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Abstract 

Estimating the location and distribution of electric current sources within the brain 
from electroencephalographic (EEG) recordings is an ill-posed inverse problem. The 
ill-posed nature of the inverse EEG problem is due to the lack of a unique solution 
such that different configurations of sources can generate identical external electric 
fields. 

In this paper we consider a spatia-temporal model, taking advantage of the entire 
EEG time series to reduce the extent of the configuration space we must evaluate. 
Vtle apply the recently derived in/omax algorithm for performing Independent Com­
ponent Analysis (lCA) on the time-dependent BEG data. This algorithm separates 
multichannel EEG data into activation maps due to temporally independent station­
ary sources. For every activation map we perform a source localization procedure, 
looking only for a single dipole per map, thus dramatically reducing the search com­
plexity. An added benefit of our ICA preprocessing step is that we obtain an a priori 
estimation of the number of independent sources producing the measured signal. 
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INTRODU CTION 

Electroencephalography (EEG) is a technique for the non-invasive characterization of 
brain function. Scalp electric potential distributions are a direct consequence of inter­
nal electric currents associated with neurons firing and can be measured at discrete 
recording sites on the scalp surface over a period of time. 

Estimation of the location and distribution of current sources within the brain from 
t he potential recording on the scalp {i.e ., source localization} requires the solution 
of an inverse problem. This problem is ill-posed in the Hadamard sense; specifically, 
its solution is not necessarily unique. Physically, this is a consequence of the linear 
superposition of the electric field. Specifically, different internal source configurations 
can provide identical external electromagnetic fields. Additionally, only a finite num­
ber of measurement of scalp potential are available , increasing the ill-posedness of the 
problem. 

There exist several different approaches to solving the source localization problem. 
Initially, most of these were implemented on a non-realistic spherical model of the 
head. Those methods which proved promising were then extended to work on real­
istic geometry. One of the most general methods involves starting from some initial 
distributed estimate of the source and then recursively enhancing the strength of 
some of the solution elements, while decreasing the strength of the rest of the solu­
tion elements until they become zero. In the end, only a small number of elements 
will remain nonzero, yielding a localized solution. This method is implemented, for 
example, in the FOCUSS algorithm [Gorodnitsky, 1995J. 

Another approach incorporates a priori assumptions about sources and their locations 
in the model. Electric current dipoles are usually used as sources, provided that t he 
regions of activations are relatively focused [Nunez, 1981]. Although a single dipole 
model is t he most widely used model, it has been demonstrated that a multiple d ipole 
model is required to account for a complex field distribution on the surface of the head 
[Supek, 1993J. 

Finally, there is a. group of algorithms tha.t utilize a time course of dipole activations. 
Here, rather than fit the assumed dipoles on an instant-by-instant basis, they are fit­
ted by minimizing the least-square error residual over the the entire evoked potential 
epoch [Scherg, 1985J. A more advanced approached is developed in the multiple signal 
characterization algorithm, MUSIC, and in its extension, RAP-MUSIC. These algo­
rit.hms use prinCipal component subspace projections to find multiple dipole sources 
[Mosher , 1992J. 

In this paper we propose a new approach to the problem of source localization for 
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the inverse EEG problem. Our solution consists of two steps. First, we prepro­
cess the time dependent data, using the Independent Component Analysis (ICA) 
[Bell , 1995, Amari, 1996] signal processing technique. The result of the preprocessing 
is a set of time-series signals at each electrode, where each time-series corresponds to 
an independent source in the model. The number of different maps created by the ICA 
is equal to the number of temporally independent, stationary sources in the problem. 
To localize each of these independent sources, we solve a separate source localization 
problem. Specifically, for each independent component, we choose an instant in time 
from the Signal and employ a downhill simplex search method [Nedler, 1965] to de­
termine the dipole which best accounts for that particular component's contribution 
of t he measured potentials at the electrodes. 

In our study we use simulated data obtained by placing dipoles in the brain in posi­
tions corresponding to physiologic phenomena. We chose to incorporate three physio­
logically plausible sources: the first in the temporal lobe (corresponding to an epileptic 
focus), the second in the occipital lobe (corresponding to observed visual evoked re­
sponse (ERP) studies), and the third in t he front.allobe (corresponding to language 
processing). For each of these sources, we used a time signal from a clinical study to 
define their magnitudes over time. That is, we place the three current dipoles inside 
our finite element model, and for each instant in time, we project the realistic ERP­
length activation signals onto 32 clinically measured scalp electrode positions. The 
elect rode positions are shown in Figure 1. Projecting the sources onto the electrodes 
requires the solution of a forward problem. 

