
PROPERTY OF COMPUTER SCIENCE
LIBRARY 3147 MEB

UNIVERSITY OF UTAH

AN EXPERIMENTAL

DISPLAY PROGRAMMING LANGUAGE

FOR THE

PDP-10 COMPUTER

by

W illiam M. Newman

July 1970 UTEC-CSc-70-104

This research was supported in part by the University o f Utah Computer
Scisnce D ivision and the Advanced Research P rojects Agency o f the Department
o f Defense, monitored by Rome Air Development Center, G r i f f i s s A ir Force
Base, New York 13440, under contract AF30(602)-42 7 7 . ARPA Order No. 829.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Display Procedures 1

Windowing and Scaling 4

Frames 7

Declarations 9

An Example 10

Interaction with Dial Programs 12

Program States 14

Reserved Variables 17

String Manipulation 19

Comments . 20

Linking to Other Program Segments 21

Abstract iv

References 22

ii

Appendix I: a detailed description of the Dial Language... 23

T it le

Declarations

Procedure d efin it io n s

Expressions

Assignment Statements

Conditional Statements

FOR Statements

Blocks

Input Statements

Output Statements

Calling External Subroutines

Comments

Appendix I I : use o f the Dial system 32

Appendix I I I : f i l e I /O in Dial 34

Appendix IV: an example o f a Dial program 39

iii

ABSTRACT

An experimental language for display programming, ca lled DIAL,

has been developed for the PDP-10 and the UNIVAC 1559 d isp lay . I t is

experimental in the sense that i t was o r ig in a lly conceived as a'means

o f te s t in g out some ideas, and the best way to t e s t them seemed to be

to produce a language that others could use. The language is a subset

o f ALGOL (hence the name: Display A l g o l) , with additional f a c i l i t i e s

for graphical input and output. I t cannot deal with f lo a t in g -p o in t

numbers and can only handle strin gs in a lim ited fashion. A lso , i t

lacks any f a c i l i t i e s for rotating p ictures or for displaying three­

dimensional o b je c ts . On the other hand, i t does include features which

may make i t easier to develop display programs.

The p rin cipal distinguishing feature o f Dial is the a b i l i t y to

define display procedures. These are id en tic a l in almost every respect

to ordinary procedures, but serve the additional purpose o f d e fin in g ,

the structure o f the picture on the screen. In th is respect they take

the place o f the tra d itio n a l structured display f i l e , which in Dial

does not e x i s t . The only display f i l e created by Dial programs is a

l in ea r l i s t o f vectors which is sent to the d isplay .

The c h ie f d ifference between display procedures and other Dial

procedures l i e s in the way they are c a lle d . A ty p ic a l d isplay procedure

c a l l might be:

CAPAC AT 100, 200 SIZE 20;

iv

Display procedures may be defined in terms o f basic graphical

prim itive (l in e s , p o in ts , etc.) or by means o f c a l l s to other display

procedures.

Also included in Dial are statements for defining the in tera c ­

tive processes within the program. Dial does not permit a very, high

degree o f graphical in tera ctio n : i t is not p o ssib le to program opera­

tions lik e drawing rubber-band lin e s or dragging ob jects around the

screen. I t i s not clear whether this necessarily means that Dial pro­

grams are less e f f i c i e n t in te r a c t iv e ly ; in any case, Dial i s designed

to function under a time-sharing environment where i t i s d i f f i c u l t to

create continuously changing p ictu res .

DISPLAY PROCEDURES

A ll statements which produce graphical output must occur within

display procedures, or within procedures ca lled by them.* There are

+16 four basic graphical output statements: LINE,

LINE TO, MOVE and MOVE TO. LINE and MOVE define

0 — ------------------ re la tiv e movements, v is ib le and in v is ib le respec­

t iv e ly , while LINE TO and MOVE TO define move-
+16 — ,

1 I ments to absolute p o sitio n s in the coordinate- 8 0 + 8 ^
Figure 1 system o f the display procedure. This is i l l u s ­

trated by the follow ing example, which defines the capacitor symbol

shown in Figure 1:

CAPAC 'MOVE TO 0 , -1 6 ; LINE TO 0 , - 2 ; MOVE - 8 , 0 ; LINE 1 6 ,0 ,

MOVE - 1 6 , 4 ; LINE 1 6 ,0 ; MOVE - 8 , 0 ; LINE TO 0 ,1 6 '

In an example o f th is s o r t , e ith er re la t iv e or absolute movements could

be used throughout, instead o f the mixture o f absolute and re la t iv e

employed here for the purpose o f i l lu s t r a t i o n . Each type o f statement

finds s p e c if ic uses in more complex procedures.

Text can be displayed by means o f the DISPLAY statement:

DISPLAY "ANSWER = " , N AT 100, 200

This w i l l display the value o f N as a decimal in teg er , prededed by the

* I f graphical output statements are instead included in the main
body o f the program, they do not con stitu te syntax e rro rs , but
no output w i l l be generated by them.

str in g "ANSWER = " . This statement is equivalent to the follow ing

two statements, which are also perm issible in D ial:

MOVE TO 100, 200; DISPLAY "ANSWER = " , N;

Besides including these basic graphical output statements, display

procedures may also c a l l other display procedures. This i s i l l u s t r a ­

ted by the next example, which uses the capacitor symbol and another

symbol o f a r e s is to r to create the c ir c u it shown in Figure 2 . The

code for th is procedure is as fo llow s:

CCT *■ 'CAPAC AT 32, 24; RESIS AT 0 , 40, RESIS AT 32, 40,

MOVE TO 0 , 8; LINE TO 6 4 ,8 '

When we c a l l CAPAC at the p osition o f 32 ,24 in the outer procedure,

this becomes the lo c a l orig in for the inner
-\f\f\f\/\/\/——\AAAAA/—

^ procedure. Hence the f i r s t MOVE TO 0, -16

16-

— in CAPAC w i l l move to 0 , -16 in the lo c a l

coordinate system, which is 32, 8 in the

coordinate system o f CCT.
o 1------------------ h

The CCT procedure could i t s e l f

Figure 2: CCT Procedure be ca lled from another display proce­

dure, and so on. In th is way a hierarchy o f procedures can be

created, modeling the structure o f the picture in much the same way

as would a conventional structured display f i l e . There are two

fundamental d ifferen c e s , however, between a structure b u i l t o f display

procedures and a s im ila r ly structured display f i l e . In the f i r s t

p la ce , display f i l e s are a form o f data stru cture, whose elements may

be created, modified and destroyed by the program. Display procedures

are defined p rior to compilation, and can never be a ltered during the

course o f execution.

