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ABSTRACT

A taxonomy for parallel processing systems is presented which has 

some advantages over previous taxonomies. The taxonomy characterizes 

parallel processing systems using four parameters: topology, 

communication, granularity, and operation. These parameters are used 

repetitively in a hierarchical fashion to produce a taxonomic 

structure which is extensible to the level of detail desired. 

Topology describes the structure of the principle interconnections. 

Communication describes the flow of data and programs through the 

system. Granularity describes the size of the largest repeated 

element, or grain. Operation describes the important functional 

properties of each grain, especially the ratio of storage to logic 

circuitry. Granularity and topology are structural parameters, while 

operation and communication are functional parameters which describe 

the behavior of the system components. A final section of this paper 

includes examples of the application of the taxonomy to several 

parallel processing systems.
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Modern VLSI technology has created the opportunity to fabricate 

information processing systems containing many replicated subunits. 

In many cases these subunits might be called processors, even though 

they are often much simpler than traditional general purpose 

processors. The result is that a new generation of parallel 

processing systems is coming into use. These systems range from small 

collections of microprocessors to massive collections of high speed 

processing engines. Currently it is easier to produce multiprocessor 

systems than to use them. One possible aid to their use would be a 

classification scheme having enough validity to clarify the important 

distinctions among parallel processing systems and thereby help to 

indicate how they could be used. In this paper we present such a 

taxonomy for systems whose processing power is derived from the 

replication of functional subunits.

It is unlikely that any taxonomy for machines will be as useful 

or as valid as taxonomies for the plant and animal kingdoms. This is 

due primarily to the dynamic nature of machine systems. Life forms 

change, but not significantly over many thousands of years. Machine 

systems are relatively recent, considerably more dynamic in nature, 

and a new one is created every time sufficient imagination and 

financial resources are available. Another problem for computer 

taxonomists is that many of a system's characteristics are due not to 

circuit properties, but to program properties. Software exists at 

every level in a system from the high level programs that are the 

"operating system,” through the lower level programs termed 

"firmware," to very low level programs which specify state tables for 

state machines that are typically held in ROM.

This wide variety of programs in a machine system must be 

considered a major influence on its functional behavior. Eecause

1. INTRODUCTION



these programs dictate how the overall system structure can be used, 

any taxonomy based solely on a machine's physical structure is 

unlikely to be very useful. In highly integrated designs, firmware 

level programs are often combined with hardware to produce what the 

manufacturer calls "hardware". Changing the firmware could thus 

result in changed "hardware". It is conceptually possible to 

represent this "hardware" through a purely structural representation, 

which logically corresponds to a memory dump of the appropriate ROMs. 

A more useful analysis would include functional aspects of the system. 

For example, rather than examine the ROM contents directly, one could 

do so in terms of a higher level language. A major contribution of 

such languages is their ability to express a program's functional 

behavior in an intellectually manageable way [25]. The taxonomy 

presented here integrates both structural and functional system 

properties in an attempt to more completely characterize parallel 

systems.

It can be argued that hardware is not always a simple expression 

of software. If the software does not fit the hardware, gross 

performance degradation results. While this observation is valid, it 

is also true that software inefficiencies are often masked by high 

speed hardware. This fact alone makes any relationship between true 

computer system structure and performance very complex. This blurring 

causes any taxonomy to be at best only a guide to predicting actual 

system performance.

A number of taxonomies for parallel processor systems have 

already been proposed. Flynn's [11] is the most widely used. Flynn 

based his scheme on the distinction between single versus multiple 

data paths and single versus multiple instruction paths in a computer. 

The resultant SISD, SIMD, MISD, and MIMD classes have been used 

extensively in the literature. While this scheme is quite useful in



4

distinguishing many systems at the highest level, it avoids more 

detailed classification. As a result, it is not useful except for 

viewing systems in very general terms. For example, Flynn's taxonomy 

cannot classify the CRAY-1's high level of internal parallelism, nor 

can it describe the considerable parallel processing performed in 

large associative memories.

A taxonomy by Hobbs and Theis [HI] classifies systems by the 

amount of parallelism in their control units, processing units, and 

data streams. It also includes distinctions such as network 

processors, array processors, functional machines, associative 

processors, and multiprocessors. As in the Flynn scheme, this 

taxonomy fails to distinguish between the granularity of large and 

small processors. It also has a very traditional view of processor 

and memory that limits its use to systems whose elements closely 

resemble traditional memories and processors.

A taxonomy by Higbie [13] expands on the Flynn SIMD category and 

distinguishes between location and value oriented addressing. Murtha 

and Beadles [20] concentrate on highly parallel MIMD processors, and 

distinguishes classes of machines on the basis of distributed versus 

centralized control and whether the processors are special or general 

purpose. Both of these taxonomies are useful for only a very few 

machine systems.

A more quantitative approach was taken by Handler [12]. His 

scheme is based on a triple [k, d, w] where k is the number of control 

units, d is the number of ALUs, and w is the logic circuit complexity. 

The w measure is a good one in that it is a start toward 

differentiating between small or weak processors and large or powerful 

processors. Classifications based on merely counting the number of 

"units” in a machine rarely aid in the understanding of how those 

units are used. In this respect Handler's ideas are also limited.
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All of the above mentioned taxonomies have a major common failing 

in that they result in a partitioned classification scheme rather than 

a hierarchical one. All life form taxonomies are hierarchical; while 

this does not necessarily imply that machine taxonomies should be 

hierarchical, such an approach provides a good example. Hierarchical 

structuring is an excellent tactic for organizing any highly complex 

set. A hierarchical machine taxonomy may be naturally extended to as 

many levels as necessary to obtain the desired level of detail. 

Furthermore, a hierarchical description is easily and naturally 

extensible as additional machine systems are created.

An excellent hierarchical taxonomy has been presented by Anderson 

and Jensen [2]. The smallest element in their system is a processing 

element (PE). Any PE is capable of executing a process, where 

"process'1 is not exactly defined but taken to mean some reasonably 

sized piece of code. Other areas of concern in this taxonomy are 

message paths and switches. Anderson and Jensen limited the scope of 

their taxonomy to systems where any PE could communicate with any 

other PE, and chose not to distinguish between packet and circuit 

switched communication. This is probably useful since such 

distinctions at the PE level only serve to cloud more important 

taxonomic issues.