FORWARD PROBLEM 

The EEG forward problem can be stated as follows: given position and activations of 
dipole current sources, and the geometry and electrical conductivity of the different 
regions with in the head, calculate the distribution of the electric potential on the sur­
face of the head (scalp) . Mathematically, this problem can be described by Poisson's 
equation for electrical conduction in t he head [Plonsey, 1995]: 

(1) 

and Newman boundary conditions on the scalp 

a(V<l» . n = 0, on r n, (2) 

where (J is a conductivity tensor and I, are the volume currents density due to current 
dipoles placed within the head. The unknown q:, is t he electric potent ial created in 
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the head by the distribution of current from the dipole sources. To solve Poisson's 
equation numerically, we started with the construction of a computational model. 
The realistic head geometry was obtained from MRI data, where the volume was 
segmented and each tissue material was labeled in the underlying voxels [Wells, 1994]. 
The segmented head volume was then tetrahedralized via a mesh generator which 
preserved the classification when mapping from voxels to elements [Schmidt, 1995]. 
For each tissue classification, we assigned a conductivity tensor from the literature 
[Foster, 1989]. A cut-through of the classified mesh is shown in Figure 2. We then 
used the finite element method (FEM) to compute a solution within the entire volume 
domain [Jin, 1993]. The FEM has the advantage that we are able to place current 
sources in any location (not only on the mesh nodes as in the fini te difference method) 
by simply re-tetrahedralizing the surrounding volume with a Watson-style algorithm 
[vVatson, 1981] after inserting the sources. Our head model consisted of approximately 
768,000 elements and N = 164, 000 nodes. 

Using FEM we obtain the system of equations 

(3) 

where A ij is an N x N stiffness matrix, h i is a source vector and IPj is vector of 
unknow potentials on every node. The A matrix is sparse (approximately 2,000,000 
non-zeroes entries), symmetric and positive definite. 

The solution of this linear system was computed using a parallel conjugate gradient 
(CG) method and required approximately 12 seconds of wall-clock time on a 14 
processor SGI Power Onyx with 195 MHz MIPS RI0DOO processors. The solution 
to a single d ipole source forward problem is visualized in Figure 3. In this image, 
we display an equipotential surface in wire frame, indicate the dipole location with 
red and blue spheres, cut-through the initial MRI data with orthogonal planes, and 
render the surface potential map of the bioelectric field on the cropped scalp surface. 

In order to obtain time dependent data, we assigned the different time activations 
described above to t he dipoles and computed the resulting projection on all electrodes 
as a function of time. We considered a 32 electrode model for this study. 

The solution of the forward problem is needed not only to derive the simulated elec­
trode recordings, but also later on as the iteratively applied engine for solving the 
inverse source localization problem. 
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INVERSE PROBLEM 

The general EEG inverse problem can be stated as follows: given a time dependent set 
of electric potentials on the surface of the head and the associated positions of those 
measurements, as well as the geometry and conductivity of the different regions within 
the head, calculate the locations and magnitudes of the electric current sources within 
the brain. :rviathematically, it is an inverse source problem in terms of the primary 
electric current sources within the brain and can be described by the same Poisson 's 
equation as the forward problem (1), but with a different set of boundary conditions 
on the scalp: 

<r(V<I»' n =O, and <I>=</> on r o, (4) 

where ¢ is the electrostatic potential on the surface of the head known at discrete 
points - electrode locations, and 1& in (1) are now unknown current sources. 

The solution to this inverse problem can be formulated as finding a least squares fit 
of a set of current dipoles to the observed data for a single time step, or minimization 
with respect to the model parameters of the following cost function: 

32 

~(</>j - 4>j)2/32, (5) 
j=l 

where tPi is the value of the measured electric potential on the ith electrode and ¢i 
is the result of the forward model computation for a particular choice of parameters; 
the sum extends over all channels. 

To employ the above method we must solve the forward problem for every possible 
configurat ion and number of dipoles. Each dipole in the model has 6 parameters: 
location coordinates (x, y, z), orientation (8, ¢) and time-dependent dipole strength 
P(t). The number of dipoles is usually determined by iteratively adding one dipole at 
a time until a "reasonable" fit to the data has been found . Even when restricting the 
location of the dipole to the lattice sites, the configuration space is factorially large. 
This is a bottleneck of many localization procedures [Supek, 1993, Harrison, 1996]. 

