
CBCV: A CAD-Based Vision System
Thomas C. Henderson, John Evans, Lane Grayston,

Allen Sanderson, Leigh Stoller and Eliot Weitz

UUCS-90-013

Department of Computer Science .
University of Utah

Salt Lake City, UT 84112 USA

June 27, 1990

Abstract

The CBCV system has been developed in order to provide the capability of automatically
synthesizing executable vision modules for various functions like object recognition, pose
determinaion, quality inspection, etc. A wide range of tools exist for both 2D and 3D
vision, including not only software capabilities for various vision algorithms, but also a high-
level frame-based system for describing knowledge about applications and the techniques for
solving particular problems1.

1This work was supported in part by the National Science Foundation under Grant INT-8909596. This
work was also supported in part by DARPA (N00014-88-K-0689). All opinions, findings, conclusions or
recommendations expressed in this document are those of the author and do not necessarily reflect the views
of the sponsoring agencies.

1 Introduction
Computer Aided Design, or CAD as it is better known, has many advantages to offer in the design
and development o f manufactured items. Computer vision, on the other hand, has yet to make major
inroads into the manufacturing domain. We believe that a closer tie between geometric models and
computer vision will lead to greater application o f computer vision techniques in industry and to a
more efficient and effective manufacturing process.

In this report, we examine the role o f Computer Aided Geometric Design models in providing
support for computer vision techniques. In particular, we examine the requirements placed on CAD
systems to achieve useful vision functions, and we take a look at the nature o f the representation dif
ferences betwen CAD and vision, and we describe A l techniques for synthesizing executable computer
vision modules based on an analysis o f the task requirements, hardware and software available, and
on the geometric object under consideration.

We give detailed examples o f both CAD and computer vision systems, as well as synthesis tech
niques for automatically deriving visual inspection, object recognition, and pose determination mod
ules. We use the A lpha.l CAGD system, developed by Rich Riesenfeld and Elaine Cohen and their
colleagues at the University o f Utah for all o f our design and 3D data manipulation. Their system
is a boundary representation, B-spline based modeler, and provides exceptional design and analysis
capabilities.

For the computer vision system, we use the IKS (Image Kernel System). This developed out of
an early set o f vision tools acquired from Bill Havens at the University o f British Columbia. The
majority of the current IKS system, however, has been developed over the last few years at the
University o f Utah. The functions range from low-level image to image processing routines to 3D
intrinsic characteristic funstions for the analysis o f 3D range data.

The knowledge-based component o f the system described here has been developed on top o f PCLS
(Portable Common Lisp Standard) in FROBS (FRames and OBjectS). These systems were developed
by Bob Kessler and the PASS (Portable Ai SystemS) group at the University o f Utah.

2

2 Computer Aided Geometric Design
2.1 General Considerations
Computer vision has been an active research area for over 25 years. In the past, emphasis, was
on low level processing such as intensity and signal processing to perform edge detection. More
recently, models of objects and knowledge of the working environment have provided the basis for
driving vision systems. This is known as model-based vision. The pursuit o f the fully automated
assembly environment has fueled interest in model-based computer vision and object manipulation.
This involves building a 3-D model o f the object, matching the sensed environment with the known
world and determining the position and orientation of the recognized objects. The goal is to provide
a solution to the problem o f visual recognition in a well-known domain.

In the automation environment, recognition schemes and representations have typically been con
structed using ad hoc techniques. Although objects used in the assembly process are designed with
a CAD system, generally there is no direct link from the CAD system to the robotic workcell. This
means the recognition systems are constructed independently of the CAD model database. What is
desired is a systematic approach for both the generation o f representations and recognition strategies
based on the CAD models. Such a system provides an integrated automation environment. The
system is composed of several components: a CAD system, a milling system, a recognition system
and a manipulation system. In this paper, the automatic generation o f recognition strategies based
on the CAGD model is studied. It has also been determined that the use of shape, inherent in CAGD
models, can also be used to drive the recognition process. Others have been studying portions o f this
system. Recent work by Ho has focused on the generation o f computer vision models directly from a
CAGD model[2,15].