The Anderson and Jensen hierarchy has four levels: The first two 

are concerned with the strategic issues of how to do message 

transfers, and the second two are tactical implementation issues. The 

result is the taxonomy tree shown in Figure 1-1.

As this taxonomy is clearly dominated by interconnect issues and 

not by processor size, it is incapable of distinguishing a 4 x 4 array 

of 8080s from a similar array of CRAY-ls. The result is that it gives 

useful insight into the inter-PE message activity, but not the 

intra-PE processing activity. The taxonomy would also have some
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difficulty in classifying structures such as Logic-Enhanced Memories 

[10] and systolic arrays [16] in a useful manner.

A taxonomy should strive to provide a framework for dividing 

systems of interest into equivalence classes. The vocabulary provided 

by the taxonomy should not only describe the various member systems, 

but also provide a basis for analyzing and comparing them. A good 

taxonomy should therefore select criteria for analysis which are rich 

enough to include many members of each class, and clear enough to be 

easily applied to the systems in question.

This paper proposes a taxonomy which will hopefully be more 

productive than previous efforts in studying and analyzing parallel 

processing systems. It builds on some of the ideas proposed by 

Anderson and Jensen, but suggests additional analysis criteria that 

should extend their taxonomy's utility. Whereas Anderson and Jensen 

propose a hierarchical taxonomy which uses processing element 

interconnect communication to define and name generic system types in 

the hierarchy, our purpose here is to provide a useful vocabulary 

which supports meaningful architectural discussion. While our 

vocabulary contains hierarchical elements, we feel that it is 

premature to use it to name generic system classes. We therefore 

leave this to future contributions. Furthermore, the Anderson and 

Jensen taxonomy bases its hierarchy solely on the parameters we call 

"communication" and "topology". The taxonomy presented here 

complements this approach, but bases its hierarchy on the granularity 

or size of the processing elements. In particular, we hope that this 

taxonomy will be useful in analyzing entire computing systems as well 

as small structures of wires and silicon gates. The approach is to 

provide a hierarchical method for analyzing both the functional and 

structural aspects of parallel computing systems. These features, we 

believe, determine the problems for which certain classes of digital
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systems are well suited.
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Ihe proposed taxonomy is aimed at systems which derive their 

power from replications of the functional elements composing them. It 

is based on the premise that all parallel processing systems can be 

considered to be collections of two atomic entities: paths and 

elements. Paths are used primarily as carriers over which information 

is transmitted. Paths are considered passive in that they do not 

modify the transmitted information and, when viewed over a 

sufficiently long time window, cannot be said to store it. Elements 

perform some action on information such as storage or functional 

modification, e.g. add, multiply, execute program, etc. In any given 

system the division into paths and elements is a bit idiosyncratic, 

and reflects the background and interests of the person analyzing the 

system. This is a disadvantage only if one applies a taxonomy rigidly 

and without much common sense. Sensibly applied, the division of a 

system into paths and elements can be a powerful tool to clarify the 

designer's motives and aspects of the system's modularity.

A fundamental feature of parallel systems is that at least some 

of their elements and paths are replicated to produce physically 

distinct processing structures which can be active in parallel. For 

each type of atomic entity, we provide a pair of taxonomic criteria. 

One is a functional parameter; the other is the associated structural 

parameter. Figure 2-1 shows the four parameters. Column headings 

indicate whether the parameter applies to a path or an element. Row 

headings indicate whether the parameter describes a functional or a 

structural aspect of the system.

We concur with Anderson and Jensen in the belief that the 

topology parameter is the most important of the four. The path 

interconnection topology usually has the most dominant effect on 

parallel system behavior. Due to their limited connection capability,

2. THE TAXONOMY
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Figure 2-1: Four Primary Taxonomic Parameters 

this is especially true of highly integrated systems. H. T. Kung 

[173 has done some excellent work which demonstrates how system 

efficiency depends on the fit between algorithm and machine topology. 

Existing systems have a large number of path topologies. The 

emergence of a new topology is limited only by imagination. A 

system's topology dictates how many ports each of its elements must 

have. Elements with many ports are typically more complex than those 

with fewer ports. Topology also has a major influence on whether or 

not a system can be implemented as a set of densely integrated VLSI 

chips. Planer topologies map nicely onto VLSI components whereas an 

irregular three dimensional connection scheme is likely to fit poorly 

onto a VLSI chip. In addition, the pin count of a subsystem or module 

is heavily dependent on the system's topology.

Many functional aspects of paths are of great interest. We use 

communication to describe the major behavior of system paths, 

concentrating on three important components of communication:

1. Mobility, the ratio of program to data information carried 
by the path.

2. ATR, the average transmission rate over the path.

TOPOLOGY GRANULARITY

COMMUNICATION OPERATION
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3. Bandwidth, the maximum transmission rate supported by the 
path.

Precise numerical values are typically less interesting than 

relative terms in forming the following descriptive cross product.

high bandwidth heavy mobility high ATR

Communication = medium bandwidth x moderate mobility x medium ATR 

low bandwidth slight mobility low ATR

This cross product allows a rough characterization of the 

behavior of the communication paths in the system and provides some 

insight concerning the individual grains composing the system.

Granularity, or grain size, describes the size of the largest 

repeated element; as such it is -a structural property used as a 

principal determinant of the hierarchical level of a system. 

Providing an exact numerical measure for grain size would probably be 

more difficult than useful. For simple descriptions, terms such as 

small, medium, and large could be employed. For example, in comparing 

the ILLIAC IV [H] and the CM* [8] at a level where the elements are 

processors, the ILLIAC IV's element granularity would be large and the 

Cm*'s medium. The grain size of an associative memory would be quite 

small.

The operation of an element describes its behavior in the system; 

the foremost is its functional transformation of input data to output. 

An important subsequent distinction which should be made among 

elements is whether they are primarily processing or storage elements. 

We call such a distinction the memory-logic mix of the element. 

Memory-logic mix describes the ratio of memory to processing in the 

repeated elements. The mix of an element in which a few registers and 

a fast multiplier are used is clearly more processor intensive than 

the mix of an element which is a million byte RAM store. Some other
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computer taxonomies can be seen as attempts to describe the functions 

of the processing elements in additional detail. Items such as the 

element instruction set, if any, and the specific access properties of 

the memory, such as random, block sequential, or sequential provide 

additional detail.