Assume now that we have somehow managed to filter the signals on the electrodes, 
such that we know electrode potentials due to every dipole separately. Then for every 
set of electrode potentials we need to search only for one dipole, thus dramatically 
reducing the configuration space. We will discuss this useful filtering technique in t he 
next section. 
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STATISTICAL PREPROCESSING OF THE DATA: 
INDEPENDENT COMPONENT ANALYSIS 

In EEG experiments, electric potential is measured with an array of electrodes (typi­
cally 32/64/128) positioned primarily on the top half of the head, as shown in Figure 
1. For studies of the human visual/auditory system (ERP studies), the data are 
typically sampled every millisecond during the interval of interest after stimulus pre­
sentation, and are averaged over many trials to remove background noise. For a given 
electrode configuration, the time dependent data can be arranged as a matrix, where 
every column corresponds to the sampled time frame and every fOW corresponds to a 
channel (electrode) . For example, the data obtained by 32 electrodes in 180 ms can 
be sampled in 180 frames and represented as a matrix (32 x 180). Below we will refer 
to this matrix as x( td , where instead of a continuous variable t we have sampled 
time frames t k . 

Independent component analysis (ICA) is a statistical method for transforming an 
observed multidimensional random vector into components that are as independent 
from each other as possible [Bell, 19951. The algorithm achieves this by factoring 
the multivariate probability density function of the input signals into the product of 
fy = Di fy~(Yi ) probability density functions (p.d .f.) of every independent variable. 
This factorization involves making the mutual information between variables (chan­
nels) go to zero, i.e., making output signals t hat are statistically independent. The 
ICA process consists of two phases: the learning phase and the processing phase. 
During the learning phase, the ICA algorithm finds a matrix W , which minimizes 
the Kullback-Leibler divergence between t he multivariate probability density and the 
marginal distributions (p.d.f) of transformed input vectors x{td [Amari, 1996J: 

/ 

f(y) 
D(W) = f(y )log n ;!;(y;)dy , (6) 

where 
1 

y (tk) = 1 + e wx(.,j· (7) 

The W matrix is iteratively adj usted to minimize integral (6) by using the data 
vectors x(td: 

W k+! = W k + ,", . (I + (1 - 2· y (tk) . (W ,· X(tkW ) . W " (8) 

where IJ-k is a learning rate and I is the identity matrix [Makeig, 1994] . We decrease 
the learning rate during the iterations and stop when IJ-k becomes smaller t han 10-6

, 

or in other words, when on consecutive steps the unmixing matrix W does not change 
by morc than 10- 6 . 
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The second phase of the ICA algorithm is the actual source separation. Independent 
components (activations) can be computed by applying the unmixing matrix W to 
t he initial data: 

u (t,) ; W· x(t,). (9) 
There are several assumptions one needs to make about the sources in order to use 
rCA algorithms: 

the sources must be independent (signals come form statistically independent 
brain processes); 

there is no delay in signal propagation from the sources to detectors (conducting 
media without delays at source frequencies); 

the mixture is linear (Laplace's equation is linear); 

the number of independent signal sources does not exceed the number of elec­
trodes (we expect to have fewer strong sources than our 32 electrodes). 

ICA returns the source activations up to permutation and scale, because it operates 
on distribution functions, which do not depend on the relative strength or order 
of the signals (this also means that the relative polarities of the obtained signals 
are meaningless). After computing the unmixing matrix W , we can separate the 
independent source signals using (9). Projection of independent activation maps 
back onto the electrode arrays can be done by: 

,,'(t,) ; wt 1
) . U,(tk), (10) 

where Xi(tk) is the set of scalp potentials due to just the i lh source. 

As such, ICA allows us to reconstruct surface potentials that would exist due to 
each dipole as if it were the only source. For example, if the output of rCA gives 
three strong activat ion channels, that means we will be looking for only t hree dipoles. 
Projecting each activation map on the scalp electrodes gives us three different maps, 
each with a time sequence of values. For each activation map, we choose one value 
from the time sequence (fixed point in time), and then use each map to localize one 
dipole llsing the downhill simplex method. The results of numerical experiments are 
presented in the next section. 

NUMERICAL SIMULATIONS 

We prepared the simulated data as described in the previolls sections. The t ime 
dependent course of 180 rus for all 32 channels is shown in Figure 4. We also provide 
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a color mapped plot of the potentials on the surface of the head for the time step at 
160 ms in Figure 7. As can be seen in this figure, the distribution of potentials on 
the scalp can hardly be attributed to a single dipole, but rather to a configuration of 
several dipoles. We perform the lCA procedure on the given time dependent EEG 
data and the resulting activation maps arc shown in Figure 5. Notice that there are 
only three different activat ion patterns presented; the rest are either redundant or are 
essentially noise. Projecting the first activation on all 32 channels, we get the signals 
shown in Figure 6, which are the potentials due to the single temporal lobe dipole. 
Plotting the potentials again for the time step at 160 ms in Figure 8, one can easily 
recognize the surface potential map as resulting from the activation a single dipole 
source. 