This raises the question o f how pictures can be made to change at

a l l . The answer l i e s in writing display procedures which make access to

the same data structures as the re st o f the program, so that when the

display procedure is executed i t produces a picture r e f le c t in g the la t e s t

sta te o f the data structure . Consider an example o f a more elaborate

e l e c t r i c a l c i r c u it , containing a number o f capacitors. The position s

o f these capacitors on the c ir c u it diagram can be stored in two arrays,

CX and CY, which hold the x and y coordinates re sp e c tiv e ly . Then a pro­

cedure for generating the whole c ir c u it diagram might be written as

fo l lo w s :

CCT 'FOR K -t- 1 STEP 1 UNTIL NC DO CAP AC AT CS [K] , CY[Y] '

NC i s the number o f en tries in the CS and CY arrays.

Display procedures may have arguments, and th is provides another

method o f a lter in g the picture which the procedure generates. The

value o f the capacitor could be added as an argument, as fo llow s:

CAP AC 'NEW V; DISPLAY V, "PF" AT 4 , - 8 ;

MOVE TO 0 , - 1 6 ; e t c . . . '

Figure 3 shows the r e s u lt . Because the
100 PF

. procedure is executed by the computer,

and not by the display processor, i t i s

Figure 3 p ossib le to include conditional graphical

output statements:

CAPAC +■ 'NEW V; IF LABEL=1 THEN DISPLAY V, "PF" AT 4 , - 8 ;

MOVE TO 0 , - 1 6 ; ____ '

This procedure w i l l generate the label or omit i t according to the value

o f LABEL.

3

The c a ll in g o f one display procedure by another may be carried to

many le v e ls . The resu lt i s a pattern o f procedure c a l l s resembling a

tree structure with cross connections, as shown in Figure 4. As the s ize

o f th is structure grows, so does -the amount

o f material on the screen, and i t soon be­

comes desirable to be able to s e le c t part

o f the t o ta l picture for d isp la y . This is

achieved by means o f the WINDOW statement.

Windowing is applied to the display proce­

dure which forms the top node in the tre e ,

using the following syntax:

WINDOW CCT AT 250, 300 SIZE 200

This statement has the e f f e c t o f p lacing a square frame around part o f

the picture defined by CCT. The center o f

th is frame is at 250, 300 in the coordinate

system o f CCT, and i t measures 200 units in

each direction from th is center. When the

WINDOW statement i s executed, a l l the graphi­

ca l information which l i e s outside the 'win­

dow' i s omitted from the p ictu re , and the

lin e s which l i e inside are scaled so that

the edges o f the window coincide with the

edges o f the display screen .* Lines which cross the boundary o f the win­

*The use o f viewports, as proposed by Dr. Ivan Sutherland, is

not currently included in Dial.

4

WINDOWING AND SCALING

Figure 5: Windowing

dow are clipped so that only the v is ib le part is sent to the d isp lay .

Figure 5 i l lu s t r a t e s the e f f e c t o f windowing.

Windowing can be applied only to entire p ic tu re s , and not to

individual display procedures which make up part o f a p ictu re . This

means that scale changes can be applied only to entire p ictures by the

WINDOW statement. Often one wants to be able to change the scale at

which a symbol appears within a p ictu re ; th is can be done by including

the s ize in the display procedure c a l l :

CAPAC AT XI, Y l , SIZE 256;

Size is measured in units o f the coordinate system o f the c a l l in g d i s ­

play procedure. This method has been chosen rather than using re la t iv e

sc a le , partly because this is o ften the most convenient way to sp ec ify the

scale o f an o b je c t , and partly because the use o f re la t iv e scales would

require f lo a t in g -p o in t arithm etic. An argument against the use o f s ize

is that i t implies that every display procedure must be defined at a

certain s i z e ; and th is is in fa ct the case. The s ize o f each display

procedure is included in the declaration o f that procedure, in the

manner described in the section on dec laration s. When the procedure is

c a lled with an e x p l ic i t s i z e , as in the la s t example, i t i s scaled up in

the ratio o f the c a lled s ize to the declared s i z e . I f no s ize i s mentioned

in the c a l l in g statement, the declared s ize is used.

I t is generally immaterial at what s ize a display procedure is

declared, as long as a l l the graphical information in the procedure i s en­

closed within the d e fin it io n boundary, which i s assumed to have 0 ,0 at i t s

center. I t i s advantageous, however, to make the declared s ize contain

the graphical information as c lo se ly as p o s s ib le . In th is way the genera-

tion o f display f i l e s is greatly speeded up.* As an example, the obvious

choice o f declared s ize for the CAPAC symbol would be 16, and 64 for

the CCT o f Figure 2. The statement on the previous page would then be

equivalent to sca lin g up CAPAC sixteen times.

A very useful feature o f Dial is the reserved procedure SSIZE

which can be ca lled within any display procedure, and returns the actual

s i z e , in grid u n its , that the procedure w i l l appear on the screen. Accord­

ing to the value returned by SSIZE, parts o f the picture may be included

or l e f t out, or a completely d if fe r e n t picture may be generated. SSIZE

could, for example, be used instead o f LABEL in the la s t example on

Page 4:

CAPAC 'NEW V; IF SSIZE> 64 THEN DISPLAY V, "PF" AT 4 , - 8 ;

MOVE TO 0, -1 6 ; . . . ' ;

Any statements or expressions may be used as the coordinates and

s ize in a display procedure c a l l or in a WINDOW statement. The sca lin g

e f f e c t o f s ize s is cumulative when c a l l s are made to more than one le v e l .

*Any display procedure which l i e s en tire ly outside the current
window is omitted en tire ly without examining i t s contents. This
s o -c a l le d 'boxing' operation greatly speeds up the clipping process.

7

FRAMES

Whenever a WINDOW statement is executed, a process o f display

f i l e generation is begun. The display procedure named in the WINDOW

statement is c a l le d , and every lin e or character sp e c if ie d in the ensuing

statements is clipped with respect to the window. For each lin e or

character which appears within the window, the appropriate display com­

mands are added to the display f i l e , in preparation for transm itting the

f i l e to the display b u ffer . This process continues u n til the end o f

the named display procedure is reached. .

Whenever a change i s required in the display p ic tu re , th is pro­

cess must be repeated in order to regenerate the display f i l e . The new

display f i l e must replace the old one in the display b u ffe r . A problem'

arises i f the b u ffer contains the resu lts o f several WINDOW statements,

since only the appropriate part o f i t must be overw ritten, and the rest

must remain unchanged. To cope with th is problem, each separate part

o f the display f i l e is treated by Dial as a separate frame, and the

FRAME statement is included in the language to allow parts o f the d i s ­

play f i l e to be regenerated. '

The FRAME statement is in r e a l i ty ju st a procedure c a l l , and the

frame procedure which i t c a l ls usually contains ju s t one WINDOW statement:

FI 'WINDOW CCT2 AT XW, YW SIZE 1 0 0 0 ' ;

FRAME FI; -

The FRAME statement carries out two important t a s k s : i t deletes the

appropriate parts ot the o ld display f i l e ; and when the execution o f the

frame procedure is complete, i t sends the new display f i l e to the display

b u ffer . I t is important to re a lize that only the FRAME statement has

th is a b i l i t y to transmit new display f i l e s to the d isp lay . The other

statements we have discussed are merely concerned with creating a d is ­

play f i l e in preparation for transm ission.