To briefly illustrate the use of our taxonomy, consider the 

ILLIAC IV multiprocessor system. In accordance with our taxonomy, the 

ILLIAC IV's topology is that of a two dimensional, fully populated, 

square array of data paths. We will ignore control paths for the 

purpose of this brief (example. The communication along the paths of 

the square array is supported by high bandwidth, low average 

transmission rate, heavily data intensive paths. The ILLIAC IV1 s 

grain size is medium by present standards although 10** gates was large 

in 1969, and each processor is a logic intensive, programmable 

arithmetic processor. Each grain has a simple, random accessed memory 

that lacks the index or base registers needed to support sophisticated 

access patterns individually, since all the processors share one 

common index register.

The following sections describe the principle features of the 

taxonomy in more detail.

2.1 TOPOLOGY

In any system which derives its power by replicating some set of 

physical resources, the constraints on communications that are imposed 

on these multiple resources must be considered a primary factor in its 

analysis. Ey maintaining the distinction that multi-resource systems 

are composed primarily of elements and paths, we can define 

communication as that aspect of system behavior which is concerned 

with what takes place on the system paths. We also choose to maintain, 

the distinction between the functional and structural parts of 

communication, and call the structural aspect topology. If some



element A has a path to element B, then we say that elements A and B 

communicate directly. It is clear that "communicates with" is a 

transitive relation, but "communicates directly with" is not 

transitive. If any two elements C and D can communicate only with 

messages routed through one or more intermediate elements, then C and 

D are said to communicate Indirectly with each other. Kung [17] has 

presented a rather convincing view that very high performance can be 

obtained if algorithms can take advantage of the direct communication 

possibilities of the hardware. We use the term topology to describe 

the direct communication structure of the system.

Topology can best be understood using a graphical representation. 

Any system S consisting of elements and paths can be mapped onto a 

topology graph (TG) consisting of vertices and connecting arcs. For 

each element of S there is a corresponding vertex in the TG, and for 

every path in S there is a corresponding arc in the TG. The TG 

represents the communication paths in S, because for any pair of 

elements in S which communicate directly with each other over a path, 

there exists an arc in the TG which connects the vertices in the TG 

corresponding to those elements.

Using a system's topology graph we can now study its direct 

communication structure by analyzing its TG. In some systems certain 

communication paths are one way paths, while in other systems all 

paths are bidirectional. In systems where one way paths exist, the 

concept of TG arcs may be extended to include directed arcs. For 

example, if Ec can send a message to E^, but not vice versa, then 

there is a directed arc in TG which goes from Vc to V^. Note that the 

existence of two complementary directed arcs in TG is not equivalent 

to a single non-directed arc as illustrated in Figure 2-2.

In both graphs of Figure 2-2 it is apparent that VI and V2 

communicate directly with each other, but that the relation
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a) D O U B L Y  C O N N E C T E D  b) SINGLY C O N N E C T E D
DEDICATED PATH S H A R E D  PATH

Figure 2-2: Two Different Topologies 

"communicates directly with" does not contain enough information to 

identify senders and receivers. Such identification is often 

important and can be represented in topology graph form. In Figure 

2-2a , the system designer has provided two distinct paths having 

predefined senders and receivers; that is, each path has a dedicated 

function. In Figure 2-2b, the path can be shared by two possible 

senders and two possible receivers, and is therefore a shared path.

The number of ports of a system element is often a clue to its 

complexity. While this information is not directly associated with 

system topology, port information can be obtained from the TG. In 

Figure 2-2a both system elements are dual-ported; in 2-2b both 

elements have only a single bidirectional port.

The distinction between shared paths and dedicated paths is 

important because communication contention for shared paths may cause 

a form of sequencing in concurrent systems. Anderson and Jensen 

[2]also chose to consider this distinction in their taxonomy. The 

main difference proposed here is that dedicated and shared path 

information can be deduced from a system's topology graph. 

Furthermore, much of the information contained in the other levels of
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the Anderson and Jensen taxonomy is described by what we call 

topology. As such, we assert that the Anderson and Jensen criteria 

are subclasses of the topology considerations presented here.

One particular type of shared path is a bus. Bus organized 

systems are widespread and present a rather attractive communication 

medium for replicated systems in which only one message at a time need 

be transmitted between member elements of the bus connected subsystem. 

The TG representation of a bus connected subsystem varies with the 

type of bus control mechanism. Figure 2-3 shows several 

possibilities.

Figure 2-3a shows a number of single ported elements, all 

connected by a single path. This type of bus system requires that the 

sender’s identity be determined by sensing the state of the bus. Such 

busses can be implemented using a number of techniques such as 

Tri-state, wired-or, etc. All possible senders on such a bus may try 

to drive it with some ID value. After looking at the resultant bus 

levels, the actual sender’s ID can be known. Receiver ID can be known 

either by message tags or all non-senders can be defined to be 

receivers in a broadcast like mode. Figure 2-3b shows a simpler 

configuration where there is a single sender and up to three 

receivers. The receivers in this scheme can also be selected by 

message tag or in a broadcast mode. Figure 2-3c is an example of a 

two bus system where element A may transmit to element B, C, and/or D 

on one bus and receive replies on the second. ,

Often the n wires of a bus may be partitioned into a number of 

sub-busses, where each sub-bus has a special function. An example is 

the UNIBUS [6], which contains 56 active wires. Only 16 of these 

wires are used to carry data. The remainder are used in control 

functions. One useful way to initially partition the UNIBUS is 

illustrated in Figure 2-3d, where the top bus consists of the UNIBUS



a) Sus state control

b) Single Sender Multiple Receiver 9 9 99

c) Two-bus subsystem

d) UNIBUS-like system

e) Unidirection ports: 
two equivalent TG 
structures

£) Bidirectional ports: 
two equivalent TG 
structures

Figure 2-3: Topology Graph Examples for Bus Connected Subsystems
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bus request lines. The middle set of lines, which begin at A and are 

passed successively to B, C, and D, are the UNIBUS bus grant lines. 

The bottom, bidirectional bus in this TG corresponds to the remaining 

wires of the UNIBUS.

There are often a number of TG shapes that describe the same 

system topology. This difference may result from the type of analysis 

which is to be done, or it may merely reflect a personal preference 

for a particular graphical style. Figures 2-3e and 2-3f show two bus 

topologies, where each topology is represented in two ways.

Many system topologies have a large number of arcs, each of which 

connect two vertices of the corresponding TG. In these topologies, 

each arc represents a dedicated system path. Figures 2-4 and 2-5 show 

a number of important topologies.

