L=

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by The University of Utah: J. Willard Marriott Digital Library

PROPERTY OF COMPUTER SCIENCE
LIBRARY 3147 MEB
UNIVERSITY OF UTAH

AN EXPERIMENTAL
DISPLAY PROGRAMMING LANGUAGE
FOR THE

PDP-10 COMPUTER

by

William M. Newman

July 1970 UTEC-CSc-70-104

This research was supported in part by the University of Utah Computer
Scisnce Division and the Advanced Research Projects Agency of the Department
of Defense, monitored by Rome Air Development Center, Griffiss Air Force
Base, New York 13440, under contract AF30(602)-4277. ARPA Order No. 829.

https://core.ac.uk/display/276277959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Abstract iv
Display Procedures 1
Windowing and Scaling 4
Frames 7
Declarations 9
An Example 10
Interaction with Dial Programs 12
Program States 14
Reserved Variables 17
String Manipulation 19
Comments . 20
Linking to Other Program Segments 21

References 22

Appendix

Appendix

Appendix

Appendix

I: a detailed description of the
Title

Declarations

Procedure definitions
Expressions

Assignment Statements
Conditional Statements

FOR Statements

Blocks

Input Statements

Output Statements

Calling External Subroutines

Comments

Il1: use of the Dial system

Il: file 1/0 in Dial

1V: an example of a Dial program

Dial

Language. . .

23

32

34

39

ABSTRACT

An experimental language for display programming, called DIAL,
has been developed for the PDP-10 and the UNIVAC 1559 display. It is
experimental in the sense that it was originally conceived as a'means
of testing out some ideas, and the best way to test them seemed to be
to produce a language that others could use. The language is a subset
of ALGOL (hence the name: Display Algol), with additional facilities
for graphical input and output. It cannot deal with floating-point
numbers and can only handle strings in a limited fashion. Also, it
lacks any facilities for rotating pictures or for displaying three-
dimensional objects. On the other hand, it does include features which
may make it easier to develop display programs.

The principal distinguishing feature of Dial is the ability to
define display procedures. These are identical in almost every respect
to ordinary procedures, but serve the additional purpose of defining,
the structure of the picture on the screen. In this respect they take
the place of the traditional structured display file, which in Dial
does not exist. The only display file created by Dial programs is a
linear list of vectors which is sent to the display.

The chief difference between display procedures and other Dial
procedures lies in the way they are called. A typical display procedure

call might be:

CAPAC AT 100, 200 SIZE 20;

Display procedures may be defined in terms of basic graphical
primitive (lines, points, etc.) or by means of calls to other display
procedures.

Also included in Dial are statements for defining the interac-
tive processes within the program. Dial does not permit a very, high
degree of graphical interaction: it is not possible to program opera-
tions like drawing rubber-band lines or dragging objects around the
screen. It is not clear whether this necessarily means that Dial pro-
grams are less efficient interactively; In any case, Dial is designed
to function under a time-sharing environment where it is difficult to

create continuously changing pictures.

DISPLAY PROCEDURES

All statements which produce graphical output must occur within
display procedures, or within procedures called by them.* There are
+16 four basic graphical output statements: LINE,

LINE TO, MOVE and MOVE TO. LINE and MOVE define
0 — e relative movements, visible and invisible respec-

tively, while LINE TO and MOVE TO define move-

+16 — 1
-8 0+8

Figure 1 system of the display procedure. This is illus-

| ments to absolute Rositions in the coordinate

trated by the following example, which defines the capacitor symbol
shown in Figure 1:

CAPAC 'MOVE TO 0, -16; LINE TO 0,-2; MOVE -8,0; LINE 16,0,
MOVE -16,4; LINE 16,0, MOVE -8,0; LINE TO 0,16

In an example of this sort, either relative or absolute movements could
be used throughout, instead of the mixture of absolute and relative
employed here for the purpose of illustration. Each type of statement

finds specific uses in more complex procedures.

Text can be displayed by means of the DISPLAY statement:

DISPLAY "ANSWER = ", N AT 100, 200

This will display the value of N as a decimal integer, prededed by the

*1f graphical output statements are instead included in the main
body of the program, they do not constitute syntax errors, but
no output will be generated by them.

string "ANSWER = ". This statement is equivalent to the following

two statements, which are also permissible in Dial:

MOVE TO 100, 200; DISPLAY "ANSWER = ", N,

Besides including these basic graphical output statements, display
procedures may also call other display procedures. This is illustra-
ted by the next example, which uses the capacitor symbol and another
symbol of a resistor to create the circuit shown in Figure 2. The

code for this procedure is as follows:

CCT *m 'CAPAC AT 32, 24; RESIS AT 0, 40, RESIS AT 32, 40,
MOVE TO 0, 8; LINE TO 64,8'

When we call CAPAC at the position of 32,24 in the outer procedure,
this becomes the local origin for the inner
AARNAVVNV—N\AAAAA/—
N procedure. Hence the first MOVE TO 0, -16
— in CAPAC will move to 0, -16 in the local

16- coordinate system, which is 32, 8 in the

coordinate system of CCT.

0k h
The CCT procedure could itself
Figure 2: CCT Procedure be called from another display proce-
dure, and so on. In this way a hierarchy of procedures can be

created, modeling the structure of the picture in much the same way
as would a conventional structured display file. There are two
fundamental differences, however, between a structure built of display
procedures and a similarly structured display file. In the first
place, display files are a form of data structure, whose elements may
be created, modified and destroyed by the program. Display procedures
are defined prior to compilation, and can never be altered during the

course of execution.