The Dial system keeps a l i s t o f a l l the frames which are currently

being displayed, and can in th is way keep track o f the parts o f the

display b u ffer which must be changed when a FRAME statement is executed.

I f the programmer wishes to remove a frame e n tire ly from the d isp lay ,

he can use the statement:

DELETE F l ;

which a lso removes th is frame's entry from the frame l i s t .

Table I i l lu s t r a t e s the e f f e c t o f a ty p ica l sequence o f FRAME and

DELETE statements, beginning with a c lear screen.

Statement E ffe c t Display F ile Contents

FRAME Fl

FRAME F2

FRAME Fl

FRAME F3

DELETE F2

DELETE F2

DELETE Fl

FRAME F3

DELETE F3

Generate Fl

Generate F2

Regenerate Fl

Generate F3

Remove F2

No e f f e c t

Remove Fl

Regenerate F3

Remove F3

Fl

F l , F2

F l, F2

F l , F2, F3

F l , F3

F l , F3

F3

F3

Empty

Table I: FRAME, DELETE Sequence

9

Every Dial program must s t a r t with a t i t l e , a BEGIN and some

declaration s. Included in the declarations must be the names o f a l l

the variables and procedures in the program, except for the formal v a r i ­

ables declared at the s ta r t o f procedures. V ariables , arrays, ordinary

procedures and frame procedures are declared in NEW declaration s:

NEW XW, YX, CX[100], CY[100, PR0C3, FRAME1, FRAME2;

Arrays may have any number o f dimensions. Each dimension has an im p lic i t

lower bound o f 1. Display procedures are declared separately :

DISPLAY PROCEDURE CCT, CCT2, 16: CAPAC, RESIS; .

A number l ik e ' 1 6 : ' included in the declaration defines the s ize o f the

follow ing procedures. A default value o f 1024 is assumed for any name

not preceded by a s iz e . .

Two other types o f d eclaration , INTERNAL and EXTERNAL, are per­

mitted. These w i l l be discussed more fu l ly in the section on linking to

other programs, but their use is probably obvious to those fam iliar

with the PDP-10.

DECLARATIONS

10

AN EXAMPLE

A ll the aspects o f Dial which re la te to picture generation have

now been covered, and an example is included here to i l lu s t r a t e how

the various Dial statements are used. This example w i l l create the

c ir c u it diagram shown below, with the same window. Note the use o f

a FOR statement to define r e s is to r and ground symbols.

TITLE EXAMPLE
BEGIN
NEW VERT, HORIZ , FRl, K;
DISPLAY PROCEDURE CCT, 3 2 :RESIS, CAPAC, 8:GR0UND;

CAP AC 'NEW HV; IF HV=H0RIZ THEN
BEGIN MOVE 1 6 ,0 ; LINE 0 ,1 4 ; MOVE - 8 , 0 ; LINE 1 6 ,0 ;

MOVE - 1 6 , 4 ; LINE 1 6 ,0 ; MOVE - 8 , 0 ; LINE 0 ,14
END ELSE
BEGIN MOVE 0 ,1 6 ; LINE 1 4 ,0 ; MOVE 0 , - 8 ; LINE 0 ,1 6 ;

MOVE 4 , - 1 6 ; LINE 0 ,1 6 ; MOVE 0 , - 8 ; LINE 14 ,0
END'; ■

RESIS 'NEW HV; IF HV=HORIZ THEN
BEGIN MOVE 0 ,1 6 ; LINE 4 ,0 ;

FOR K^l STEP 1 UNTIL 3 DO
BEGIN LINE 2 ,4 ; LINE 4 , - 8 ; LINE 2 ,4 END;
LINE 4 ,0

END ELSE
' BEGIN MOVE 1 6 ,0 ; LINE 0 ,4 ;

FOR K«-l STEP 1 UNTIL 3 DO
BEGIN LINE 4 ,2 ; LINE - 8 , 4 ; LINE 4 ,2 END;
LINE 0 ,4

END';

GROUND 'MOVE 4 ,2 ;
FOR K̂ -0 STEP 1 UNTIL 4 DO
BEGIN LINE 2*K,0; MOVE -(2 * K + 1) ,1 END;
MOVE TO 4 ,6 ; LINE 0 , 2 ' ;

11

CCT «- 1 RESIS [HORIZ] AT 0,0;
MOVE TO 0,16; LINE 0,32; MOVE TO 32,16; LINE 0,32; LINE 12,0;
CAPAC[HORIZ] AT 0,32;
CAPAC[VERT] AT 28,48;
RESIS[VERT] AT 28,16;
GROUND AT 36,0, SIZE 16;
RESIS[HORIZ] AT 44,32;
RESIS [HORIZ] AT 76,32;
CAPAC[VERT] AT 60,16; -
RESIS[HORIZ] AT 12,64;
RESIS[HORIZ] AT 44,64';

FR1 'WINDOW CCT AT 36,36 SIZE 32'

HORIZf-0; VERT<-1;
FRAME FR1
END

—'W v - A A / V —

12

To a s s i s t in defining the in tera ctiv e elements o f Dial programs,

an ON statement is provided. This statement, which is reminiscent o f

parts o f P L /I , has the form: _

ON <input> DO <statement>; .

The ON statement is generally executed immediately a fter input has been

received from the Teletype or from the SRI Mouse. I f the received input

matches the f i r s t part o f the ON statement, then the statement which forms

the second part is executed. The various types o f input are as fo l lo w s :

INTERACTION WITH DIAL PROGRAMS

ON CHAR DO . . .

ON CHAR " 0 " D'”'1 .

ON SYM DO . . .

ON SYM " XYZ" DO

ON NUM DO . . .

ON SW DO . . .

ON SW 2 DO . . .

ON HIT 27 DO . . .

any Teletype character

the character Q

any s t r in g , terminated by carriage-return

or tab

the str in g XYZ

any signed decimal integer

any switch on the mouse

switch 2 on the mouse

pointing at part o f display procedure c a l l 27

on the screen and pressing any switch.

ON PFLAG 6 DO .