One of the most important topological considerations is the 

number of dimensions required to represent the TG while avoiding 

crossing paths. This is important because, if no crossing paths 

exist, logical adjacency (direct communication) in the TG can easily 

be exploited as physical adjacency (short wires) in an implementation. 

If logical and physical adjacency differ* second order communication 

delay effects may influence the system's behavior. These effects 

result from long-wire transmissions, and are not readily apparent by 

simple analysis of the direct communication structure of the system. 

For example, it is well known that one and two dimensional (1D and 2D) 

topologies present particularly nice communication structures for VLSI 

implementations, because on-chip communication is basically carried on 

in a small number of planer layers. Certain 3D communication 

structures can still correspond to physically implementable 

adjacencies for VLSI systems, whereas structures of four or more 

dimensions will necessarily result in some long and therefore slow 

wires. In addition to being slow, 4D structures often present
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d) 2D Multiply Coupled Triangular Array

Figure 2-4: Sample Topologies
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G) 2D BINARY TREE

H) 3D G E N E R A T I O N  C O N N E C T E D  
. BINARY TREE (X-TREE)

Figure 2-5: Sample Topologies (Continued)
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communication requirements which are extremely, if not impossibly, 

complex structures to lay out as a two dimensional integrated circuit. 

Rung [16] has shown that a number of topologies are particularly 

attractive for implementing certain algorithms and has also related a 

few such topologies to their suitability for VLSI. A generalization 

of Rung's techniques may well be the key to future evaluation of 

architectures using the topological considerations described here.

2.2 COMMUNICATION

We use the term communication to refer to the functional aspects 

of communication between two system elements over a system path. 

Communication information answers questions as:

- How fast can information be transmitted?

- What is the average amount of information being passed over 
the path?

- What type of information is being carried over the path?

Of particular importance in answering the last question is a 

distinction between the amount of program being carried and the amount 

of data being passed. We use the term mobility to denote the ratio of 

program to data being passed over the system path. If most of the 

information passed over a particular path is used as data by any 

receiving element, then the system function is relatively static. 

This does not imply that activity is low, but rather that the 

distribution of the functions throughout the system is relatively 

stable. We could therefore say that the functional properties of such 

s system are less mobile than in the case where mobility of the system 

path is high.

In systems where the elements do not correspond very well to 

traditional notions of a processor, it is unwise to retain traditional 

definitions of a program. For our purposes, we refer to program 

information as that information which helps to define the function a
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system element will perform. Data is then information which affects 

result values but not element function. If a system path has high 

mobility i.e., if most of the information which passes over the path 

is program, then that path plays an important role in the functional 

modification of system activities. Typically, high mobility systems 

are more general and have lower throughput than low mobility systems.

A second important aspect of path function is the average 

transfer rate (ATR) of the path. The path may place a physically 

imposed upper bound on the ATR. This upper bound is the bandwidth of 

the path. If the ATR is consistently a small percentage of the 

bandwidth for a given path, then that path is being used 

inefficiently. This inefficiency may not hurt overall system 

performance, but such an observation provides a good starting point 

for further analysis.. For example, low ATR may result from an almost 

ideal partitioning of system activity onto resource grains which 

rarely need to communicate.

It is easy enough to provide quantitative values for mobility, 

ATR, and bandwidth, but qualitative terms will usually provide a more 

intuitive description. For example, low mobility, high bandwidth, 

high ATR systems tend to be specialized structures which are very 

efficient in solving a very restricted class of problems. A 

logic-enhanced memory structure [10] is an example of such an 

architecture, which is extremely good at certain correlation problems, 

but which cannot be easily called upon to do inventory accounting for 

a hospital. A high mobility, low ATR, medium bandwidth system may 

indicate an array of microprocessors each working on a resident 

database using a large number of possible functions. PASM [24]is 

such a machine. In PASM each microprocessor is responsible for 

processing a predefined piece of an image database. A medium 

mobility, medium ATR, medium bandwidth system would represent a rather
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efficient, general purpose, multiprocessor system; while a medium 

mobility, low ATR, high bandwidth system may correspond to a 

potentially high performance, general purpose multiprocessor.

Using these three subclasses of communication it is possible to 

classify and analyze a wide variety of digital systems which are 

beyond the scope of previous taxonomies.

2.3 GRANULARITY

At each level of a hierarchical description, the granularity is 

the size of that level's largest repeated element. In fact, it is 

probably the size of the grain more than any other parameter which 

determines the level at which the system is described. Top level 

descriptions concern themselves with the largest grains of a 

particular system, and progress hierarchically down through ever 

decreasing granularity to the smallest replicated structures. It is 

therefore important to select a metric for expressing grain size which 

not only allows comparisons between different processing systems, but 

also is relevant when comparing different hierarchical levels within 

one processing system. Simple relative descriptions such as small, 

medium, or large are intuitively useful in distinguishing 

microprocessor arrays from systems like PEPE [7] or ILLIAC IV from 

small grain systems such as Holland machines [15] and systolic 

arrays.

In precise terms, the gate count of a grain is probably the 

simplest useful metric to apply. Since a gate typically is the 

smallest functional unit in a digital system, this metric has an 

immediate appeal. The number of gates required to implement a given 

function in a stated time depends to some extent on the implementation 

technology chosen and the skill of the oircuit designer. However, 

implementation issues such as technology are usually known and design 

skill is essentially constant when comparing various architectures.
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Furthermore, determining the number of gates composing a grain to 

better than within a factor of 5 or so gives a false sense or 

precision to what is essentially a simple taxonomy. The temptation to 

include a host of other factors such as gate count, number of wires, 

computational capability, power consumption, weight, total area of 

substrate consumed, cost, etc., and express them in a weighted 

polynomial should be avoided for the same reason. If a specific 

application makes one of these additional factors especially relevant, 

it should be selected as the sole determinant of grain size, or else 

included in some simple combination with the gate count as the metric. 

The product of gate count and the number of gate interconnects is 

perhaps useful in this way.

In another sense, grain is the reciprocal of the number of 

elements one can reasonably expect to build into a practical system. 

Large grained systems are probably feasible only when at most a few 

hundred elements are used. Small grain systems, however, may well 

consist of thousands to millions of grains. Thus the grain size in 

part determines whether or not one can profitably spend engineering or 

computing time allocating tasks to each element. In large grained 

systems the high cost of each grain probably makes explicit allocation 

worth the effort. In systems with small inexpensive grains, a more 

cost effective strategy would be a statistical allocation or a "quick 

fit" policy that tacitly accepts wasting some of the inexpensive 

elements.