This raises the question of how pictures can be made to change at
all. The answer lies in writing display procedures which make access to
the same data structures as the rest of the program, so that when the
display procedure is executed it produces a picture reflecting the latest
state of the data structure. Consider an example of a more elaborate
electrical circuit, containing a number of capacitors. The positions
of these capacitors on the circuit diagram can be stored in two arrays,
CX and CY, which hold the x and y coordinates respectively. Then a pro-
cedure for generating the whole circuit diagram might be written as

follows:

CCT 'FOR K + 1 STEP 1 UNTIL NC DO CAPAC AT CS[K], CY[Y]'

NC is the number of entries in the CS and CY arrays.
Display procedures may have arguments, and this provides another
method of altering the picture which the procedure generates. The

value of the capacitor could be added as an argument, as follows:

CAPAC '‘NEW V; DISPLAY V, "PF" AT 4,-8;
MOVE TO 0,-16; etc... '

Figure 3 shows the result. Because the
100 PF

procedure is executed by the computer,

and not by the display processor, it is

Figure 3 possible to include conditional graphical

output statements:

CAPAC m 'NEW V,; IF LABEL=1 THEN DISPLAY V, "PF" AT 4,-8,;
MOVE TO 0,-16; !

This procedure will generate the label or omit it according to the value

of LABEL.

WINDOWING AND SCALING

The calling of one display procedure by another may be carried to
many levels. The result is a pattern of procedure calls resembling a
tree structure with cross connections, as shown in Figure 4. As the size
of this structure grows, so does -the amount
of material on the screen, and it soon be-
comes desirable to be able to select part
of the total picture for display. This is
achieved by means of the WINDOW statement.
Windowing is applied to the display proce-
dure which forms the top node in the tree,

using the following syntax:

WINDOW CCT AT 250, 300 SIZE 200

This statement has the effect of placing a square frame around part of
the picture defined by CCT. The center of
this frame is at 250, 300 in the coordinate
system of CCT, and it measures 200 units in
each direction from this center. When the
WINDOW statement is executed, all the graphi-
cal information which lies outside the ‘'win-
dow' is omitted from the picture, and the
lines which lie inside are scaled so that
Figure 5: Windowing the edges of the window coincide with the

edges of the display screen.* Lines which cross the boundary of the win-

*The use of viewports, as proposed by Dr. lvan Sutherland, is

not currently included in Dial.

dow are clipped so that only the visible part is sent to the display.
Figure 5 illustrates the effect of windowing.

Windowing can be applied only to entire pictures, and not to
individual display procedures which make up part of a picture. This
means that scale changes can be applied only to entire pictures by the
WINDOW statement. Often one wants to be able to change the scale at
which a symbol appears within a picture; this can be done by including

the size in the display procedure call:

CAPAC AT XI, YI, SIZE 256;

Size is measured in units of the coordinate system of the calling dis-
play procedure. This method has been chosen rather than using relative
scale, partly because this is often the most convenient way to specify the
scale of an object, and partly because the use of relative scales would
require floating-point arithmetic. An argument against the use of size

is that it implies that every display procedure must be defined at a
certain size; and this is in fact the case. The size of each display
procedure is included in the declaration of that procedure, in the

manner described in the section on declarations. When the procedure is
called with an explicit size, as in the last example, it is scaled up in
the ratio of the called size to the declared size. If no size is mentioned
in the calling statement, the declared size is used.

It is generally immaterial at what size a display procedure is
declared, as long as all the graphical information in the procedure is en-
closed within the definition boundary, which is assumed to have 0,0 at its
center. It is advantageous, however, to make the declared size contain

the graphical information as closely as possible. In this way the genera-

tion of display files is greatly speeded up.* As an example, the obvious
choice of declared size for the CAPAC symbol would be 16, and 64 for
the CCT of Figure 2. The statement on the previous page would then be
equivalent to scaling up CAPAC sixteen times.

A very useful feature of Dial is the reserved procedure SSIZE
which can be called within any display procedure, and returns the actual
size, in grid units, that the procedure will appear on the screen. Accord-
ing to the value returned by SSIZE, parts of the picture may be included
or left out, or a completely different picture may be generated. SSIZE
could, for example, be used instead of LABEL in the last example on

Page 4:

CAPAC '‘NEW V; IF SSIZE> 64 THEN DISPLAY V, "PF" AT 4, -8,
MOVE TO 0, -16; ..."';

Any statements or expressions may be used as the coordinates and
size in a display procedure call or in a WINDOW statement. The scaling

effect of sizes is cumulative when calls are made to more than one level.

*Any display procedure which lies entirely outside the current
window is omitted entirely without examining its contents. This
so-called 'boxing' operation greatly speeds up the clipping process.

FRAMES

Whenever a WINDOW statement is executed, a process of display
file generation is begun. The display procedure named in the WNDOW
statement is called, and every line or character specified Iin the ensuing
statements is clipped with respect to the window. For each line or
character which appears within the window, the appropriate display com-
mands are added to the display file, in preparation for transmitting the
file to the display buffer. This process continues until the end of
the named display procedure is reached.

Whenever a change is required in the display picture, this pro-
cess must be repeated in order to regenerate the display file. The new
display file must replace the old one in the display buffer. A problem’
arises if the buffer contains the results of several WINDOW statements,
since only the appropriate part of it must be overwritten, and the rest
must remain unchanged. To cope with this problem, each separate part
of the display file is treated by Dial as a separate frame, and the
FRAMVE statement is included in the language to allow parts of the dis-
play file to be regenerated.

The FRAMVE statement is in reality just a procedure call, and the

frame procedure which it calls usually contains just one WINDOW statement:

Fl 'WINDOW CCT2 AT XW, YW SIZE 1000";
FRAVE FI; -
The FRAVE statement carries out two important tasks: it deletes the

appropriate parts ot the old display file; and when the execution of the
frame procedure is complete, it sends the new display file to the display

buffer. It is important to realize that only the FRAVE statement has

this ability to transmit new display files to the display. The other
statements we have discussed are merely concerned with creating a dis-
play file in preparation for transmission.