The work described here investigates the use of geometric knowledge in constructing 2D recognition
codes. These codes provide a robust mechanism for recognition and localization of two-dimensional
objects (occluded as well as non-occluded) in typical manufacturing scenes.

One of the first researchers to study the automatic synthesis o f general recognition strategies was
G oad[ll], He was concerned with automatic programming for 3-D model based vision. His work
generated a recognition scheme for matching edges based on a general sequential matching algorithm.
His algorithm proceeded in three steps: (1) predict a feature, (2) observe (match) a feature, and (3)
back-project (refine the object hypothesis based on step 2). These three steps form a template which
is used by the automatic programming phase. He used a unit sphere to gather loci of view angles
(camera positions) which represent orientations of the object. The only features used were straight
edges from intensity images and the search trees were generated from a template and ordered by hand
rather than automatically. His system didn’t consider partial occlusion. However, this was a major
contribution since it was one of the first attempts to automate the generation of recognition schemes.

Another influential project was the 3DPO system by Bolles and Horaud[4]. This work is the 3-D
generalization o f the Local Feature Focus method[3]. Their system annotates a CAD model producing
what is called the extended CAD model. From this model, feature analysis is performed to determine
unique features from which to base hypotheses. The focus feature in their system is the dihedral
arc. When the recognition system finds a dihedral arc, it looks for nearby features which are used to
discriminate between model arcs with similar attributes. From these, an ob ject’s pose is hypothesized
and subsequently verified.

Recently, Ikeuchi has explored the use of interpretation trees for representation of recognition
strategies[16]. His system uses the concept o f visible faces to generate generic representative views,
called aspects. From this set of aspects, an interpretation tree is formed which discriminates among
the different aspects. His system uses a variety o f object features such as: EGI, face inertia, adjancency

3

information, face shape, and surface characteristics. Most o f these features are based on planar faces.
A very specific interpretation tree is generated for an object using a set o f object specific rules.
The rules were selected by hand rather than generated automatically. There doesn’t appear to be
any algorithmic approach for the application o f the rules to discriminate between the aspects. The
branching on the tree seems to be a function o f the particular aspects chosen rather than being based
on the geometric information in the model.

Hansen and Henderson[13] have also proposed a CAD-based 3D recognition and localization scheme
based on strategy trees. That system isn’t dependent on a certain class o f features but rather can be
extended to include many classes o f features. The system also performs automatic selection o f features
based on a set o f constraints: feature filters. These features are used to form a strategy tree which
provides a scheme for hypothesis formation, corroborating evidence gathering and object verification.
The flexibility o f this approach makes it significantly different from related work.

Our main goal o f is the automatic synthesis o f recognition system specifications for CAD-based 2D
and 3D computer vision[12,13,22]. Given a CAD model o f an object, a specific, tailor-made system
to recognize and locate the object is synthesized.

To attain this goal, the following problems have been studied:

1. G e o m e tr ic K n o w le d g e R ep resen ta tion : The use o f geometric data is central to a strong
recognition paradigm. Weak methods can only be avoided when better information is available.
The Alpha_l B-spline model allows the modeling of freeform sculptured surfaces. To obtain
the geometric features o f interest for 3-D recognition, techniques for the transformation to a
computer vision representation have been developed.

2. A u to m a t ic F eatu re S e lection : The part to be recognized or manipulated must be examined
for significant features which can be reliably detected and which constrain the ob ject’s pose as
much as possible. Moreover, such a set o f features must cover the object from any possible
viewing angle. In solving the feature selection problem, a technique is available for synthesizing
recognition systems. This produces much more efficient, robust, reliable and comprehensible
systems.

3. R e co g n it io n S ystem Synthesis: Once a robust, complete and consistent set o f features
has been selected, a recognition strategy is automatically generated. Such a strategy takes into
account the strongest features and how their presence in a scene constrains the remaining search.
The features and the corresponding detection algorithms are welded, as optimally as possible,
into a search process for object identification and pose determination. The automatic synthesis o f
search strategies is a great step forward toward the goal o f automated manufacturing. Generation
o f strategies is constrained, not only by the feature selection process but, by the actual task to
be accomplished. Thus, strategies for a specific task might not be as strong when applied to a
different task; strategies are task specific.