In this sense grain size also directly influences inter- and 

intra-grain control issues. Synchronous control of more than a 

thousand processing elements is a monumental engineering task [23]. 

Thus small grained systems can be expected to utilize more 

sophisticated inter-grain control schemes than large grained systems. 

On the other hand, small grained systems can be expected to require
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simpler internal control than their larger cousins. It is because of 

this relationship that such structures as dataflow machines [1] and 

systolic arrays raise more complicated control issues than the 

synchronous machines of the past. As the fabrication technology 

achieves ever smaller feature sizes, these grain size induced control 

issues strongly influence the design of the chips themselves. It has 

been pointed out that self-timed logic is a virtual necessity in VLSI 

chips when the number of transistors reaches the order of a million 

[23].

Finally, grain size exerts an influence on the "computational 

generality" of the entire processing system (see Figure 2-6).

QRAIN SIZE

Figure 2-6: The Influence of Grain Size on Processing Generality 

Large grained systems have so far been composed of programmed von
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Neumann computers capable of ever increasing feats of general purpose 

processing within their throughput limitations. Small grained 

computing systems are relatively new, pose difficult control issues, 

and thus far have been hard wired for rather specific classes of 

problems. Moreover, the last 30 years of algorithmic research have 

focused most strongly on small numbers of von Neumann architectures, 

whereas small grained structures require algorithmic mappings onto 

very large numbers of simpler processing elements [26]. The 

representation methods for such highly parallel algorithms are as yet 

poorly developed, and there seems to be little agreement on the most 

promising approach [21], Because of these historical limitations on 

small grained systems, it is as yet unclear whether the trend noted in 

Figure 2-6 represents a fundamental property of these systems or 

simply a "head start" gained by the earlier development of 

traditional, large grained processors.

2.1* OPERATION

Once the grain structure is characterized in terms of its total 

gate count or similar metric, its computational power can be crudely 

estimated. Operation further characterizes the chosen elements at 

each level of discussion in more functional terms. The first is a 

characterization of the gross behavior of each grain as a 

transformation of inputs to output states. Given this description, 

often in informal English or, for simpler systems, in terms of more 

formal state tables. The viewpoint of traditional combinational logic 

is that the first distinction which can be made on a collection of 

gates is to distinguish between storage elements and sequential logic 

elements. Storage elements use feedback or physical properties of the 

medium to guarantee stable states necessary for the memory function. 

The introduction of storage into such systems allows a significant 

reduction in the amount and complexity of Sequential logic since 

intermediate calculations can be saved for future use rather than
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explicitly calculated with combinational logic circuits. Conversely, 

sequential logic can be used to reduce storage requirements when it is 

cheaper to calculate values rather than to use massive amounts of 

storage to maintain the values as tables. There is thus a fundamental 

trade off between amounts of memory and logic to implement a given 

functional task.

A simple measure of memory/logic mix is the number of gates 

devoted to logic compared to the number of gates in the memory. Such 

a measure gives a crude measure of mix, but does not distinguish well 

between machines of varying word sizes. A more meaningful measure is 

the number of storage cells which can be accessed by the logic. This 

is relatively easy to determine for systems where a fixed word size 

exists. In systems which use variable length storage fields, the 

measure is more difficult but can be obtained ‘statistically. Memory 

rich elements are generally limited in the complexity of the 

functional transformations they perform. However, their regular and 

simple internal topologies and their high circuit densities suit them 

for VLSI implementation. Logic rich elements, on the other hand, are 

generally able to implement more complex transformations, but possess 

lower circuit densities and a more complex internal topology. ■

The capacity of a memory is also determined in part by how 

effectively the various data types permitted by the organization are 

mapped onto the storage cells. Since most modern computers attempt to 

support several data types with a few basic cell sizes, the evaluation 

of the true capacity of sophisticated storage systems can be rather 

difficult. However, in many parallel systems the granularity is small 

enough to forbid such complexities and permit a realistic evaluation 

of the system capacity.

The logic function, too, can be only crudely characterized by a 

gate count (see Figure 2-7). This is because large numbers of gates
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can be used to provide either high speed or a diverse functional 
repertoire. A more complete characterization of an element's 
operation must therefore include the "style" in which the element is 
implemented, and the number and kind of functional transformations 
which can be performed on the data. Where the need for simplicity and 
low gate count supercedes the need for speed, bit serial logic 
architectures can be used. However, most computer systems operate on 
data groups ranging from four to 64 bits in one clock pulse. 
Occasionally computers have provided sufficient logic to allow this 
degree of parallelism to be variable [27]. In this case, a 
characterization of the logic complexity includes a description of the 
appropriate bounds on the word size.

STYLE OPERATORS

/ \  / / ! %
BIT SERIAL N-BIT + -  SEARCH * • • 

WORD

MEMORY

CAPACITY ORGANIZATION

LOCATION CONTENT ROM PROM RAN*. 
ADDRESSED ADDRESSED

SERIAL BLOCK RANDOM 
SERIAL

Figure 2-7: Important Aspects of Element Operation

The number of operators supported on the various data types is a 
measure of logic complexity which usually receives considerable
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attention in processor handbooks and in the ISP notation [5]. In 
large grained elements, it may be necessary to form a cross product of 
the number of supported operators with the number of data types to 
form a realistic impression of the functional power of the system's 
structure. Forming this cross product reasonably requires 
considerable familiarity with the system and its intended use to 
eliminate ridiculous combinations of operators and data types. For 
example, does anyone ever search a double precision floating point 
number for the occurrence of a given bit sequence?^ In small grained 
systems such as systolic arrays, simple recurrence relations can be 
used to describe the operators of each element.

The organization of the memory influences the functional behavior 

of the computing element in ways which extend beyond the data types. 
The ratio of read to write time, and the physical mechanisms needed to 
write and read storage exert considerable influence on algorithm 
execution. If some of the memory is ROM, or PROM, the write process 
is far more complex than if it is implemented in RAM. These more 
complex processes require resources usually unavailable to the 
processing element, and this lowers the flexibility of the element 
below that traditionally associated with RAM. ROMs and PROMs are 
essentially logic implementation techniques rather than true memory 
structures.