ON PFLAG DO . . .

program fla g 6 set

any program f la g set

The meaning o f most o f these is fa ir ly obvious. Strings may be o f

up to f iv e characters only— th is i s one o f the r e s tr ic t io n s on string-m ani-

p ulations. The mouse switches create inputs only when they are pressed

The "ON H I T . . . " statement introduces a further feature in Dial

graphical output, the a b i l i t y to associate names with display procedure

c a l l s . These names may be any in teg er , and can be added to both c a l l s

and WINDOW statements, as fo llow s:

RESIS AT CX, CY AS 17;

DPROC[K] AT 200, 500 SIZE 2*K AS K+3;

WINDOW RESIS AT X, Y SIZE S AS N;

These names are used only in pointing operations, where they serve both

to s in g le out part o f the picture to be pointed a t , and to report back

which part was " h i t " . For example, suppose a procedure P i s ca lled with

name 1, and i t s e l f c a l ls three other display

procedures, Q, R and S with names 2 , 3 and

4. Then i f the user points with the mouse

cursor at any part o f the resu lt in g picture

and presses a switch, on execution o f an

"ON HIT 1 D O .. . " statement, the name o f the

indicated part w i l l be reported back by

Figure 6 means o f a reserved variable HITN. This

name w i l l have the value 2, 3 or 4 according to the part chosen. P may

include c a l l s without names, but these parts o f the p icture cannot gener­

ate a " h i t " . Only names occurring one le v e l below the name in the

ON HIT statement w i l l be reported back.

13

down, and not when they are released.

14

PROGRAM STATES

While a program is waiting for an input i t i s in an id le s ta te ,

and as soon as an input occurs the program w i l l normally execute a

ser ie s o f ON statements to determine the type o f input and the appro­

priate action to take. The resu lt may be that the program transfers

to the head o f a d if fe r e n t l i s t o f ON statements to await further

input. In th is case the program is considered to have changed s t a t e .

The concept o f program sta te s has been b u i l t into D ia l, in

much the same fashion as in the PDP-9/PDP-10 Graphics System^. When

the program sta rts executing i t is im p lic i t ly in State 1. I t can be

made to change sta te by executing an ENTER statement, for example

ENTER 12;

The tasks that the program is to carry out during a given sta te are

l i s t e d under a DURING statement:

DURING 12 DO

BEGIN ON CHAR "A " DO . . .

. ON CHAR "P" DO . . .

ON SW DO . . .

END;

ON statements should be used only within a DURING statement.

Conversely, DURING statements should, in fa c t , contain a l i s t o f one

or more ON statements; any other code included in the DURING statement

but not within an ON may cause unexpected r e s u lts .

Besides the DURING statement, there i s an ENTERING statement for

defining the operations to be carried out before transferrin g to the

ENTERING 5 DO BEGIN TYPE "PRESS SWITCH"; K K+l END;

ENTERING and DURING statements may occur in any order within the pro­

gram. Statements not enclosed within these ENTERING and DURING s t a t e ­

ments are executed when the program is sta rted . Programs lik e the one

on Pages 10 and 11 which contain no ENTERING or DURING statements

simply run to completion and return to the monitor.

I t i s possib le for the program to set one o f the "program f l a g s , "

and la te r to t e s t for the f la g with an "ON" statement. This creates

a method for the program i t s e l f to cause branching from a s ta te . For

example:

............ SET FLAG 6; ENTER 3;

DURING 3 DO

ON PFLAG 6 DO BEGIN............

There are 262,144 p ossib le f la g s including Flag 0. "SET FLAG" c le ars

any other f la g currently s e t . I t i s not necessary to include a f la g

number in the "ON PFLAG" statement:

ON PFLAG DO

This w i l l branch i f any f la g is s e t . The f la g number i s stored in FLAGNO.

A statement "PAUSE" <STATEMENT> is included in D ial. This causes

program FLAG 0 to be se t N 60ths o f a second la t e r , where N is the

value o f the statement:

DURING statement:

ENTERING 12 DO H «- 0 ;

PAUSE 30 ' % WILL SET FLAG 0 AFTER 1 /2 SEC %

The "PAUSE" statement does not h a lt computation. Instead i t s ta r ts a

time (in the PDP-9) which inputs a sp ec ia l character when the in terval

has elapsed. For example, the follow ing statements w i l l c a l l proce­

dure UPDATE and reconstruct frame F6 every 2 seconds:

SET FLAG 0; ENTER 12; % TO CAUSE 1ST BRANCHING %

DURING 12 DO

ON PFLAG DO BEGIN PAUSE 120; % 2 SEC INTERVAL %

UPDATE;

FRAME F6

END;

Program Flag 0 can be set from the te letyp e by typing control + s h i f t + M.

"PAUSE" statements w i l l work from a non-PDP-9 te le ty p e , but in terv a ls

are rounded to the nearest second, and cause suspension o f execution

u n til the end o f the in te rv a l .

16

17

The Dial system uses a number o f reserved variables to pass data

to the program during input operations. Four o f these deal with input

tex t information: .

RESERVED VARIABLES

INCHAR

INSYM

INTEXT

INVAL

the la t e s t character typed, s h i fte d into

the leftm ost 7 b i t s

the input symbol, excluding the terminating

character (5 characters maximum)

the input s tr in g array (may be subscripted)

the signed value o f the number typed in

. Whenever a switch is pressed on the mouse, i t s p o sitio n and the

switch sett in g s are passed to the PDP-10, and are held in the following

lo c a t io n s :

INX

I NY

INSW

mouse x-coordinate

mouse y-coordinate

switch number (1 , 2 or 3)

As mentioned above, when a h i t is detected, the name o f the display

procedure c a l l involved i s held in HITN. Two other lo c a t io n s , HITX and

HITY, contain the mouse p osition converted to the lo c a l coordinates o f

th is display procedure: th is helps to determine in which region o f a

display procedure the h i t occurred.

Two reserved procedures, SCALX and SCALY, are included to help

re la te the mouse p o sitio n to scaled p ictu re s . Each has one argument,

which is the name o f a c a l l to a display procedure. They return the

p o sitio n o f the mouse in the coordinate system o f th is display procedure.

For example:

...WINDOW CCT AT XI, Y1 SIZE 1000 AS 20;

. . ,X2 SCALX[20] ; Y2 SCALY [20] ; . . .

w i l l deposit in X2, Y2 the mouse p o sitio n in the coordinate system o f

CCT, re la t iv e to the origin o f CCT.

These routines assume that a procedure c a l l e x is ts in the display

structure with the name given. I f there is no such c a l l , the values

they return are indeterminate.

18

Apart from strin gs included in output l i s t s , the longest

strin g that Dial can handle i s f iv e characters in length. Strings o f

up to th is length can be treated lik e ordinary v ariab les :

A[10] "JOHN"

IF Q3 = "DOG" THEN . . .

Variables containing tex t information can be output in charac­

te r form by preceding the variable name with a d o lla r sign :

Q f- "ABC" DISPLAY N, "WATCH THIS SPACE", $Q;

The TYPE statement for outputting to the te letyp e i s id en tica l

in most respects to the DISPLAY statement. Both use the reserved

strin g NEWLINE for carriage control. Displayed tex t i s shown at a

fixed s i z e , which does not change when the sca le o f the p icture changes

The le ft-h a n d margin for displayed text i s the le ft-h a n d edge o f

the display procedure within which i t occurs.