'!/'lie can now check the accuracy of the ICA decomposition by comparing it to the 
results of the forward problem simulation run with two of the three dipoles "turned 
off". Because ICA does not preserve scale, we use correlation coefficients as our 
metric for comparing t he potentials at the electrodes. The sets of electrode potentials 
are viewed as vectors in N-space (in our case of 180 time steps, N == 180) and the 
cosine of the "angle" between them is calculated by t.aking the dot-product of the two 
vectors after they've been normalized. For the jth channel, the correlation coefficient 
will be: 

(11) 

A value of GGj = 1 indicates t hat the simulated and rCA recovered time series at that 
electrode are identical up to a scaling factor. The ICA error can thus be cumulatively 
estimated over all electrodes over the entire time sequence, by evaluating the root­
mean-square (RMS) difference of GGj from l over all channels: 

32 

l) CC; - 1)'/32 (12) 
j=l 

Evaluated with the above formula, our three activation projections restored the orig­
inal (unmixed) potential distribution with RMS errors of 3%, 4% and 10%, respec­
tively. 

We then applied the downhill method [Nedler, 1965] to find the minimum of the mul­
tidimensional cost function. In an N dimensional space, the simplex is a geometrical 
figure that consists of N+l interconnected vertices (for example, in our case we have 
a 6 dipole parameters, so the simplex has 7 vertices). The downhill simplex method 
minimizes a function by taking a series of steps, each time moving the point in the 
simplex away from where the function is largest. Occasionally the method converges 
to non-physical solutions and must be restarted [Huang, 1996j. 

7 



The localized temporal lobe dipole was found to be accurate within 7 mm of t he 
actual source. We repeated this localization procedure for the occipital and frontal 
lobe dipoles and were able to determine their positions with errors of 9 and 16 mm, 
respectively. 

CONCLUSIONS 

We have presented an algorithm that reduces the complexity of locali:ting multiple 
neural sources by exploiting the time-dependence of the data. We have shown t hat 
on a realistic head model with simulated EEG data, our algorithm is capable of cor­
rectly predicting the number of independent sources in the model and reconstructing 
potentials due to each source separately. These potential maps can be successfully 
used by source localization methods to independently localize separate sources. 

References 

[Amari, 1996] Amari, S. and Cichocki, A. and Yang, H.H. A new learning algorithm 
for blind signal separation, Advances in Neural Information Processing Systems 8, 
MIT press, 1996. 

[Bell , 1995] Bell, A.J. and Sejnowski, T.J. An information-maximization approach to 
blind separation and blind deconvolution, Neural Computation 7, 11 29- 1159, 1995. 

[Foster , 1989] Foster, leR. and Schwan, H.P. Dielectric properties of tissues and bi­
ological materials: A critical review, Critical Reviews in Biomed. Eng. 17,25-104, 
1989. 

[Gorodnitsky, 1995] Gorodnitsky, Irina. F . and George, John S. and Rao, Bhaskar D. 
Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm 
algorithm. Electroencephalography and clinical Neurophysiology 95, 231-251, 1995. 

[Harrison, 1996] Harrison, Reid R. and Aine, Cheryl J. and Chen, Hai-wen and Ed­
ward R. Flynn, Edward R. and Huang, Mingxiong. Investigation of Methods for 
SpatioTemporal Neuromagnetic Source Localization, Report: LA- UR-96-2042. 

[Huang, 1996] Huang, M. and Aine, C.J . and Supek, S. and Best, E. and Ranken, D. 
and Flynn, E.R. Multi-start Downhill Simplex Method for Spatio-temporal Source 
Localization in Magnetoencephalography, Report LA~UR-96-2043. 

8 



[Jin, 1993] Jin, Jianming. The Finite Element Method in Electromagnetics John Wi­
ley and Sons, 1993. 

[Makeig, 19941 Makeig S. and Jung T-P. and Bell A.J. and Ghahremani D. and Se­
jnowski T.J. Blind separation of event-related brain responses into Independent 
Components, Proc. Natl. Acad. Sci. USA, 1997. 

[Mosher, 19921 Mosher, J.C. Lewis P.S. and Leahy R.M. Multiple dipole modeling 
and localization from spatio-temporal MEG data, IEEE Trans. Biomed. Eng. 39, 
541-57, 1992. 