The remainder o f this paper explains how these three components can be exploited to automate
the process o f selecting proper features and recognition schemes for specific goals. Algorithms are
described which were developed for feature selection and which give supporting evidence for their
formulation.

Computer vision utilizes object models in a different manner than computer graphics or CAGD.
In CAGD, the models must contain information about the 3-D object for rendering, performing finite
element analysis, milling and other processes. Computer vision is concerned with recognition o f the
objects from sensory data. CAGD models must contain information for the local design operations
such as what shape to extrude or what is the profile curve for a sweep operation. Features used in
construction o f models are implicitly rather than explicitly used in the CAGD representation. For

example, a dihedral edge formed from two adjoining surfaces isn’t modeled as an edge per se but as
two surfaces with adjacency information.

Constructive solid geometry (CSG) and boundary representations are the best understood and
currently most important representation schemes in computer aided design. Present day 3-D wireframe
models used in CAD and model-based vision have many deficiencies including ambiguity - it is easy
to build a wireframe model that can be surfaced in several ways[19]. In CSG, the basic idea is that
complicated solids can be represented as various ordered ’’ additions” and ’’ subtractions” of simpler
solids by means o f modified versions o f Boolean set operators-union, difference and intersection[18].
For inherent boundary representations a number of different approaches are used. These include
Coons patches, bicubic surface patches, Bezier methods and B-splines[l].

Most Geometrical Modeling Systems (GMS) use a limited class of primitives such as rectilinear
blocks and conic surfaces (cylinders, cones and spheres). Although these suffice to design a large
number of conventional unsculptured parts, a GMS which includes sculptured solids is highly desirable.
Also since the sculptured design is surface oriented, it is easier to incorporate it in a boundary based
system. In general, boundary modelers tend to support stepwise construction o f the models more
easily than CSG modelers but require greater data storage. CSG modelers are inadequate for modeling
sculptured parts: they have no capability at all for constructing and using sculptured surfaces as part
o f the boundary of the solid model. Some advantages o f boundary representation are: there are many
known surface models available from which to choose[l]; the mathematics of surface representation
is well developed and complex shapes can often be represented with a single primitive[8,21]; and it
results in an intuitive model. A minor disadvantage is that it may be difficult to ensure the validity
o f a boundary representation o f a set. On the other hand, CSG representations are not unique in
general, since a solid may be constructed in many ways; the final result may not be easily visualized
by looking at the primitives. However, the CSG representation is concise, validity is guaranteed and
such a representation can be easily converted to a boundary representation. The comparison o f CSG
and boundary representation methods can be found in[19,20].

Until recently it was not possible to carry out Boolean operations on sculptured surfaces. Work by
Thomas[21] attempts to combine the best attributes of CSG and surface-based representation systems
by using subdivision techniques developed by Cohen et al.[10]. He uses a uniform boundary represen
tation. The ’’ primitives” are solids bounded by B-spline surfaces. As compared to the other work in
solid modeling, his method does not require that the objects being combined have closed boundaries;
they must only satisfy a weak completion criterion. Thus this method results in a powerful shape
description system which allows the combination of primitives using set operations into arbitrarily-
complex objects bounded by curved surfaces and the production of a model which represents such
objects. Adjacency information about surface points and the intersection curve between two surfaces
as a polyline can be obtained. Although he has used B-spline surfaces, his techniques are applicable to
any surface representation scheme[8]. All this work has been incorporated in the Alpha_l system[9].
(More details about A lpha.l are presented below.) Thus, the advantages o f both CSG and sculptured
surface representation can be obtained in the shape representation of objects and the combination of
objects via set operations. As a result o f these significant advances in CAGD, we decided to use the
A lpha.l system for exploring the computer vision application.