Since the compiler w i l l not permit space, tab , carriage return

or rubout to be included as a sin gle character within quotes, four re ­

served variables are included which contain these characters as str in g s

These are ca lled :

SPACE

TAB

NL (Carriage return)

RUBOUT

E .g . , ON CHAR DO IF INCHAR= RUBOUT THEN A[K]-*-0;

19

STRING MANIPULATION

20

COMMENTS

Any tex t enclosed within percent signs is ignored by the

compiler and may therefore be treated as comments For example:

IF A > B THEN BEGIN % DO THIS IF A GREATER THAN B %

P[K] «- P [K+l] ; % MOVE P VALUE DOWN %

TYPE P[K+2]

END;

21

LINKING TO OTHER PROGRAM SEGMENTS

Dial has been designed to link to other re locatable PDP-10

programs. An INTERNAL declaration must be used for any variable or

array internal to the DIAL program which i s addressed by another

program segment. Because o f the rather peculiar c a ll in g sequence

for Dial procedures, i t i s d i f f i c u l t for MACRO-IO or FORTRAN programs

to c a l l them. On the other hand, DIAL programs can c a l l MACRO-IO or

FORTRAN subroutines:

CALL DSKOUT; CALL INVERT[A,B, X] ;

These generate the correct "JSA 1 6 " , c a l l in g sequence for FORTRAN.

A ll the accumulators are saved before the c a l l and restored afterwards,

apart from accumulator 1 whose contents are treated as the value o f

the sub outine. This provides a means o f w riting external functions.

REFERENCES

Wirth, N. and Weber, H ., "E uler: a generalization o f A lg o l, and

i t s formal d e f i n i t io n " . Communications of the ACM, Vol. 9 13­

25+ and 89-100 (Jan. and F e b .) .

Newman, W. M. "A h ig h -le v e l programming system for a remote tim e-

shared graphics term in al". University o f Utah, Computer Science,

March, 1969.

Sutherland, I .E . "A head-mounted three dimensional d is p la y " .

AFIPS, Proceedings of the Fall Joint Computer Conference, Vol. 33,

part 1, 1968, 757-764.

Newman, W. M. "Programming guide to the UNIVAC 1559 d is p la y " .

University o f Utah, Information Research L a b o r a to r y O c to b e r , 1969.

Kilgour, A. C. and Brown, M. D. "SPINDLE: a system permitting in ter

active display l i s t e d i t in g " . University o f Edinburgh, Computer-

aided design P roject, June, 1969.

23

TITLE

The f i r s t lin e o f a Dial program must be a t i t l e :

TITLE PROG 1

BEGIN

DECLARATIONS

There are three types o f declaration : NEW, DISPLAY PROCEDURE,

and INTERNAL. These should be used as fo llow s:

NEW for a l l v a r ia b le s , arrays, procedures
and frame procedures which occur in
the program;

DISPLAY PROCEDURE for a l l display procedures; ’

INTERNAL for a l l variables and arrays in the
program which are referenced by other
programs. These should also be de­
clared in a NEW declaration .

Declarations must be placed at the s t a r t o f the program immediately

follow ing the i n i t i a l BEGIN. Any number o f declarations may be

be included, in any order.

Arrays may have any number o f dimensions. A ll such dimensions

have a lower bound o f 1. Dial arrays are compatible with FORTRAN arrays.

Display procedure declarations may include s iz e d e f i n i t io n s ,

denoted by an integer followed by a colon. A ll procedures whose name

follows such a d e fin it io n are given that s i z e , up to the next s ize d e f i ­

n it io n . Those not preceded by a s ize are given a s ize o f 1024^.

APPENDIX I: A DETAILED DESCRIPTION OF THE DIAL LANGUAGE

Examples:

24
TITLE PROG 2
BEGIN NEW A,B [3 ,100] , MAX, MIN, FRAMED-

INTERNAL A ,B ;
DISPLAY PROCEDURE PLAN1,32: DOOR, WINDOW;

PROCEDURE DEFINITIONS

Procedure d efin it io n s may be placed anywhere within the pro­

gram, but must precede any c a l l to that procedure. The body o f the

procedure d e f in it io n , including a l i s t o f i t s formal parameters i f

any, i s enclosed within s in g le quotes:

MAX 'NEW ARG1, ARG2 ;

IF ARG1 > ARG2 THEN ARG1 ELSE ARG2'

When a procedure is c a lle d , each o f the arguments is in turn evaluated,

and i t s value is assigned to one o f the formal variables in the NEW

l i s t , s ta rt in g with the f i r s t . There may be more formal parameters

in the l i s t than values passed, in which case the remaining formals

are not given v a lu es , and can in fact be used as lo c a l variables by

the procedure. The value returned by a procedure is the value o f the

la s t executed statement. For example, the following procedure would

return the value 3:

TYPEB +- 'TYPE B; X +- 3'

EXPRESSIONS

Arithmetic expressions may contain any number o f primes separ­

ated by the symbols + - * / s ig n ify in g addition, subtraction , m u lti­

p lic a t io n and d iv is io n . When the expression is evaluated, m u lt ip l i ­

cation and d iv ision are carried out f i r s t .

The following are legal primes:

1. Integer constants

2 . Variables

3. Single array elements

4. Procedure c a l ls

5. Any statement, enclosed within parentheses

Any a ltern ative form o f expression is a s tr in g o f one to five

characters, enclosed within double quotes. This has the value o f the

integer containing these characters in 7 -b i t ASCII format, l e f t j u s t i f i e d .

Examples o f perm issible expressions are: •

123

A6 .

-A+B-3

(A+B-3)/(16-C)

C+(IF A=0 THEN 12 ELSE 13) .

H+J[16]

MAX [B, C]

"JOHN"

In the above, any o f the id e n t i f ie r s miaht re fer to procedures rather

than to variables or arrays. Any statement can be used as the argument

of a procedure or array c a l l .

ASSIGNMENT STATEMENTS

An expression or statement, preceded by a l e f t arrow pointing to

the name o f a variable or o f an array element, con stitu tes an assign­

ment statement:

. A B + C

TXT [3] "HENRY"

These statements 'nave the value obtained by evaluating the right-hand

s id e . This value can be multiply assianed:

25

26

A B XYZ [21] +- 0

CONDITIONAL STATEMENTS

Three forms o f conditional statements are permitted:

IF < lo g ica l expression> THEN <statement>

IF <locrical expression> THEN <statement> ELSE <statement>

WHILE < lo g ica l expression> DO <statement>

The basic lo g ic a l expressions are the follow ing:

E1=E2 true i f value o f El equals value o f E2

E1#E2 true i f value o f El not equal to value o f E2

E1>E2 true i f value o f El exceeds value o f E2

El<E2 true i f value o f El is le ss than value o f E2

El>=E2 true i f value o f El exceeds or equals value
o f E2

El<=E2 true i f value o f El is less than or equals

value o f E2

More complex lo g ic a l expressions can be created by means o f the operators

OR, AND and NOT.

e . g . , IF A>C AND NOT C=D THEN

NOT is applied f i r s t during evaluation , then AND, f in a l ly OR.