The accessing organization provided by the memory also exerts a 
strong influence on the behavior of the element. First the logical 
address space seen by the operators in a random access memory must be

1A more detailed analysis would rank the various operator-data type 
pairs by frequency of use and then multiply each use-weighted pair by 
its execution time. Studies such as this are common among computer 
manufacturers and represent a finer level of detail than is usually 
appropriate in a taxonomic description.
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mapped onto the physical cells in some fashion such as one to one, 
paged, virtual storage, cache memory, etc. Furthermore, search and 
compare logic is often closely commingled with groups of memory cells 
if it receives considerable use. Such content addressable memories 
can themselves form a portion of the elements of a large grained 
system such as STARAN [22]. In a small grain analysis or STARAN, 
each 256 word data block and its associated search circuitry forms an 
even smaller grained element. In the former case, the logic in the 
large grained element needs to do little searching since the CAM 
performs this function quite well. In the latter analysis, the logic 
in the processing element performs only searching and comparing. 
Logic-enhanced memories [10] are subject to a similar analysis with 
more complex arithmetic functions replacing the search and compare 
process of the CAM.

From another point of view, the access patterns supported by an 
addressable memory exert a strong influence on the behavior of the 
algorithms executed by the logic. This observation is especially 
relevant as random access memories are increasingly complemented by 
CCD and bubble memory technology. These memory organizations permit 
rapid serial transfers and considerably slower random access. Such 
block serial devices permit very dense memory structures combined with 
rapid and simple iterative algorithms implemented in small amounts of 
logic [10] in cases where data accesses are for the most part 
sequential.

. ■ ' ■ '
^ "" ■ '• " ’ ":-r' -
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3.1 Systolic Arrays
Systolic arrays have been developed by Kung [16] to perform 

matrix manipulations such as LU decomposition and multiplication with 
a high degree of parallelism. The systolic array of Leiserson [18] 
implements a priority queue on a vector of data. While these designs 
differ, they share many features.

The fundamental communication topology of the systolic arrays 
developed thus far is illustrated in Figure 3-1. The structure is a 
fully populated regular array where each node is directly linked via a 
separate path with its six nearest neighbors. This structure is the 
fundamental topology of systolic arrays because the four nearest 
neighbors rectangular array of Figure 3-1b, and the binary tree of 
Figure 3-1c are subsets of this topology.

3. EXAMPLES

'!>!

(a)

»• I-

<b) (c)

Figure 3-11 The Principal TG of Systolic Arrays (a) 
and two Subsets (b) and (c)



31

Analysis of many of the features of systolic arrays is 
facilitated by examination of the dual graphs of Figure 3-1 shown in 
Figure 3-2.

(a) (b) (cj

Figure 3-2: The Dual TG of Figure 3-1

We notice immediately that Figure 3-2a is a tessellation of the 
plane into hexagons. This property implies several advantages in a 
VLSI design. First, if we imagine the hexagons containing 

computational elements and communicating at their edges, then the 
communication paths are inherently non-intersecting and very short. 
Furthermore, if the granularity of each cell is the same, and if the 
operation of each cell permits them to hav^ a hexagonal geometry, then 
the chip plane is well packed with processing elements. This should 
maximize the cell density of a systolic array and make effective 
utilization of the planer communication and high device density of 
VLSI chips.

Secondly, the regular tessellation suggests that each cell could 
function identically. So far, no systolic arrays have been designed

.. ■ 4- ' ’ilS « fj j fi«
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which have more than one fundamental shape in the dual TG. 
Interposing multiple shapes in a regular pattern is certainly possible 
and could present a promising direction for future investigation. 
Regular tessellation should minimize the design costs of such arrays 
when implemented in VLSI chips.

Systolic arrays possess low mobility. In fact, since the control 
signals have the same communication topology as the data, systolic 
arrays could make use of "self-timed" logic elements, a style which is 
attractive in VLSI designs [23]. The bandwidth of the communication 
paths is quite high, since the planer topology permits the cells to 
communicate at on chip speeds. Moreover, the ATR of each path is 
generally quite high. This is so because the timing of the 
communication in a systolic array is regular, with each cell 
outputting data on each "systol" as it inputs new data. Thus, with 
proper buffering, the paths are in use most of the time.

The grain size of systolic arrays is very small - generally 

several hundreds of gates. This has been possible because the 
functional behavior of each cell is simple and because only a small 
amount of data storage is necessary at each cell. Small grain sizes 
have the advantage that they are relatively easy to design compared to 
a microprocessor. However, they have the disadvantage that they do 
not permit the flexibility that large grained systems have. Systolic 
arrays can be expected to be applied to rather limited classes of 
problems. This observation is consistent with the low mobility of the 
inter-element communication paths, itself another sign of a more 
special purpose architecture.

The functional behavior of a systolic array is expressed by 
recurrence relations which relate the output of element i to the 
output of element i + 1. Generally, these recurrence relations take 
the form of inner products such as:
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The amount of logic needed to perform the computations can be 
kept small in such a design. Depending on specific problem 
requirements, the design could manipulate either fixed or floating 
point numbers and be implemented in either serial or parallel fashion 
to yield the appropriate processing speeds. Because the granularity 
and ATR suggest that the systolic array is a special purpose 
architecture, it would be reasonable to suggest implementing the logic 
with a ROM or PLA rather than a programmable RAM. However, much work 
remains to be done on the effect of small changes in the recurrence 
relations to the overall algorithms allowed by a given topology.

The memory used by each cell is quite small - consisting only of 
input/output buffers and queues between the cells. This memory is 
generally written into by only one cell and read from by only one 
other cell, thus simplifying buffer control logic. Moreover, the data 
is accessed in a FIFO manner, thus eliminating the need for complex 
addressing schemes. The number of data types supported by the memory 
is small because the operators are simple arithmetic ones and few in 
number. This is consistent with the special purpose nature of the 
machine.

O* *• ■* I ■
Logic-enhanced memories [10] are described in much the same way 

as systolic arrays, except that their granularity tends to be somewhat 
larger and each grain more memory heavy because of the deliberate 
attempt to incorporate memory into each element and to keep the amount 
of logic minimal. The internal topology of each element is made 
simple and regular by replacing traditional logic with table lookup to 
perform finite difference calculations, and other techniques which use 
large amounts of memory and little logic.

1 ■');
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The CM* system [8] is an attempt to utilize a microprocessor, 

the LSI-11, as a fundamental module in a computer architecture and 
capitalize on the high degrees of parallelism possible using large 
numbers of such modules. The architecture is chosen as an interesting 
application of the hierarchical nature of our propsed taxonomy.