The Dial system keeps a list of all the frames which are currently
being displayed, and can in this way keep track of the parts of the
display buffer which must be changed when a FRAVE statement is executed.
If the programmer wishes to remove a frame entirely from the display,
he can use the statement:

DELETE FI;
which also removes this frame's entry from the frame list.
Table 1 illustrates the effect of a typical sequence of FRAVE and

DELETE statements, beginning with a clear screen.

Statement Effect Display File Contents
FRAVE FI Generate FlI Fi

FRAMVE F2 Generate F2 FI, F2

FRAVE FI Regenerate FI FIl, F2

FRAVE F3 Generate F3 FI, F2, F3

DELETE F2 Remove F2 FI, F3

DELETE F2 No effect FI, F3

DELETE FI Remove FI F3

FRAVE F3 Regenerate F3 F3

DELETE F3 Remove F3 Empty

Table 1: FRAME, DELETE Sequence

DECLARATIONS

Every Dial program must start with a title, a BEGIN and some
declarations. Included in the declarations must be the names of all
the variables and procedures in the program, except for the formal vari-
ables declared at the start of procedures. Variables, arrays, ordinary

procedures and frame procedures are declared in NBW declarations:

NEW XW, YX, CX[100], CY[100, PROC3, FRAME1l, FRAMEZ;

Arrays may have any number of dimensions. Each dimension has an implicit

lower bound of 1. Display procedures are declared separately:

DISPLAY PROCEDURE CCT, CCTZ2, 16: CAPAC, RESIS;

A number like '16:" included in the declaration defines the size of the
following procedures. A default value of 1024 is assumed for any name
not preceded by a size.

Two other types of declaration, INTERNAL and EXTERNAL, are per-
mitted. These will be discussed more fully in the section on linking to
other programs, but their use is probably obvious to those familiar

with the PDP-10.

AN EXAMPLE

All the aspects of Dial which relate to picture generation have

10

now been covered, and an example is included here to illustrate how

the various Dial statements are used. This example will
circuit diagram shown below, with the same window. Note

a FOR statement to define resistor and ground symbols.

TITLE EXAMPLE

BEGIN

NEW VERT,HORIZ ,FRI, K;

DISPLAY PROCEDURE CCT, 32:RESIS,CAPAC, 8:GROUND;

CAPAC 'NEW HV; IF HV=HORIZ THEN
BEGIN MOVE 16,0; LINE 0,14; MOZWE -8,0; LINE 16,0;
MOVE -16,4; LINE 16,0; MOWE -8,0; LINE 0,14
END ELSE
BEGIN MOVE 0,16; LINE 14,0, MOVE 0,-8; LINE 0,16;
MOVE 4,-16; LINE 0,16; MOVE 0,-8; LINE 14,0
END';]

RESIS 'NEW HV; IF HV=HORIZ THEN
BEGIN MOVE 0,16; LINE 4,0;
FOR K~ STEP 1 UNTIL 3 DO
BEGIN LINE 2.,4; LINE 4,-8; LINE 2,4 END;
LINE 4,0
END ELSE
' BEGIN MOVE 16,0; LINE 0,4;
FOR K« STEP 1 UNTIL 3 DO
BEGIN LINE 4,2; LINE -8,4; LINE 4,2 END;
LINE 0,4
END';

GROUND 'MOVE 4,2;
FOR KM~0 STEP 1 UNTIL 4 DO
BEGIN LINE 2*K,0; MOVE -(2*K+1),1 END;
MOVE TO 4,6, LINE 0,2°';

create the

the use of

CCT <« 1RESIS [HORIZ] AT 0,0;

FR1

MOVE TO 0,16; LINE 0,32; MOVE TO 32,16;

CAPAC[HORIZ] AT 0,32;
CAPAC[VERT] AT 28,48;
RESIS[VERT] AT 28,16;
GROUND AT 36,0, SIZE 16;
RESIS[HORIZ] AT 44,32;
RESIS [HORIZ] AT 76,32;
CAPAC[VERT] AT 60,16;
RESIS[HORIZ] AT 12,64;
RESIS[HORIZ] AT 44,64";

"WINDOW CCT AT 36,36 SIZE 327

HORIZF-0; VERT<-1;
FRAME FR1

END

11

LINE 0,32; LINE 12,0;

—W v

-AAIV —

12

INTERACTION WITH DIAL PROGRAMS

To assist in defining the interactive elements of Dial programs,
an ON statement is provided. This statement, which is reminiscent of

parts of PL/I, has the form:

ON <input> DO <statement>;

The ON statement is generally executed immediately after input has been
received from the Teletype or from the SRI Mouse. If the received input
matches the first part of the ON statement, then the statement which forms

the second part is executed. The various types of input are as follows:

ON CHAR DO ... any Teletype character
ON CHAR "0" D"1. the character Q
ON SYM DO .. . any string, terminated by carriage-return
or tab
ON SYM "XYZ" DO the string XYZ
ON NUM DO . .. any signhed decimal integer
ON SW DO ... any switch on the mouse
ON SW 2 DO ... switch 2 on the mouse
ON HIT 27 DO ... pointing at part of display procedure call 27

on the screen and pressing any switch.

2

PFLAG 6 DO . program flag 6 set

9

PFLAG DO ... any program flag set

The meaning of most of these is fairly obvious. Strings may be of
up to five characters only—this is one of the restrictions on string-mani-

pulations. The mouse switches create inputs only when they are pressed

13

down, and not when they are released.