[Nedler, 1965] Nedler, J.A. and Mead, R. A simplex method for function minimiza­
tion , Compt. J 7, 308-313, 1965. 

[Nunez, 1981] Nunez, P.L. Electric Fields of The Brain, New York: Oxford, 1981. 

[Plonsey, 1995] Plonsey, R. Volume Conductor Theory, The Biomedical Engineering 
Handbook J.D. Bronzino, editor, 119-125, CRC Press, Boca Raton, 1995. 

[Scherg, 1985] Scherg, M. and von Cramon, D. Two bilateral sources of the late AEP 
as identified by a spatia-temporal dipole model. Electroenceph. din. Neurophysiol . 
62, 290-299, 1985 

[Schmidt, 19951 Schmidt, J.A. and Johnson, C.R. and Eason, J.C. and MacLeod, 
R.S. Applications of automatic mesh generation and adaptive methods in compu­
tational medicine, Modeling, Mesh Generation, and Adaptive Methods for Partial 
Differential Eq1wtions Babuska, L et aI.editors, Springer-Verlag, 367-390, 1995. 

[Supek, 1993] Supek, S. and Aine, C.J. Simulation studies of multiple mipole neu­
romagnetic source localization: model order and lim.its of source resolution, IEEE 
Trans. Biomed. Eng. 40, 354-361, 1993 

[Watson, 1981] Watson, D.F. Computing the n-dimensional Delaunay tesselation 
with applications to Voronoi polytopes, Computer J01lrnal volume 24, number 2, 
167-172,1981. 

[Wells, 19941 Wells, W.M. and Grimson, W.E.L. and Kikinis, R. and Jolesz, F.A. 
Statistical intensity correction and segmentation of MRI data, Visualization in 
Biomedical Computing, 13-24, 1994. 

9 



,.tJI:-' 

Figure 1: TRlANGULATED SCALP SURFACE WITH 32 ELECTRODES. THE 
ELECTRODES HAVE BEEN COLOR-MAPPED TO INDICATE ORDER: THEY 
ARE COLORED FROM BLUE TO RED AS THE CHANNEL NUMBER IN­
CREASES. 
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Figure 2; CUT-THROUGH OF THE TETRAHEDRAL MESH, WITH ELEMENTS 
COLORED ACCORDING TO CONDUCTIVITY CLASSIFICATION. GREEN EL­
EMENTS CORRESPOND TO SKIN, BLUE TO SKULL, YELLOW TO CEREBRO­
SPINAL FLUID, PURPLE TO GRAY MATTER, AND BLUE TO WHITE MAT­
TER 
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Figure 3: SOLUTION TO A SINGLE DIPOLE SOURCE FORWARD PROBLEM. 
THE UNDERLYING MODEL IS SHOWN IN THE MRI PLANES, THE DIPOLE 

: SOURCE IS INDICATED WITH THE RED AND BLUE SPHERES, AND THE 
ELECTRIC FIELD IS VISUALIZED BY A CROPPED SCALP POTENTIAL MAP­
PING AND A WIRE-FRAME EQUIPOTENTIAL ISOSURFACE. 
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Figure 4: SIMULATED SCALP POTENTIAL DUE TO THREE DIPOLE 
SOURCES MAPPED ONTO 32 CHANNELS (ELECTRODES). CHANNELS ARE 
NUMBERED LEFT TO RlGHT, TOP TO BOTTOM. THE FIRST CHANNEL IS 
THE REFERENCE ELECTRODE. THESE SIGNALS ARE THE INPUT DATA 
FOR THE ICA ALGORlTHM. THE LOCATIONS OF THESE 32 ELECTRODES 
ARE SHOWN IN FIGURE L 
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Figme 5, ICA ACTIVATION MAPS OBTAINED BY UNMIXING THE INPUT 
SIGNALS. WE OBSERVE THAT THERE ARE ONLY THREE INDEPENDENT 
PATTERNS, INDICATING THE PRESENCE OF ONLY THREE SEPARATE SIG­
NALS IN THE ORIGINAL DATA. 
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Figure G: THE PROJECTION OF THE FIRST ACTIVATION MAP FROM FIG­
URE 5 ONTO THE 32 ELECTRODES. 
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Figure 7: SCALP SURFACE POTENTIAL MAP DUE TO SEVERAL DIPOLES, 
CORRESPONDING TO TIME T~160MS FROM THE SIGNALS SHOWN IN FIG­
URE 4. 
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Figure 8: PROJECTION OF THE FIRST ICA COMPONENT ONTO THE 32 
CHANNELS AT TIME T= 160MS. 
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