At its highest level, the CM* is a collection of bus linked 
"clusters" (Ks) with selected clusters attached to two busses (see 
Figure 3-3)* Each cluster is itself comprised of up to fourteen 
"computer modules" (CMs) and one K-map, all sharing a common map bus, 
(see Figure 3-4). The CM* is thus a "bus of busses" - a not 
surprising design considering its PDP-11 heritage.

3.2 THE CM* MULTIMICROPROCESSOR SYSTEM

Figure 3-3: The High Level Topology of CM*

The communication profile of the CM* indicates that the principal 
bus traffic consists of data words. Program information is also
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C O M P U T E R  M O D U L E  (CM)

Figure 3-4: The Internal Topology of Each Cluster (K) 
passed along the busses, but it does not initiate specific control 
sequences during its passage, and so is regarded as data. However, 
since both map and intercluster busses are packet switched, the 
control headers associated with the data increase the bus mobility 
over that of a simple circuit switched bus. The mobility is therefore 
low to medium. This suggests a computing structure whose adaptability 
to various problems is due more to the flexibility of the computing 
elements than to the adaptability of the communication paths 

connecting these elements. The bandwidth is high, but not as high as 
the on chip communication of systolic arrays, and the ATR is medium to 
low, indicating that the clusters and the elements comprising them can 
act with relative independence. This is consistent with the use of a 
general purpose microprocessor as the fundamental module in the CM* 
structure.
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Each cluster is composed of up to fourteen computer modules and 
each computer module consists of up to 32K words of memory. Therefore 
a particular CM* must be configured before the grain sizes can be 

specified at the two levels distinguished here. This configuration is 
described in [8]. In this configuration, each CM has 32K words of 
memory, and each cluster has three CMs and a K-map. For the purposes 
of this discussion, the lines to the intercluster busses are 
considered to be a part of the K-map. Each CM has approximately 8,000 
gates and 32,000 words of memory, while each K-map has approximately
17.000 gates and 10,000 words of storage. We conclude that the CM* 
clusters consist of rather large grains, each containing approximately
62.000 gates and 115,000 words of storage, including the S-local and 

the serial line units. Because the grain is so large, we expect the 
generality of processing within each cluster to be high and the cost 
of producing a system containing more than one hundred such clusters 
to be high by 1980 standards. Thus we expect the intercluster control 
to be rather ’’straightforward" bus arbitration logic well suited to 
busses serving 10 to 50 clusters. Were the cluster grain size to be 
smaller, permitting 1,000 or so clusters within economic constraints, 
we would expect the simple intercluster bus management to become a 
serious problem.

Within a cluster, the smaller CMs form a subsystem whose 
granularity is about 15,000 gates and 35K words of storage. These CMs 
are also rather large grains, and much the same remarks which applied 
to the clusters also apply to the CMs.

At the cluster level of granularity, the inputs to the clusters 
are data requests and the outputs are other data requests or the 
requested data. When a cluster receives a data request, it is the 
function of the K-map of each cluster to determine whether the request 
can be satisfied by storage of the cluster and satisfy it if possible.
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If not, the request is passed to another cluster. The CMs within a 
cluster generate intercluster requests for all data not represented in 
storage within the cluster. The rather high ratio of logic gates to 
storage cells within the K-map, 17,000 to 10,000, is indicative of the 
complexity of address management, the virtual to physical address 
mapping, and the maintenance of what is in effect a cache memory of 
most recently accessed segment descriptors. Most of the memory is 
bipolar RAM in keeping with its cache-like operation.

The logic of each K-map is horizontally microcoded with 1K x 80 
bit control storage. The wide control word suggests several 
concurrent operations and indicates that the speed of the logic was an 
important factor in the design.

Within the cluster, the CMs contain a memory/logic mix typical of 
general purpose computers: 8,000 gates and about 32,000 words of 
memory. Each processor is in fact an LSI-11, possessing a wide 
variety of addressing modes and a few data types. The processor and 
the memory are implemented in 16 bit parallel words following the 
minicomputer architectures of a few years ago.

3.3 THE CRAY-1
The Cray-1 [9] is well known as a very high performance machine. 

Much of the basis for this performance does not have anything to do 
with the replication of its functional components, and therefore is 
not well explained by the criteria presented in this paper. For 
example, the million word main store, the 12.5 nsec memory access 
time, and the basic pipelined organization of the processor are 

represented poorly in our taxonomy. The fact that the main store is 
so large removes much of the swap time which drastically limits the 
performance of many large compute bound programs. Storage intensive 
programs are further sped up by the extremely fast access time to the 
main store of the machine. The Cray-1 also has a large number of fast
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registers, many of which can be loaded in parallel or in a pipelined 
manner. The processor organization also allows a long "look ahead" in 
the instruction stream to allow for a highly parallel execution of the 
apparently sequential instruction stream.

The Cray-1 represents • a rather perverse case for our 

classification scheme and therefore presents a good opportunity to 
test the ideas. While it is possible to say that the Cray-1 does not 
primarily derive its power from replication, it is possible to explain 
much of the high performance nature of the machine via the four 
analysis parameters of our taxonomy structure.

At the highest level of analysis the Cray-1 CPU has a TG similar 
to many other commercial main frames. The TG is shown in Figure 3-5.

11

J Figure 3-5: TG for Cray-1 CPU (Top Level)

The grain size for each of the elements of the TG is huge, the
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processor alone consuming some boards of about 110 chips each.
The operation of the memory section is storage intensive, while the 
operation of the I/O and computation sections are both logic 
intensive. The topology of the system is evident from the figure and 
indicates sharing of the memory section by the I/O and computation 
sections. What cannot be determined at this level of analysis is the 
priority that the computation section has for access to the memory 
section. The analysis of communication for both paths starts to 
indicate the potential performance of the system; the bandwidths of 
both paths are very high. For example, a 64 bit data item, enough to 
contain four instructions, can be transferred in a single 12.5 nsec 
clock cycle. The very high bandwidth between elements indicates that 
the elements themselves must be capable of very high speed activity. 
At this level in our hierarchical analysis, we cannot yet determine 
why each element is so fast. Still only three basic possibilities 
exist:

1. The elements are made from very high speed circuit 
elements,

2. The elements contain subunits which are capable of 
utilizing parallelism to achieve composite high 
performance, or

3. A combination of the two.

In general, bandwidth is the key to raw speed analysis in that it 
describes an upper bound on the performance of both elements and 
paths. If the grain size is at the gate level, then bandwidth is an 
indication of circuit speed. At higher levels it indicates element 
speed which may be affected by both architectural and component 
attributes.