A lpha.l is an experimental CAGD based solid modeler system incorporating sculptured surfaces[9].
It allows in a single system both high quality computer graphics and freeform surface representation
and design. It uses a rational polynomial spline representation of arbitrary degree to represent the
basic shapes o f the models. The rational spline includes all spline polynomial representations for which
the denominator is trivial. Nontrivial denominators lead to all conic curves. A lpha.l uses the Oslo
algorithm[10] for computing discrete B-splines. Subdivision, effected by the Oslo algorithm, supports
various capabilities including the computation associated with Boolean operations, such as the inter

5

section o f two arbitrary surfaces[21], B-splines are an ideal design tool, they are simple yet powerful;
many common shapes can be represented exactly using rational B-splines. For example, all o f the
common primitive shapes used in CSG systems fall into this category. Other advantages include good
computational and representational properties o f the spline approximation: the variation diminishing
property, the convex hull property and the local interpolation property. There are techniques for
matching a spline-represented boundary curve against raw data. Although the final result may be an
approximation, it can be computed to any desired precision (which permits nonuniform sampling).
At present, tolerancing information is not included in the object specification in Alpha_1 system.

Given the CAGD model (perhaps by combining several modeling paradigms), a corresponding set
o f vision models (with some control structure) is generated. Once these models are available, they
provide the basis for standard 2-D and 3-D scene analysis. An early example o f such an interactive
system is the ACRO NYM system[5,6] designed for applications in computer vision and manipulation.
The world is described to ACRONYM as volume elements and their spatial relationships and as classes
o f objects and their subclass relationships. It uses a hybrid CSG and general sweep scheme for the
representation o f rigid solids. The representations are CSG-like trees whose leaves are generalized
cylinders. Like PADL (a geometric modeling system[7]) it allows variation in size, limited variation in
structure and variation in structural relationships o f the modeled objects. However, in ACRONYM ,
it may be difficult to design algorithms for computing properties o f objects.

The A lpha.l modeler allows the user to design an object by giving a sequence of commands. These
commands define the geometry of the object. At the same time, the result of each command can be
viewed in a separate window. Although specific Alpha_l commands are given here, we use them
to describe a more general philosophy of design. The underlying motivation is to exploit wherever
possible the geometric modeling system functions to provide the information required to support
computer vision applications.

2.2 Front Suspension Shock Linkage
To illustrate our modeling philosophy, we will use the design o f a front suspension shock linkage. This
part was designed by Samuel H. Drake at the University o f Utah, and was actually milled and used
in a small off-road vehicle built for the SAE Mini-Baja student competition.

The design is specified in such a way so as to facilitate the machining and automatic inspection o f
the part. The annotated specification is now given. First, an X window is provided so that the result
o f every geometry creating command can be viewed. A control window is also provided for viewing
transformations (see Figure 1).

% creates geometry for the front suspension shock linkage for Mini-Baja vehicle

grab xgen; - Grab an X window to display the results

The next commands bring in the (Lisp) definitions o f design features (e.g., pockets, holes, etc.) and
set up reference axes.

{
load features; - Load feature definitions
setSrfNorms(T);

Xref := XAxis; - Define coordinate axes
Yref := YAxis;

6

Figure 1: Design and Viewing Control Windows

Zref := ZAxis;
};

Now, a set o f bounding lines can be defined; the reverseO bj command is used to keep the normal
pointing into the shape (i.e., each bounding line has an orientation).

{
UpLinkConstLinel
UpLinkConstLine2
UpLinkConstLine3
UpLinkConstLine4
UpLinkConstLine5
UpLinkConstLine6
UpLinkConstLine7
UpLinkConstLine8
UpLinkConstLine9
UpLinkConstLinelO :

lineVertical(-0.5);
lineVertical(2.5);
lineHorizontal(0.75);
lineHorizontal(-0.75);
reverseObj(UneHorizontal(0.5));
UneHorizontal(-0.5);
lineHorizontal(0.44);
reverseObj(lineHorizontal(-0.44));
reverseObj(lineVertical(0.875));

:= lineVertical(1.5);

The following commands define the remaining points, arcs, and segments needed to specify the shape.
Note that the shape is defined in the x-y plane.