I f the lo g ic a l expression in an IF statement is found to be true ,

the statement follow ing the THFN is executed; otherwise the ELSE s t a te ­

ment, i f any, is executed. In a WHILE statement, the statement follow ing

the DO is executed repeatedly as long as the lo a ic a l expression is true.

Examples : IF A>B THEN P-H) ELSE 0+1 - '

IF A [12] # A [13] THEM A [1 2]^ A [13]^0

WHILE K<0 DO K'-K + 1

The expression INCHAR=NT. is true i f IHCIIAR contains the s in g le character,

ca rr iag e -retu rn .

27

The follow ing are examples o f perm issible FOR statements:

FOR K «- 1 STEP 1 UNTIL 100 DO A [K] ^ 0

FOR P J+3 STEP B + 100*Q UNTIL 7 -J /4 DO A[P] N.[P-1]

Any expression may precede the words STEP, UNTIL and DO; any statement

may follow DO. This statement w i l l be executed while the variable pro­

ceeds from a value equal to the f i r s t expression to a value not exceed­

ing the la s t expression, in steps equal to the middle expression.

BLOCKS

A compound statement can be formed from any number o f statements,

separated by sem i-colons, preceded by BEGIN and terminated by END.

e . g . , A BEGIN TYPE "STRING"; C 0; 3 END

INPUT STATEMENTS

A ll input to a Dial program must occur within a DURING statement.

This has the form:

DURING <state number> DO <statement>

and is equivalent to a WHILE statement:

WHILE STATE = <state number> DO

BEGIN INPUT; <statement> END

While the program is under the control o f the DURING statement i t i s

waiting for input from the Teletype or from the Mouse. When i t receives

one o f these i t executes the following statements. These are normally

ON statem ents: '

ON <input> DO <statement>

FOR STATEMENT

for which a ltern atives are given on Paqe 12 o f the main report.

ON statements are executed in the order in which they are given,

u n til one is found which matches the input. For th is reason i t is

important not to program as fo l lo w s :

ON SYM DO ENTER 3;

ON SYM "ABC" DO A +- 3;

The second o f these statements can never be s a t i s f i e d , since the f i r s t

w ill always be s a t i s f i e d before i t .

To cause the program to transfer to another s t a t e , the ENTER

statement is used:

ENTER 2 3

The argument o f th is statement may i t s e l f be any statement:

ENTER P+3

ENTER statements take immediate e f f e c t , and act rather lik e GO TO

statements. However, the action is not id en tic a l to a GO TO: instead

the current sta te number is r e s e t , and a l l the DURING statements in

the program are executed u n til the appropriate one is found. There

may be no DURING statement bearing the desired sta te number. In th is

case the program returns to the monitor.

I t may be useful to check for certain inputs during a l l s ta te s .

For th is purpose a sp ecia l DURING statement is provided:

DUPING ALL DO ON CHAR "X " DO ENTER 1

The check for innuts l i s t e d in the DURING ALL statement is made before

checking any inputs l i s t e d under the current s ta te .

28

ENTERING statements can be used to cause tasks to be performed every

time a certain state is entered:

ENTERING 3 DO A + B + 0

ENTERING and DURING statements may be l i s t e d in any order in the body o f

the program. When execution s t a r t s , a l l the statements not enclosed in

ENTERING and DURING statements are executed, and the program enters State

1. This la s t action can be avoided by including an ENTER statement in

th is i n i t i a l i z a t i o n section .

OUTPUT STATEMENTS

For tex t output, the TYPE statement i s used. Following the word

TYPE is a l i s t o f expressions, which are evaluated and typed out.

Strings in a type l i s t may be o f any length, but may not include ca rr iag e -

returns: these are provided by the reserved NEWLINE str in g :

TYPE A, "SQUARE FEET", NEWLINE;

Variables or array elements whose names are preceded by a d o lla r sign

are typed out as ASCII s tr in g s :

XT "ED"; TYPE $XT

The DISPLAY statement has the equivalent e f f e c t to the TYPE

statement on the display screen. A ll characters are displayed at a

standard s iz e , roughly the same as the s ize of typed characters. The

following two forms are permitted for the DISPLAY statement:

DISPLAY "TEXT", N
DISPLAY "TEXT", N AT X,Y .

Other statements for generating displayed pictures are:

LINE Ax, Ay

MOVE Ax, Ay > by re la t iv e amounts

ZIP Ax, Ay J

29

LINE TO x ,y

MOVE TO x ,y > to absolute p o sitio n s

ZIP TO x ,y J

Any statement may be used for Ax,Ay, x and y. These value are measured

in units o f the coordinate system of the display procedure in which the

statements occur. ZIP lin es are drawn en tire ly in zip mode.

There are four forms o f display procedure c a l l :

DP AT X , Y

DP AT X , Y SIZE S

DP AT X, Y AS N

DP AT X ,Y SIZE S AS N

Here X, Y, S and N are any statement. The c a l l DP may include arguments.

The WINDOW statement takes s im ilar forms:

WINDOW DP AT X, Y ST TIE S

WINDOW DP AT X,Y SIZE S AS N

The center o f the window is given by X,Y. The window is always square

with side equal to 2S. Those parts o f DP which l ie within the window

are mapped across into the v is ib le screen area.

Any procedure containing any number o f WINDOW statements can be

called as a FRAME procedure:

FRAME FP1 ■

I t is wise not to include arguments in frame procedure c a l l s , although

these w i l l currently be processed c o rr e c t ly ; no guarantee can be made

that this w i l l continue to be the case. Each time a Frame procedure

is called in this way, a fresh display f i l e replaces the previous out­

put o f th is frame. The statement

30

31

DELETE FRl

w il l delete th is frame's output, and

DELETE ALL ,

w i l l c lear the screen.

CALLING EXTERNAL SUBROUTINES

The follow ina statements can be used to c a l l external subroutines

written in FORTRAN IV or MACRO-IO.

CALL WTAPE

CALL PARAB[100, A + 100 * K] '

Arguments may be variable or array names, or any other statement,

including another CALL statement. Accumulators are saved before the

c a l l , and restored afterwards. A ll subroutines ca lled in th is way must

be declared in EXTERNAL declarations.

COMMENTS ■

Any text enclosed within percent signs i s ignored by the compiler.