The mobility of each path is medium in that each path is used to 
carry large amounts of both program and data. The ATR for the 
computation section to memory section paths is very high and typically
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is a relatively high percentage of the bandwidth. This indicates that 
neither the computation nor the memory section is capable of much 
independent activity without the other. The memory section to I/O 
section path ATR is much less than the communication section to memory 
section path ATR. This is due to the nature of the machine that 
programs tend to be resident in the CPU and therefore require 
relatively infrequent I/O.

In summary, the huge grain, very high bandwidth, very high ATR, 
medium mobility characteristics of the top level analysis of the 
Cray-1 indicate a very large (indicated by granularity) and very fast 
(indicated by bandwidth) general purpose (indicated by mobility) 
processor.

At this point we will dispense with looking deeper into the 
characteristics of the memory and I/O sections. We do this for two 
reasons:

1. The memory and I/O sections are less interesting in an 
architectural sense than the computation section, and

2. The computation section provides more interesting types of 
replication to illustrate our taxonomy ideas.

At the next level of analysis of the computation section we see 
several instances of replication. The topology of this level is shown 
in Figure 3-6.

This figure is the standard computation section diagram shown in 

the reference manual [9].

The granularity at this level varies between medium in the 
floating point units to small in the address registers. The topology 
is primarily three dimensional, using replication of the register 
classes and function units to form the third dimension. The topology 
shows the possibility for rather high parallelism in the computation 
section which results from replication of function units, registers.
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address buffers, and instruction buffers. In two dimensions, the 
pipelined nature of the computation section begins to become apparent. 
The operation of the elements at this level is also varied, but for 
any given element the mix is predominantly logic.

The communication parameter again gives the best clue to system 
performance. The mobility of the paths to and from the instruction 
buffers is high, and low for all other paths. This indicates the very 
specialized nature of the elements at this level. The bandwidth of 
all paths is still very high, indicating the very high performance of 

which each element is capable. The ATR varies both with path and the 
type of program being executed, but is typically low to medium. All 
these characterize a system of very high speed specialized elements.

At the next lower level of analysis, we mostly find that 
granularity of the replicated elements is at the gate level, but 
bandwidth is still very high. This indicates that the Cray-1 is 
constructed from very high speed circuit elements.

The discovery of the circuit speed, memory size, and the fact 
that the computation section allows both parallel and pipelined 
activity provides a fairly accurate view of why the Cray-1 is such a 
high performance computer.

3.4 THE MAGO REDUCTION MACHINE
An interesting machine which does derive its power from 

replication is the reduction machine of Mago [19]. hereafter referred 
to as MRED. MRED differs from the Cray-1 in that it is not a 

commercially marketed machine; however, neither is it a paper machine 
in that a prototype of the MRED is being considered by Mago and his 
associates. It has been seen that the bandwidth of any system is 
affected by the circuit speed of the logic elements. In the case of 
MRED, it is inappropriate to make exact bandwidth measures because the 
prototype could be cast into a number of circuit types. The spirit of

42
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the effort indicates the use of commercially available 
microprocessors, and therefore NMOS circuit speeds could largely 
determine bandwidth.

At the top level of analysis, MRED is a leaf connected binary 
tree. The leaf elements, L, are of one type and the non-leaf 
elements, T, are of another type. The TG of MRED at the top level is 
shown “in Figure 3-7. Note that each of the T elements of MRED is 
doubly connected to father and son elements via a bidirectional path. 
For any given program only a subset of these paths will be active as 
part of the partitioning scheme used by MRED.

Figure 3-7: TG for MRED at the T<Jp Level

The grain size of the T elements is medium and will be seen at 
the next level to be about the size of four microprocessors. The 
grain size of the L elements is small and about the size of a single 
microprocessor. The operation of the T elements is logic intensive;
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each T element acts like up to four processors which are used in 
executing Backus like functional programs [3 ]. There is some storage 
in each T element for microcode, and each T element also has a small 
number of registers for result queuing. The operation mix of the L 
elements is also logic intensive, but the function of the L elements
is only to store program symbols and microcode. The use of logic in

t
the L elements is therefore relegated to storage management tasks, and 
to microcode execution.

The communication bandwidth of all of the paths is medium, but 
the ATR is low. Mobility tends to be high because both microcode 

segments and machine language segments are carried over the paths in 

order to set up the parallel evaluation of reduction style programs. 
The high mobility, low ATR, medium bandwidth communication profile 
suggests a machine which tends to customize itself for a given special 
computation. It also suggests that each element is of medium 
performance, but the topology indicates that high performance is 
possible if parallelism can be exploited.

Examination of MRED at the next level down does not yield much 
more useful insight into the nature of MRED, but we conduct such an 
analysis for the sake of completeness.

At the next level the L element consists of a number of registers 
connected to a logic block which is a microprocessor. The TG for such 
a configuration is straightforward and we therefore omit it. The 
grain size of the microprocessor is small and the operation is logic 
intensive, while the registers are very small memory grains. Below 
this level, gates are seen as the replicated structure. The paths 

remain high mobility, medium bandwidth, low ATR in nature.

The TG for the second level analysis of a T element is shown in 
Figure 3-8.
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Figure 3-8: The TG for Second Level MRED T Elements

The round elements in the TG are register groups and as such are 
very small grain, memory intensive elements. The square elements are 
microprocessors and as such are small grain logic Intensive devices. 
The paths are still medium bandwidth, low ATR, high mobility with 
respect to their communication characteristics. The next lower level 
analysis is again the gates themselves.

This deeper analysis of MRED reinforces the first level view of a 
possibly high performance collection of medium performance grains.
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We have presented a scheme which should be valuable as an aid in 
characterizing parallel systems. The main use of this scheme is 
intended to be for analyzing digital systems which derive their power 
from replication of system sub-elements. It extends previous 
classification attempts to account for functional properties rather 
than simply considering structure. The use of this scheme has been 
shown via example analyses of 4 different computer systems. It is our 
belief that replicated systems will be the predominant architectures 
of the future. This is primarily caused by improvements in the 
technology of integrated circuits. We feel that use of the analysis 
criteria presented here can result in very useful insights into the 

suitable application and performance of these future parallel systems.

4. CONCLUSION
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