The "ON HIT..." statement introduces a further feature in Dial
graphical output, the ability to associate names with display procedure
calls. These names may be any integer, and can be added to both calls

and WINDOW statements, as follows:

RESIS AT CX, CY AS 17;
DPROCIK] AT 200, 500 SIZE 2*K AS K+3;

WINDOW RESIS AT X, Y SIZE S AS N;

These names are used only in pointing operations, where they serve both

to single out part of the picture to be pointed at, and to report back

which part was "hit". For example, suppose a procedure P is called with
name 1, and itself calls three other display
procedures, Q, R and S with names 2, 3 and
4. Then if the user points
cursor at any part of the resulting picture
and presses a switch, on execution of an
"ON HIT 1 DO..." statement, the name of the
indicated part will be reported back by

Figure 6 means of a reserved variable HITN. This

name will have the value 2, 3 or 4 according to the part chosen. P may

include calls without names, but these parts of the picture cannot gener-

ate a "hit". Only names occurring one level below the name in the

ON HIT statement will be reported back.

14

PROGRAM STATES

While a program is waiting for an input it is in an idle state,
and as soon as an input occurs the program will normally execute a
series of ON statements to determine the type of input and the appro-
priate action to take. The result may be that the program transfers
to the head of a different list of ON statements to await further
input. In this case the program is considered to have changed state.

The concept of program states has been built into Dial, in
much the same fashion as in the PDP-9/PDP-10 Graphics System”. When
the program starts executing it is implicitly in State 1. It can be

made to change state by executing an ENTER statement, for example

ENTER 12;

The tasks that the program is to carry out during a given state are

listed under a DURING statement:

DURING 12 DO
BEGIN ON CHAR "A" DO ...
END;

ON statements should be used only within a DURING statement.
Conversely, DURING statements should, in fact, contain a list of one
or more ON statements; any other code included in the DURING statement
but not within an ON may cause unexpected results.

Besides the DURING statement, there is an ENTERING statement for

defining the operations to be carried out before transferring to the

DURING statement:

ENTERING 12 DO H « O ;
ENTERING 5 DO BEGIN TYPE "PRESS SWITCH", K K+l END;

ENTERING and DURING statements may occur in any order within the pro-
gram. Statements not enclosed within these ENTERING and DURING state-
ments are executed when the program is started. Programs like the one
on Pages 10 and 11 which contain no ENTERING or DURING statements

simply run to completion and return to the monitor.

It is possible for the program to set one of the "program flags,"
and later to test for the flag with an "ON" statement. This creates
a method for the program itself to cause branching from a state. For

example:

............ SET FLAG 6; ENTER 3;

DURING 3 DO
ON PFLAG 6 DO BEGIN............

There are 262,144 possible flags including Flag O. "SET FLAG" clears
any other flag currently set. It is not necessary to include a flag

number in the "ON PFLAG" statement:

ON PFLAG DO

This will branch if any flag is set. The flag number is stored in FLAGNO.
A statement "PAUSE" <STATEMENT> is included in Dial. This causes
program FLAG O to be set N 60ths of a second later, where N is the

value of the statement:

16

PAUSE 30 ! % WILL SET FLAG 0 AFTER 1/2 SEC %

The "PAUSE" statement does not halt computation. Instead it starts a
time (in the PDP-9) which inputs a special character when the interval
has elapsed. For example, the following statements will call proce-

dure UPDATE and reconstruct frame F6 every 2 seconds:

SET FLAG 0; ENTER 12; % TO CAUSE 1ST BRANCHING %

DURING 12 DO
ON PFLAG DO BEGIN PAUSE 120; % 2 SEC INTERVAL %
UPDATE;
FRAVE F6
END;

Program Flag 0 can be set from the teletype by typing control + shift + M
"PAUSE" statements will work from a non-PDP-9 teletype, but intervals
are rounded to the nearest second, and cause suspension of execution

until the end of the interval.

17

RESERVED VARIABLES

The Dial system uses a number of reserved variables to pass data
to the program during input operations. Four of these deal with input

text information:

INCHAR the latest character typed, shifted into

the leftmost 7 bits

INSYM the input symbol, excluding the terminating

character (5 characters maximum)
INTEXT the input string array (may be subscripted)

INVAL the signed value of the number typed in

Whenever a switch is pressed on the mouse, its position and the

switch settings are passed to the PDP-10, and are held in the following

locations:
INX mouse Xx-coordinate
I NY mouse y-coordinate
INSW switch number (1, 2 or 3)

As mentioned above, when a hit is detected, the name of the display
procedure call involved is held in HITN. Two other locations, HITX and
HITY, contain the mouse position converted to the local coordinates of
this display procedure: this helps to determine in which region of a
display procedure the hit occurred.

Two reserved procedures, SCALX and SCALY, are included to help
relate the mouse position to scaled pictures. Each has one argument,

which is the name of a call to a display procedure. They return the

18

position of the mouse in the coordinate system of this display procedure.

For example:

..WINDOW CCT AT XI, Y1 SIZE 1000 AS 20;
., X2 SCALX[20] ; Y2 SCALY [20] ;
will deposit in X2, Y2 the mouse position

in the coordinate system of

CCT, relative to the origin of CCT.

These routines assume that a procedure call exists in the display

structure with the name given. If there is no such call, the values

they return are indeterminate.

19

STRING MANIPULATION

Apart from strings included in output lists, the longest
string that Dial can handle is five characters in length. Strings of

up to this length can be treated like ordinary variables:

A[10] "JOHN"
IF Q3 = "DOG" THEN

Variables containing text information can be output in charac-

ter form by preceding the variable name with a dollar sign:

Q f- "ABC" DISPLAY N, "WATCH THIS SPACE", $Q;

The TYPE statement for outputting to the teletype is identical
in most respects to the DISPLAY statement. Both use the reserved
string NEWLINE for carriage control. Displayed text is shown at a
fixed size, which does not change when the scale of the picture changes
The left-hand margin for displayed text is the left-hand edge of
the display procedure within which it occurs.

