A Note on Optimal Algorithms for Fixed Points

S. Shellman, K. Sikorski
School of Computing, University of Utah Salt Lake City, UT 84112

22nd February 2010

Abstract

We present a constructive lemma that we believe will make possible the design of nearly optimal $O\left(d \log \frac{1}{\epsilon}\right)$ cost algorithms for computing e residual approximations to the fixed points of d-dimensional nonexpansive mappings with respect to the infinity norm. This lemma is a generalization of a two-dimensional result that we proved in [1].

1 Introduction

In $[1,2]$ we presented two-dimensional optimal complexity algorithms for computing residual ϵ-approximations to the fixed points of non-expansive mappings with respect to the infinity norm. These algorithms are based on bisectionenvelope constructions and are derived from Theorem 3.1 of [1]. This theorem makes possible construction of a sequence of rectangles that contain fixed points and converge to the residual ϵ-approximation of some fixed point. At every iteration of the process the previous rectangle is cut by a factor of at least two, to obtain a new rectangle containing a fixed point.

In this paper we generalize the constructive theorem to an arbitrary number of dimensions $d \geq 3$, however, we are unable to utilize this new result in the construction of optimal algorithms.

The main obstacle in such construction is the ability to bound a new set containing fixed points by an "easy-to-construct" convex set of smaller volume and similar topological features to the previous set in this process. We stress that the two-dimensional sets in the optimal algorithm are rotated rectangles. What would be the proper sets in an arbitrary number of dimensions that would bound the non-convex sets resulting from the application of our general d-dimensional lemma?

2 Problem formulation

Given dimension $d \geq 2$, we define $D=[0,1]^{d}$ and the class F of functions, $f: D \rightarrow D$, that are Lipschitz continuous with constant 1 with respect to the
infinity norm, i.e.,

$$
\|f(x)-f(y)\| \leq\|x-y\|, \forall x, y \in D
$$

where $\|\|=\|\|_{\infty}$ henceforth. We seek an algorithm which, for every $f \in F$, computes a solution $\tilde{x}=\tilde{x}(f) \in D$ that satisfies the residual criterion

$$
\begin{equation*}
\|f(\tilde{x})-\tilde{x}\| \leq \epsilon \tag{1}
\end{equation*}
$$

where $0<\epsilon<0.5$. (If $\epsilon \geq 0.5$ then $x=(0.5,0.5)$ satisfies [1]). The algorithm requires $n(f)$ function evaluations, where $n(f) \cong O\left(d \log \frac{1}{\epsilon}\right)$. In the case of $d=2$ the algorithm is based on Theorem 3.1 of [1], utilizes bisection of rectangles and envelope constructions, and has cost $2 \log _{2} \frac{1}{\epsilon}$. Here we present a generalization of this theorem to the case of $d \geq 3$. We believe that the general result will provide the basis for construction of a future algorithm having the desired efficiency. So far we have been unable to construct such an algorithm. We stress that computing $x_{\epsilon},\left\|x_{\epsilon}-\alpha\right\| \leq \epsilon$, an ϵ-absolute approximation to the fixed point α, in the class of expanding functions is of infinite complexity in the worst case [3].

3 Definitions

For a given $f \in F$ and $i=1, \ldots, d$ we define the fixed point sets F_{i} such that for each i,

$$
F_{i}(f)=\left\{x \in D: f_{i}(x)=x_{i}\right\} .
$$

We define $F(f)=\cap_{i=1}^{d} F_{i}(f)$, the nonempty set of all fixed points of f. For all $x \in \mathbb{R}^{d}, i=1, \ldots, d$, and $s \in\{-1,1\}$ we define the "open-ended" pyramid sets

$$
A_{i}^{\beta}(x)=\left\{y \in \mathbb{R}^{d}:\|y-x\|=s\left(y_{i}-x_{i}\right)\right\} .
$$

For all $x \in \mathbb{R}^{d}, i=1, \ldots, d, s \in\{-1,1\}$, and $c>0$, we also define the "flat-top" pyramid set

$$
Q_{i}^{s}(x, c)=\cup\left\{A_{i}^{s}(y): y \in \mathbb{R}^{d},\|y-x\|<c\right\} .
$$

4 Constructive Lemma

In this section we prove our constructive lemma. It is a generalization of Theorem 3.1 of $[1]$ to an arbitrary number of dimensions $d \geq 3$.