32

Source f i l e s for Dial programs should be prepared in the normal

fashion, using one o f the e d ito rs . The procedure for compiling and

running Dial programs is as fo llo w s:

. R DIAL

*DSK:PROG. MAODSK:PROG.SRC

(any f i l e names and any devices,
including TTY, w i l l do)

.LOAD PROG,DIO[1,1]

(this loads the program, together with
the Dial I/O routines)

.START

The program w i l l now s ta r t execution.

Dial programs can be run from any te le ty p e , but w i l l not produce

any displayed output unless run from one o f the teletypes on the PDP-9.

To remind users who use other te le ty p e s , the program types "TTY 10 ONLY"

when i t s ta r ts execution.

To help programmers to debug without a d isp la y , a technique for

simulating the mouse from the keyboard is included in Dial. Type control

+ s h i f t + N, followed by up to three in teg ers , separated by commas. The

f i r s t number i s taken as the x-coordinate o f the mouse, the second as

the y-coordinate and the third as the switch number. For example:

+c25 6 ,8 9 1 ,2 is equivalent to moving the mouse to the point

256,891 and pressing the middle button.

Because o f the way Dial processes h i t s , these can be generated at the

teletype in the same way. .

APPENDIX II: USE OF THE DIAL SYSTEM

Those who wish to examine the display f i l e s produced by Dial

should do the follow ing:

.DEBUG PROG, DIO[1,1]

DIO$: BP(DBUF)$IB $G

On reaching the breakpoint s e t in this way, DDT w i l l type out

the f i r s t word o f the display f i l e i t has prepared for transm ission,

and ensuing words can be examined by typing l in e - fe e d . To resume execu­

t io n , type $p ($ = altmode in a l l c a s e s) . Those who use th is technique

should fa m ilia rize themselves with the instruction set for the

Univac 1559 [4] .

33

34

A. I n i t i a l i z a t i o n (Opening) .

There are two c a l l s to open an input device. Only one input

device can be open at any time. Each open input c a l l c loses

the previous input device, i f one was open.

1. TXTIN [Open device for character input]

1A. Parameters

This c a l l takes three tex t s tr in g parameters.

The f i r s t i s the device name, the second is the

f i l e name, and the third is the f i l e name

extension, e . g . , CALL TXTIN[" D116", "SCAN", "MAC"] ;

, IB. Results

This c a l l opens the device named in the f i r s t

parameter, and looks up the f i l e name sp e c if ie d

in the next two parameters.

Code is a lso s e t up to access the 3 6 -b i t words

from th is device in 7 -b i t character bytes .

2. BININ [Open device for binary input]

2A. Parameters

This c a l l takes three tex t s tr in g parameters.

The f i r s t i s the device name, the second i s the

f i l e name, and the third is the f i l e name exten­

sio n , e . g . , CALL BININ [" D116 " , "SCAN", "MAC"];

2B. Results •

This c a l l opens the device named in the f i r s t

parameter, and looks up the f i l e name s p e c if ie d

APPENDIX III: FILE I/O IN DIAL

I. Input

in the next two parameters

Code is a lso set up to access the 3 6 -b i t words

from th is device in 3 6 -b i t binary bytes .

B. Reading

There are two c a l ls provided to read an input d evice ,.an d one

to check i f end o f f i l e has been reached.

1. RDTXT [Read characters]

IA. Parameters

This c a l l takes no parameters. I t simply leaves

a value on the top o f the stack.

E . g . , CHARS * - CALL RDTXT;

IB. Results

The resu lt in g word w i l l be the next f iv e non-zero

bytes from the input device. I f the device was

opened to have 36 b i t b y te s , then only the seven

low-order b i t s w i l l be taken from each non-zero

b y te .

2. RDBIN [Read binary words]

2A. Parameters

This c a l l takes no parameters. I t simply leaves

a value on the top o f the stack .

E . g . , WORD «- CALL RDBIN;

2B. Results

The resu lt in g word w i l l be the next byte from the

input device. I f the device was opened to have

seven b i t b y te s , then the byte w i l l be right ju s ­

t i f i e d in re s u lt word.

3. EOF [Check for end o f f i l e]

.. . . _ 35

This c a l l takes no parameters. I t simply leaves

a value on the top o f the stack.

E . g . , EOFVAL CALL EOF;

3B. Results

. The value is zero i f end o f f i l e has not been

reached. The value is set to -1 when end o f f i l e

is reached. Note that the binary word returned

when EOF i s se t is not part o f the f i l e , and

always zero. Also the tex t s tr in g i s part o f

the f i l e , but may be f i l l e d out with n u lls [0] .

C. Termination (Closing)

There is one c a l l to close the current input device which -

takes no parameters. I t i s CLOSEI.

I I . Output

A. I n i t ia l iz a t io n (Opening)

There are two c a l l to open an output device. Only one output de­

vice can be open at any time. Each open output c a l l c loses the

previous output device, i f one was open.

1. TXTOUT [Open device for character output]

IA. Parameters

This c a l l takes three te x t s tr in g parameters. The

f i r s t i s the device name, the second i s the f i l e

name, and the third i s the f i l e name extension.

E . g . , Call TXTOUT [" D1 1 6 " , "SCAN", "MAC"] ;

IB. Results

This c a l l opens the device named in the f i r s t

parameter, and enters the f i l e name s p e c if ie d in

the next two parameters. Code is also s e t up to

3A. Parameters

store the 3 6 -b i t words sent to th is device as

7 -b i t character bytes.

2. BINOUT [Open device for binary output]

2A. Parameters

This c a l l takes three tex t s tr in g parameters.

The f i r s t i s the device name, the second is the

f i l e name, and the third i s the f i l e name

extension.

E . g . , CALL BINOUT [" D1 1 6 " , "SCAN", "MAC"] ;

2B. Results

This c a l l opens the device named in the f i r s t

parameter, and enters the f i l e name sp e c if ie d

in the next two parameters. Code is also se t '

up to store the 3 6 -b i t words sent to th is device

as 3 6 -b i t binary bytes .

B. Writing

There are two c a l ls to write on an output device.

1. WRTTXT [Write characters]

IA. Parameters '

This c a l l takes one parameter, which i s the

data to be w ritten . E . g . , CALL WRTTXT[DATA];

IB. Results

This w i l l cause the data word to be divided

into 5 7 - b i t characters, and each non-zero char­

acter w i l l be w ritten . Note, that i f the output

device was opened in binary mode, each character

w i l l be stored r i g h t - j u s t i f i e d one to a word.

2. WRTBIN [Write binary words]

2A. Parameters

This c a l l takes one parameter, which is the

data to be w ritten . E . g . , CALL WRTBIN[DATA];

2B. Results '

This w i l l cause the en tire data word to be w rit ­

ten at once. Note, that i f the output device

was opened in character mode, only the seven low

order b i t s w i l l be written in the next 7 -b i t

s lo t in the output f i l e .