Since the compiler will not permit space, tab, carriage return
or rubout to be included as a single character within quotes, four re-
served variables are included which contain these characters as strings

These are called:
SPACE

TAB

NL (Carriage return)

E.g., ON CHAR DO IF INCHAR=RUBOUT THEN A[K]-*-0;

20

Any text enclosed within percent signs is ignored by the

compiler and may therefore be treated as comments For example:

IF A > B THEN BEGIN % DO THIS IF A GREATER THAN B %
P[K] « P[K+I] ;
TYPE P[K+2]
END;

% MOVE P VALUE DOAN %

21

LINKING TO OTHER PROGRAM SEGMENTS

Dial has been designed to link to other relocatable PDP-10
programs. An INTERNAL declaration must be used for any variable or
array internal to the DIAL program which is addressed by another
program segment. Because of the rather peculiar calling sequence
for Dial procedures, it is difficult for MACRO-IO or FORTRAN programs
to call them. On the other hand, DIAL programs can call MACRO-IO or

FORTRAN subroutines:

CALL DSKOUT; CALL INVERTIA,B, X1;

These generate the correct "JSA 16", calling sequence for FORTRAN.
All the accumulators are saved before the call and restored afterwards,
apart from accumulator 1 whose contents are treated as the value of

the sub outine. This provides a means of writing external functions.

REFERENCES

Wirth, N. and Weber, H., "Euler: a generalization of Algol, and

its formal definition". Communications of the ACM Vol. 9 13-

25+ and 89-100 (Jan. and Feb.).

Newman, W. M. "A high-level programming system for a remote time-

shared graphics terminal”. University of Utah, Computer Science,
March, 1969.
Sutherland, 1.E. "A head-mounted three dimensional display".

AFIPS, Proceedings of the Fall Joint Computer Conference, Vol. 33,

part 1, 1968, 757-764.

Newman, W. M "Programming guide to the UNIVAC 1559 display".

University of Utah, Information Research LaboratoryOctober, 1969.

Kilgour, A. C. and Brown, M. D. "SPINDLE: a system permitting inter
active display list editing". University of Edinburgh, Computer-

aided design Project, June, 1969.

23

APPENDIX 1I: A DETAILED DESCRIPTION OF THE DIAL LANGUAGE

TITLE

The first line of a Dial program must be a title:

TITLE PROG 1
BEGIN

DECLARATIONS
There are three types of declaration: NEW, DISPLAY PROCEDURE,
and INTERNAL. These should be used as follows:
NEW for all variables, arrays, procedures

and frame procedures which occur in
the program;

DISPLAY PROCEDURE for all display procedures; ’

INTERNAL for all variables and arrays in the
program which are referenced by other
programs. These should also be de-
clared in a NBW declaration.

Declarations must be placed at the start of the program immediately
following the initial BEGIN. Any number of declarations may be
be included, in any order.

Arrays may have any number of dimensions. All such dimensions
have a lower bound of 1. Dial arrays are compatible with FORTRAN arrays.
Display procedure declarations may include size definitions,

denoted by an integer followed by a colon. All procedures whose name
follows such a definition are given that size, up to the next size defi-
nition. Those not preceded by a size are given a size of 1024~

Examples:

24

TITLE PROG 2

BEGIN NEW A,B[3,100] , MAX, MIN, FRAMED-
INTERNAL A,B;
DISPLAY PROCEDURE PLAN1,32: DOOR, WINDOW,

PROCEDURE DEFINITIONS

Procedure definitions may be placed anywhere within the pro-
gram, but must precede any call to that procedure. The body of the
procedure definition, including a list of its formal parameters if

any, is enclosed within single quotes:

MAX '‘NEW ARG1, ARGZ;
IF ARGlL > ARG2 THEN ARGl ELSE ARG2'

When a procedure is called, each of the arguments is in turn evaluated,
and its value is assignhed to one of the formal variables in the NEW
list, starting with the first. There may be more formal parameters

in the list than values passed, in which case the remaining formals
are not given values, and can in fact be used as local variables by
the procedure. The value returned by a procedure is the value of the
last executed statement. For example, the following procedure would

return the value 3:

TYPEB + 'TYPE B; X + 3

EXPRESSIONS

Arithmetic expressions may contain any number of primes separ-
ated by the symbols + - * / signifying addition, subtraction, multi-
plication and division. When the expression is evaluated, multipli-

cation and division are carried out first.

The following are legal primes:

25

Integer constants
Variables
Single array elements

Procedure calls

o ox e N e

Any statement, enclosed within parentheses

Any alternative form of expression is a string of one to five
characters, enclosed within double quotes. This has the value of the

integer containing these characters in 7-bit ASCIlI format, left justified.

Examples of permissible expressions are: -
123
A6
-A+B-3
(A+B-3)/(16-C)
C+(IF A=0 THEN 12 ELSE 13)
H+J[16]
MAX[B, C]
"JOHN"

In the above, any of the identifiers miaht refer to procedures rather
than to variables or arrays. Any statement can be used as the argument

of a procedure or array call.

ASSIGNMENT STATEMENTS
An expression or statement, preceded by a left arrow pointing to
the name of a variable or of an array element, constitutes an assign-

ment statement:

A B + C
TXT [3] "HENRY"

These statements ‘'nave the value obtained by evaluating the right-hand

side. This value can be multiply assianed:

A B XYZ[21] + O

CONDITIONAL STATEMENTS

Three forms of conditional statements are permitted:
IF <logical expression> THEN <statement>
IF <locrical expression> THEN <statement> ELSE <statement>

WHILE <logical expression> DO <statement>

The basic logical expressions are the following:

E1=E2 true if value of El equals value of E2

E1#E2 true if value of ElI not equal to value of E2

E1>E2 true if value of EIl exceeds value of E2

El<E2 true if value of El is less than value of E2

El>=E2 true if value of El exceeds or equals value
of E2

El<=E2 true if value of EIl is less than or equals

value of E2

More complex logical expressions can be created by means of the operators

OR, AND and NOT.

e.g., IF A>C AND NOT C=D THEN

NOT is applied first during evaluation, then AND, finally OR

If the logical expression in an IF statement is found to be true,
the statement following the THFN is executed; otherwise the ELSE state-
ment, if any, is executed. In a WHILE statement, the statement following
the DO is executed repeatedly as long as the loaical expression is true.