Lemma 4.1

For any $f \in F, i=1, \ldots, d$, we let $x \in D$ be such that $f_{i}(x) \neq x_{i}$. Then the following holds:
(i) If $f_{i}(x)>x_{i}$ then $Q_{i}^{-1}\left(x,\left(f_{i}(x)-x_{i}\right) / 2\right) \cap D \cap F_{i}(f)=\emptyset$.
(ii) If $f_{i}(x)<x_{i}$ then $Q_{i}^{1}\left(x,\left(x_{i}-f_{i}(x)\right) / 2\right) \cap D \cap F_{i}(f)=\emptyset$.

Proof. To show (i) we take any y such that $\|y-x\|<\left(f_{i}(x)-x_{i}\right) / 2$, and $z \in A_{i}^{-1}(y) \cap D$. Then

$$
\left|f_{i}(z)-f_{i}(y)\right| \leq\|f(z)-f(y)\| \leq\|z-y\|=y_{i}-z_{i}
$$

and

$$
\begin{gathered}
f_{i}(y)-y_{i}=f_{i}(x)-\left(f_{i}(x)-f_{i}(y)\right)-x_{i}-\left(y_{i}-x_{i}\right) \geq f_{i}(x)-x_{i}-2\|y-x\| \\
>f_{i}(x)-x_{i}-\left(f_{i}(x)-x_{i}\right)=0
\end{gathered}
$$

which implies

$$
f_{i}(z)=f_{i}(y)+\left(f_{i}(z)-f_{i}(y)\right)>y_{i}-\left(y_{i}-z_{i}\right)=z_{i} .
$$

To show (ii) we take any y such that $\|y-x\|<\left(x_{i}-f\left(x_{i}\right)\right) / 2$, and $z \in$ $A_{i}^{1}(y) \cap D$. Then

$$
\left|f_{i}(z)-f_{i}(y)\right| \leq\|f(z)-f(y)\| \leq\|z-y\|=z_{i}-y_{i}
$$

and

$$
\begin{gathered}
f_{i}(y)-y_{i}=f_{i}(x)+\left(f_{i}(y)-f_{i}(x)\right)-x_{i}+\left(x_{i}-y_{i}\right) \leq f_{i}(x)-x_{i}+2\|y-x\| \\
<f_{i}(x)-x_{i}+\left(x_{i}-f_{i}(x)\right)=0
\end{gathered}
$$

which implies

$$
f_{i}(z)=f_{i}(y)+\left(f_{i}(z)-f_{i}(y)\right)<y_{i}+\left(z_{i}-y_{i}\right)=z_{i}
$$

Comments

The above Lemma 4.1 states that after evaluating f at x we can remove from the original domain D the "flat-top" pyramid sets $Q_{i}^{s}\left(x, c_{i}\right)$ for all i such that $c_{i}=\left|f\left(x_{i}\right)-x_{i}\right| / 2$ are not zero, since they do not contain fixed points of f_{i}, implying that they do not contain any fixed point of f as well. If this happens for all $i=1, \ldots, d$ then we can reduce the volume of the set containing fixed points by a factor of at least two.

Open problems

The main obstacle in constructing a recursive algorithm (for $d \geq 3$) based on Lemma 4.1 is our apparent inability to construct a sequence of sets S_{j} that each contain a fixed point, are topologically "similar", decrease in volume, and are easy to represent, and then evaluating f at the "centers" of S_{j}. Also, it needs to be decided which sets can be removed from S_{j} in the case where $f_{i}(x)-x_{i}=0$, i.e., when the current evaluation point x is a fixed point of some components of f.

We believe that by solving those problems we can obtain an optimal $O\left(d \log \frac{1}{\epsilon}\right)$ cost algorithm for finding ϵ-residual solutions to the fixed points of functions in our class. We hope to address these issues in a future paper.

References

[1] A Two-Dimensional Bisection-Envelope Algorithm for Fixed Points, S. Shellman and K. Sikorski, Journal of Complexity 18, 2002 pp. 641-659.
[2] Algorithm 825: A Deep-Cut Bisection Envelope Algorithm for Fixed Points, S. Shellman and K. Sikorski, ACM ToMS, Vol. 29 No. 3, 2003 pp. 309-325.
[3] A Recursive Algorithm for the Infinity Norm Fixed Point Problem, S. Shellman and K. Sikorski, Journal of Complexity 19, 2003 pp. 799-834.
[4] Algorithm 848: A Recursive Fixed Point Algorithm for the Infinity Norm Case, S. Shellman and K. Sikorski, ACM ToMS, Vol. 31 No. 4, 2005 pp. 580-587.
[5] Approximating Fixed Points of Weakly Contracting Mappings, Z. Huang, L. Khachiyan, and K. Sikorski, Journal of Complexity 15, 1999 pp. 200-213.
[6] A note on two fixed point problems, C. Booniasirivat, K. Sikorski, and C. Xiong, Journal of Complexity 23, 2007 pp. 952-961.