C. Termination (Closing)

There is one c a l l to close the current output device, which

takes no parameters. I t is CLOSE0.

I I I . Use

Programs should be loaded with DIAL10 as fo llo w s:

.LOAD PROG, DIO[1 , 1] , DIAL10[1,1]

38

The following program allows the user to create and manipulate

rectangles on the screen and i l lu s t r a t e s most o f the in tera ctiv e ’ features

o f Dial. The functions o f the program have been based on an example in

A. C. Kilgour and M. D. Brown's SPINDLE Manual.

Rectangles can be created, moved, duplicated , and deleted . To

create a rectangle , type "G" and indicate two p o sitio n s with the mouse.

These become the two opposite corners o f the rectangle . Each further

point indicated by the mouse w i l l be used to reposition the rectangle.

To move a rectan gle , type "M" and point at the rectangle with

the mouse: the rectangle w i l l disappear. Then point somewhere on the

screen, and i t w i l l reappear at that p o s it io n . At each successive

p o s it io n , the rectangle i s repositioned.

Duplication i s achieved by typing "S " and pointing at the appro­

priate rectangle. Thereafter the operation i s id e n tic a l to moving, except

that the o r ig in a l rectangle remains on the screen.

To delete a rectan gle, type "D" and point at i t . I f deleted in

error , a rectangle can be restored by typing " N " , and a fresh choice can

be made.

Throughout operation, typing "X " w i l l return the program to i t s

base mode, and restore the display to the state i t was in when base

mode was l e f t . Typing "P" makes permanent any change e f fe c te d by creating

moving, duplicating or d e le tin g , and returns the program to base mode.

39

APPENDIX IV: AN EXAMPLE OF A DIAL PROGRAM

The program starts with an implicit "G".

TITLE RECTS
BEGIN
NEW NR, K , TEMP, NEWX, N E W Y , S I Z X , S I Z Y , CREATE;
NEW R S I Z [5 0 , 2] , R X [5 0] , R Y [5 0] , F R l , F R 2 ;
DISPLAY PROCEDURE NEWR, RECT, LAYOUT;

% RECT IS CALLED BY LAYOUT TO DRAW ALL STORED RECTANGLES %

RECT '̂NEW N; LINE RSIZ[N,1] ,0 ; LINE 0 , RSIZ[N,2] ;
LINE - RSIZ[N, 1] , 0 ; LINE 0 , - RSIZ[N, 2] ' ;

% LAYOUT CREATES DISPLAY OF ALL STORED RECTANGLES, OMITTING
TEMPORARILY DELETED RECTANGLE TEMP % ’

LAYOUT -̂'FOR K -̂l STEP 1 UNTIL NR DO
IF K#TEMP THEN RECT[K] AT RX[K],RY[K] AS K' ;

% NEWR DRAWS NEWLY DEFINED RECTANGLE %

NEWR*-' MOVE TO NEWX ,NEWY ;
LINE SIZX, 0 ; LINE 0,SIZY; LINE - SIZX, 0 ; LINE 0 , - S I Z Y 1;

% FRAME FRl CREATES ALL STORED RECTANGLES,
FR2 CREATES NEW RECTANGLE %

FRl-<-' WINDOW LAYOUT AT 512,512 SIZE 512 AS 5 1 ' ;
FR2-*-' WINDOW NEWR AT 512,512 SIZE 5 1 2 ' ;

% THIS CODE EXECUTED AT START %

C RE ATÊ -TE MP-«-N R^0
ENTER 2;

% BASE MODE STATE %

DURING 1 DO
BEGIN ON CHAR "G"

ON CHAR "M"
ON CHAR "S "

DO ENTER 2
DO ENTER 5
DO ENTER 6

ON CHAR "D" DO ENTER 7
END;

DURING 2 DO
ON SW DO BEGIN NEWX-KENX; % FIRST CORNER

NEWŶ -INY ;
ENTER 3

END;

DURING 3 DO
ON SW DO BEGIN SIZX INX-NEWX; % SECOND CORNER %

SIZY INY-NEWY;
FRAME FR2; % DISPLAY NEW RECTANGLE

CREATE 1; % IE NEW RECT CREATED %
ENTER 4

41

END;

DURING 4 DO
ON SW DO BEGIN NEWX^INX;

NEWY-f-INY;
FRAME FR2

END;

% ON EACH NEW POSN, REPOSITION %

% AND DISPLAY IN NEW POSITION %

DURING 5 DO
ON HIT 51 DO BEGIN TEMP^HITN; % TEMP = RECTANGLE TO BE MOVED %

• SIZX^RSIZ[HITN, 1] ;
SI ZY-^RS IZ [HITN , 2] ;
FRAME FR1; % DISPLAY WITHOUT THIS RECTANGLE %
CREATE^l;
ENTER 4

END;

DURING 6 DO
ON HIT 51 DO BEGIN SIZX-<-RS IZ [HITN , 1]

SIZY-^RISZ [HITN , 2]
CREATE -<-1;
ENTER 4

END:

% DUPLICATE THIS ONE %

DURING 7 DO
ON HIT 51 DO BEGIN TEMP-^HITN ;

FRAME FR1;
ENTER 8

END;

% DELETE THIS ONE %

DURING 8 DO
ON CHAR "N" DO BEGIN TEMP-<-0;

FRAME FR1 ;
ENTER 7

END;

N MEANS RESTORE IT

DURING ALL DO
BEGIN ON CHAR "P " DO

BEGIN IF TEMP#0 THEN
BEGIN NR^-NR-1;

FOR K«-TEMP STEP 1 UNTIL NR DO
BEGIN RSIZ. [K, 1] -<-RS IZ [K+l , 1] ;

RSIZ[K,2.]-«-RSIZ[K+l ,2] ;
RX[K]-«-RX[K+l] ;
RY[K]t-RY[K+l]

END;
TE MP+0

END;
IF CREATE=1 THEN
BEGIN CREATED;

NR-<-NR+l; ■
RSIZ[NR,l]-<-SIZX;
RSIZ[NR,2]^SIZY;
RX[NR]-*-NEWX;

P MEANS MAKE CHANGE PERMANENT

TEMP = RECTANGLE TO BE DELETED

FILL GAP LEFT BY DELETING %

% IF NEW RECTANGLE CREATED, ADD IT %
% AND INCREMENT NUMBER %

42

RY [NR] «-NEWY
END;
DELETE FR2; REMOVE TEMPORARY DISPLAY %
FRAME FR1;
ENTER 1

END; '
ON CHAR "X " DO % ON X, RESTORE TO ORIGINAL STATE %
BEGIN DELETE FR2; .

FRAME FRl; ,
CREATE^TEMP^0;
ENTER 1

END
END

END