Examples : IF A>B THEN P-H) ELSE 0+1 -
IF A[12] # Ar13] mem A[l21"A (13170
WHILE K<O DO K-K + 1

The expression INCHAR=NT. is true if IHCIIAR contains the single character,

carriage-return.

27

FOR STATEMENT

The following are examples of permissible FOR statements:

FOR K « 1 STEP 1 UNTIL 100 DO A[K] ~ O
FOR P J+3 STEP B + 100*Q UNTIL 7-J/4 DO A[P] N.[P-1]

Any expression may precede the words STEP, UNTIL and DO; any statement
may follow DO. This statement will be executed while the variable pro-
ceeds from a value equal to the first expression to a value not exceed-

ing the last expression, in steps equal to the middle expression.

BLOCKS
A compound statement can be formed from any number of statements,

separated by semi-colons, preceded by BEGIN and terminated by END.

e.g., A BEGIN TYPE "STRING"; C 0; 3 END

INPUT STATEMENTS
All input to a Dial program must occur within a DURING statement.

This has the form:

DURING <state number> DO <statement>

and is equivalent to a WHILE statement:

WHILE STATE = <state number> DO
BEGIN INPUT; <statement> END

While the program is under the control of the DURING statement it is

waiting for input from the Teletype or from the Mouse. When it receives
one of these it executes the following statements. These are normally

ON statements: '

ON <input> DO <statement>

for which alternatives are given on Page 12 of the main report.
ON statements are executed in the order in which they are given,
until one is found which matches the input. For this reason it is

important not to program as follows:

ON SYM DO ENTER 3;
ON SYM "ABC" DO A + 3;

The second of these statements can never be satisfied, since the first
will always be satisfied before it.
To cause the program to transfer to another state, the ENTER

statement is used:

ENTER 23

The argument of this statement may itself be any statement:

ENTER P+3

ENTER statements take immediate effect, and act rather like @GO TO
statements. However, the action is not identical to a GO TO: instead
the current state number is reset, and all the DURING statements in
the program are executed until the appropriate one is found. There
may be no DURING statement bearing the desired state number. In this
case the program returns to the monitor.

It may be useful to check for certain inputs during all states.

For this purpose a special DURING statement is provided:

DUPING ALL DO ON CHAR "X" DO ENTER 1

The check for innuts listed in the DURING ALL statement is made before

checking any inputs listed under the current state.

29

ENTERING statements can be used to cause tasks to be performed every

time a certain state is entered:

ENTERING 3 DO A+ B+ 0

ENTERING and DURING statements may be listed in any order in the body of
the program. When execution starts, all the statements not enclosed in
ENTERING and DURING statements are executed, and the program enters State
1. This last action can be avoided by including an ENTER statement in

this initialization section.

OUTPUT STATEMENTS

For text output, the TYPE statement is used. Following the word
TYPE is a list of expressions, which are evaluated and typed out.
Strings in a type list may be of any length, but may not include carriage-

returns: these are provided by the reserved NEWLINE string:

TYPE A, "SQUARE FEET", NEWLINE,

Variables or array elements whose names are preceded by a dollar sign

are typed out as ASCIl strings:

XT "ED"; TYPE $XT
The DISPLAY statement has the equivalent effect to the TYPE
statement on the display screen. All characters are displayed at a
standard size, roughly the same as the size of typed characters. The

following two forms are permitted for the DISPLAY statement:

DISPLAY "TEXT", N
DISPLAY "TEXT", N AT X,Y

Other statements for generating displayed pictures are:

LINE Ax, Ay
MOVE Ax, Ay > by relative amounts
ZIP Ax, Ay J

30

LINE TO X,y
MOVE TO X,y > to absolute positions
ZIP TO X,y J

Any statement may be used for Ax,Ay, x and y. These value are measured
in units of the coordinate system of the display procedure in which the
statements occur. ZIP lines are drawn entirely in zip mode.

There are four forms of display procedure call:

DP AT X,Y

DP AT X,Y SIZE S

DP AT X, Y AS N

DP AT X,Y SIZE S AS N

Here X, Y, S and N are any statement. The call DP may include arguments.

The WINDOW statement takes similar forms:

WINDOW DP AT X,Y STTIEE S
WINDOW DP AT X,Y SIZE S AS N

The center of the window is given by X,Y. The window is always square
with side equal to 2S. Those parts of DP which lie within the window
are mapped across into the visible screen area.

Any procedure containing any number of WINDOW statements can be

called as a FRAVE procedure:

FRAVE FP1 .

It is wise not to include arguments in frame procedure calls, although
these will currently be processed correctly; no guarantee can be made
that this will continue to be the case. Each time a Fame procedure

is called in this way, a fresh display file replaces the previous out-

put of this frame. The statement

31

DELETE FRI
will delete this frame's output, and

DELETE ALL ,
will clear the screen.

CALLING EXTERNAL SUBROUTINES

The followina statements can be used to call external subroutines

written in FORTRAN IV or MACRO-IO.

CALL WTAPE

CALL PARAB[100, A + 100 * K]

Arguments may be variable or array names, or any other statement,
including another CALL statement. Accumulators are saved before the
call, and restored afterwards. All subroutines called in this way must

be declared in EXTERNAL declarations.

COMVENTS]

Any text enclosed within percent signs is ignored by the compiler.

