUMA compute servers. In Proceedings of the 7th Symposium on Architectural Support
f o r Programming Languages and Operating Systems, October 1996.

[22] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings o f the 22nd Annual International Symposium on
C om puter Architecture, pages 24-36, June 1995.

26

http://hhh.sun.com/sarvers/datacenter/products/starfir%c2%ab