32

APPENDIX 1l: USE OF THE DIAL SYSTEM

Source files for Dial programs should be prepared in the normal
fashion, using one of the editors. The procedure for compiling and

running Dial programs is as follows:

.R DIAL

*DSK:PROG. MAODSK:PROG.SRC

(any file names and any devices,
including TTY, will do)

.LOAD PROG,DIO[1,1]

(this loads the program, together with
the Dial 1/0 routines)

.START
The program will now start execution.
Dial programs can be run from any teletype, but will not produce

any displayed output unless run from one of the teletypes on the PDP-9.
To remind users who use other teletypes, the program types "TTY 10 ONLY"
when it starts execution.

To help programmers to debug without a display, a technique for
simulating the mouse from the keyboard is included in Dial. Type control
+ shift + N, followed by up to three integers, separated by commas. The
first number is taken as the x-coordinate of the mouse, the second as

the y-coordinate and the third as the switch number. For example:

+c256,891,2 is equivalent to moving the mouse to the point

256,891 and pressing the middle button.

Because of the way Dial processes hits, these can be generated at the

teletype in the same way.

33

Those who wish to examine the display files produced by Dial

should do the following:

.DEBUG PROG, DIOJ[1,1]
DIO$: BP(DBUF)$IB $G

On reaching the breakpoint set in this way, DDT will type out
the first word of the display file it has prepared for transmission,
and ensuing words can be examined by typing line-feed. To resume execu-
tion, type $p ($ = altmode in all cases). Those who use this technique

should familiarize themselves with the instruction set for the

Univac 1559 [4].

Input

A

APPENDIX

Initialization

34

I11: FILE 1/0 IN DIAL

(Opening)

There are two calls to open an input device. Only one input

device can be open at any time. Each open input call closes

the previous

input device, if one was open.

1. TXTIN [Open device for character input]

1A.

Parameters

This call takes three text string parameters.
The first is the device name, the second is the
file name, and the third is the file name
extension, e.g., CALL TXTIN["D116","SCAN", "MAC"];
Results

This call opens the device named in the first
parameter, and looks up the file name specified
in the next two parameters.

Code is also set up to access the 36-bit words

from this device in 7-bit character bytes.

2. BININ [Open device for binary input]

2A.

2B.

Parameters

This call takes three text string parameters.
The first is the device name, the second is the
file name, and the third is the file name exten-
sion, e.g., CALL BININ ['D116","SCAN","MAC"];
Results -

This call opens the device named in the first

parameter, and looks up the file name specified

in the next two parameters
Code is also set up to access the 36-bit words
from this device in 36-bit binary bytes.
Reading
There are two calls provided to read an input device,.and one
to check if end of file has been reached.
1. RDTXT [Read characters]
1A. Parameters
This call takes no parameters. It simply leaves
a value on the top of the stack.
E.g., CHARS - CALL RDTXT;
IB. Results
The resulting word will be the next five non-zero
bytes from the input device. If the device was
opened to have 36 bit bytes, then only the seven
low-order bits will be taken from each non-zero
byte.
2. RDBIN [Read binary words]
2A. Parameters
This call takes no parameters. It simply leaves

a value on the top of the stack.

E.g. , WORD « CALL RDBIN;

2B. Results
The resulting word will be the next byte from the
input device. If the device was opened to have
seven bit bytes, then the byte will be right jus-
tified in result word.

3. EOF [Check for end of file]

Output

A

3A. Parameters
This call takes no parameters. It simply leaves
a value on the top of the stack.
E.g., EOFVAL CALL EOF;
3B. Results
The value is zero if end of file has not been
reached. The value is set to -1 when end of file
is reached. Note that the binary word returned
when EOF is set is not part of the file, and
always zero. Also the text string is part of
the file, but may be filled out with nulls [0] .
Termination (Closing)
There is one call to close the current input device which -

takes no parameters. It is CLOSEI.

Initialization (Opening)
There are two call to open an output device. Only one output de-
vice can be open at any time. Each open output call closes the
previous output device, if one was open.
1. TXTOUT [Open device for character output]
1A. Parameters
This call takes three text string parameters. The
first is the device name, the second is the file
name, and the third is the file name extension.
E.g., Call TXTOUT ["D116","SCAN","MAC"];
1B. Results
This call opens the device named in the first
parameter, and enters the file name specified in

the next two parameters. Code is also set up to

store the 36-bit words sent to this device as

7-bit character bytes.

2. BINOUT [Open device for binary output]

2A.

2B.

B. Writing

Parameters

This call takes three text string parameters.
The first is the device name, the second is the
file name, and the third is the file name
extension.

E.g., CALL BINOUT ["'D116","SCAN","MAC"];
Results

This call opens the device named in the first
parameter, and enters the file name specified
in the next two parameters. Code is also set'
up to store the 36-bit words sent to this device

as 36-bit binary bytes.

There are two calls to write on an output device.

1. WRTTXT [Write characters]

1A.

Parameters !
This call takes one parameter, which is the
data to be written. E.g., CALL WRTTXT[DATA];
Results

This will cause the data word to be divided

into 5 7-bit characters, and each non-zero char-
acter will be written. Note, that if the output
device was opened in binary mode, each character

will be stored right-justified one to a word.

38
2. WRTBIN [Write binary words]
2A. Parameters
This call takes one parameter, which is the
data to be written. E.g., CALL WRTBIN[DATA];
2B. Results "
This will cause the entire data word to be writ-
ten at once. Note, that if the output device
was opened in character mode, only the seven low
order bits will be written in the next 7-bit
slot in the output file.
C. Termination (Closing)
There is one call to close the current output device, which
takes no parameters. It is CLOSEO.
1. Use
Programs should be loaded with DIAL10 as follows:

LOAD PROG, DIO[1,1], DIAL10[1,1]

39

APPENDIX 1V: AN EXAMPLE OF A DIAL PROGRAM

The following program allows the user to create and manipulate
rectangles on the screen and illustrates most of the interactive’ features
of Dial. The functions of the program have been based on an example in
A. C. Kilgour and M D. Brown's SPINDLE Manual.

Rectangles can be created, moved, duplicated, and deleted. To
create a rectangle, type "G" and indicate two positions with the mouse.
These become the two opposite corners of the rectangle. Each further
point indicated by the mouse will be used to reposition the rectangle.

To move a rectangle, type "M" and point at the rectangle with
the mouse: the rectangle will disappear. Then point somewhere on the
screen, and it will reappear at that position. At each successive
position, the rectangle is repositioned.

Duplication is achieved by typing "S" and pointing at the appro-
priate rectangle. Thereafter the operation is identical to moving, except
that the original rectangle remains on the screen.

To delete a rectangle, type "D" and point at it. If deleted in
error, a rectangle can be restored by typing "N", and a fresh choice can
be made.

Throughout operation, typing "X" will return the program to its
base mode, and restore the display to the state it was in when base
mode was left. Typing "P" makes permanent any change effected by creating
moving, duplicating or deleting, and returns the program to base mode.

The program starts with an implicit "G".

TITLE RECTS

BEGIN

NEW NR,K,TEMP, NEWX,NEWY,SIZX,S1ZY,CREATE;
NEW RSI1Z[50,2],RX[50], RY[50],FRI,FR2;
DISPLAY PROCEDURE NEWR, RECT,LAYOUT;

% RECT IS CALLED BY LAYOUT TO DRAW ALL STORED RECTANGLES %

RECTANEW N; LINE RSIZ[N,1],0; LINE 0, RSIZ[N,2];
LINE - RSIZ[N,1],0; LINE 0,-RSIZ[N,2]";

% LAYOUT CREATES DISPLAY OF ALL STORED RECTANGLES, OMITTING
TEMPORARILY DELETED RECTANGLE TEMP % ’

LAYOUTA'FOR KA1 STEP 1 UNTIL NR DO
IF K#TEMP THEN RECT[K] AT RX[K],RY[K] AS K';

% NEWR DRAWS NBEWLY DEFINED RECTANGLE %

NEWR*' MOVE TO NBEWX, NEWY ;
LINE S1zZX,0; LINE 0,SI1ZY; LINE -S1ZX,0; LINE 0,-S1ZY1,

% FRAME FRI CREATES ALL STORED RECTANGLES,
FR2 CREATES NEW RECTANGLE %

FRI-<-"WINDOW LAYOUT AT 512,512 SIZE 512 AS 51°;
FR2-*"WINDOW NEWR AT 512,512 SIZE 512°';

% THIS CODE EXECUTED AT START %

CREATENMNTEMP«NRMO
ENTER 2,

% BASE MODE STATE %

DURING 1 DO

BEGIN ON CHAR "G" DO ENTER 2
ON CHAR "M" DO ENTER 5
ON CHAR "S" DO ENTER 6
ON CHAR "D" DO ENTER 7

END;

DURING 2 DO

ON SW DO BEGIN NEWX-KENX; % FIRST CORNER
NEWY-INY ;
ENTER 3
END;

DURING 3 DO

ON SW DO BEGIN SIZX INX-NEWX; % SECOND CORNER %
SIZY INY-NEWY;
FRAVE FR2; % DISPLAY NEW RECTANGLE
CREATE 1, % IE NEW RECT CREATED %

ENTER 4

41

END;

DURING 4 DO

ON SW DO BEGIN NEWXMNX; % ON EACH NBEW POSN, REPOSITION %
NEWY-f-INY;
FRRAVE FR2 % AND DISPLAY IN NEW POSITION %
END;

DURING 5 DO

ON HIT 51 DO BEGIN TEMP™HITN; % TEMP = RECTANGLE TO BE MOVED %
- SIZXARSIZ[HITN,17];
S1 ZY"RSIZ [HITN, 2] ;
FRAVE FRI; % DISPLAY WITHOUT THIS RECTANGLE %
CREATEA;
ENTER 4
END;

DURING 6 DO
ON HIT 51 DO BEGIN SIZX-<-RSI1Z [HITN, 1] % DUPLICATE THIS ONE %
SIZY-"RISZ [HITN , 2]

CREATE -<1,
ENTER 4
END:
DURING 7 DO
ON HIT 51 DO BEGIN TEMP-HITN; % DELETE THIS ONE %
FRAVE FR1;
ENTER 8
END;
DURING 8 DO
ON CHAR "N" DO BEGIN TEMP-<O(, N MEANS RESTORE IT
FRAVE FR1;
ENTER 7
END;
DURING ALL DO
BEGIN ON CHAR "P" DO P MEANS MAKE CHANGE PERMANENT
BEGIN IF TEMP#0 THEN
BEGIN NRMN-NR-1; TEMP = RECTANGLE TO BE DELETED
FOR K«TEMP STEP 1 UNTIL NR DO
BEGIN RSIZ [K, 1]<RSI1Z [K+],1]; FILL GAP LEFT BY DELETING %

RSIZ[K,2.]-«-RSIZ[K+] ,2] ;
RX[K]-«-RX[K+I] ;
RY[K]t-RY[K+I]

END;
TEMPH0

END;

IF CREATE=1 THEN

BEGIN CREATED; % IF NBW RECTANGLE CREATED, ADD IT %
NR-<-NR+HI;] % AND INCREMENT NUMBER %

RSIZ[NR,1]-<-S1ZX;
RSIZ[NR,2]*SIZY;
RX[NR]-*-NEWX;

RY [NR] «NBWY
END;
DELETE FR2;
FRAVE FRI1,;
ENTER 1
END;
ON CHAR "X" DO
BEGIN DELETE FR2;

FRAVE FRI;
CREATENTEMPNO;
ENTER 1
END
END

42

REMOVE TEMPORARY DISPLAY %

% ON X, RESTORE TO ORIGINAL STATE %