UpLinkConstArcl := arcRadTan2Lines(0.275, UpLinkConstLine7, UpLinkConstLine9)$
UpLinkConstArc2 := arcRadTan2Lines(0.275, UpLinkConstLine9, UpLinkConstLine8)$

UpLinkConstPtl := centerOfArc(UpLinkConstArcl);
UpLinkConstPt2 := centerOfArc(UpLinkConstArc2);

A

UpLinkConstCirl := circleCtrRad(UpLinkConstPtl, 0.585)$
UpLinkConstCir2 := circleCtrRad(UpLinkConstPt2 , 0.585)$

UpLinkConstPt3 := ptIntersect2Lines(UpLinkConstLine2, UpLinkConstLine5);
UpLinkConstPt4 := pt!ntersect2Lines(UpLinkConstLine5, UpLinkConstLinelO);

7

UpLinkConstPt5 := ptIntersect2Lines(UpLinkConstLine3, UpLinkConstLinel);

UpLinkConstLinell := linePtCircle(UpLinkConstPt4, UpLinkConstCirl, T);
UpLinkConstLinel2 := linePtCircle(UpLinkConstPt5, UpLinkConstCirl, nil);

UpLinkConstPt6 := ptIntersectCircleLine(UpLinkConstCirl, UpLinkConstLinell);
UpLinkConstPt7 := ptIntersectCircleLine(UpLinkConstCirl, UpLinkConstLinel2);

UpLinkConstArc3 := arcRadTan2Lines(0.275, UpLinkConstLine5, UpLinkConstLinell)$
UpLinkConstArc4 := arcEndCenterEnd(UpLinkConstPt6, UpLinkConstPtl, UpLinkConstPt7)§

UpLinkConstPt8 := ptIntersect2Lines(UpLinkConstLinel, UpLinkConstLine7);
UpLinkConstPt9 := ptIntersect2Lines(UpLinkConstLinel, UpLinkConstLine8);
UpLinkConstPtlO := ptIntersect2Lines(UpLinkConstLinel, UpLinkConstLine4);
UpLinkConstPtl 1 := ptIntersect2Lines(UpLinkConstLine6, UpLinkConstLinelO);

UpLinkConstLinel3 := linePtCircle(UpLinkConstPtlO, UpLinkConstCir2, T);
UpLinkConstLinel4 := HnePtCircle(UpLinkConstPtll, UpLinkConstCir2, nil);

UpLinkConstPtl2 := ptIntersectCircleLine(UpLinkConstCir2, UpLinkConstLinel3);
UpLinkConstPtl3 := ptIntersectCircleLine(UpLinkConstCir2, UpLinkConstLinel4);

UpLinkConstArc5 := arcEndCenterEnd(UpLinkConstPtl2, UpLinkConstPt2, UpLinkConstPtl3)$
UpLinkConstArc6 := arcRadTan2Lines(0.275, reverseObj(UpLinkConstLinel4), UpLinkConstLine6)$

UpLinkConstPtl4 := ptIntersect2Lines(UpLinkConstLine6, UpLinkConstLine2);

The ob ject’s profile can now be defined:

UpLinkProfilel := profile(UpLinkConstPt3, UpLinkConstArc3, - Create the 2D shape
UpLinkConstArc4, UpLinkConstPt5,
UpLinkConstPt8, UpLinkConstArcl,
UpLinkConstArc2, UpLinkConstPt9,
UpLinkConstPtlO, UpLinkConstArc5,
UpLinkConstArc6, UpLinkConstPtl4,
UpLinkConstPt3)$

Now we define the bounding z positions and extrude the shape in 3D:

UpLinkExPtl := pt(0.0, 0.0, 0.55); - Define the z extent and extrude the shape
UpLinkExPt2 := pt(0.0, 0.0, -0.55);

UpLinkShape := extrude(UpLinkProfilel, UpLinkExPtl, UpLinkExPt2, T, T)$

Thus, the basic shape is defined (see Figures 2 and 3). Next, we add a hole:

8

Figure 2: Surface Grid for Main Shape o f Linkage

UplinkFixHole2 := objTransform(hole(origin, 0.3125, 0.15, 0.0, T),
tx(1.325), tz(0.075))$ - Define a hole feature

We can view the hole shape with the profile shape as shown in Figures 4 and 5. However, to
actually put the hole through the profile surface, we need to perform a Boolean subtraction. First, we
store the two shapes (as defined by the variables UpLinkShape and UplinkFixHole2) to a file named
UpLinkTestOp. al.

dum palFile(list(UpLinkShape, UpLinkFixHole2), "UpLinkTestOp.al”)$

At the shell command level, we then perform the Boolean set operation which subtracts the hole from
the main shape:

cs > set_op < UpLinkTestOp.al > UpOut.al

The final object is shown in Figures 6 and 7.

2.3 M odel Synthesis

The geometric specification described in the previous section facilitates the direct extraction o f object
features. However, many modeling systems do not allow this. Therefore, the easiest way to provide

9

9

Figure 6: Surface Grid of Boolean Combined Surfaces

13

Figure 8: Orthogonal Rendering o f the Linkage

models for a 2D vision system is to render an image from the CAD model and provide that image as
the training set to the 2D vision system.

That is what we have done here. However, the viewing parameters must be carefully selected in
order to produce an orthogonal view o f the object. Figure 8 shows such a rendered version o f the
linkage. This constitutes the input, then, to the computer vision training techniques.

Note that this method also permits the analysis o f arbitrary surface geometries, whereas a syntactic
approach to discovering surface features in the Alpha_l specification, may be quite complicated.

15

The knowledge-base component o f CBCV is written in FROBS (FRames + OBjectS) which is an
object-oriented frames package that runs on top o f CommonLisp and provides:

• object oriented programming

• frame based programming

• daemons ‘

• rule based programming.

An overview o f the system is given here; for more details, see the FROBS Manual[17].

3.1 O verview o f FR O B S
The basic building block o f the FROBS package is called a module. Modules consist o f a class
FROB and all o f its associated methods. This provides for total method and data access hiding
with no distinction between methods and slots. The organization o f class FROBs can be viewed as
a tree structure, although more complicated schema-type structures are possible through multiple
inheritance. FROB class instances are leaves o f the tree.

The class frob is used to define the structure o f instance frobs o f that class. It is also the frob that
d aem on s and m e th o d s are defined over. Inheritance o f m eth od s is done through the class frobs. A
special feature o f the class frob is that it is an instance of itself. It can be used like any other instance
o f the class. Figure 9 shows how an algorithm class FROB and a subclass FROB are defined.

FROBS are used to build both the knowledge-based vision system and the application system it
synthesizes. This allows templates in the knowledge-based system to be directly used in the application
system. The concept o f logical sensors is implemented easily using objects to form logical sensors[14].
Class FROBS represent logical sensor templates to be instantiated for application system synthesis.

Most importantly, the FROBS package provides forward chaining rules as well as slot daemons.
Slot daemons are useful for automatic data consistency checking and hidden slot calculations. The
forward chaining rules provide the mechanism needed to create the knowledge base.

3 The FROBS Knowledge and Rule Base

(def-class algorithm nil
:slots (name

size
language
machine •

(def-class feature-calculator ({class algorithm})
:slots (feature-type

focus-type))

Figure 9: Example of FROB Class Definition

16

(def-rule select-lff
:type ((?req requirements))
:prem((not (member ’Iff (applications ?req)))

(equal ’recognition (task ?req))) .
:conc ((assert-val ?req ’applications

(cons ’Iff (applications ?req)))
(make class system-specs

:task ’recognizer '
:method ’Iff
:time (time ?req)
:space (space ?req)
:accuracy (accuracy ?req))))

Figure 10: A FROB Forward Chaining Rule

3.1.1 System Support

The knowledge-based system must have utilities for supporting the networking o f logical sensors and
objects. These utilities provide the foundation from which the system is built. Higher level utilities are
built on top o f lower level ones for sophisticated system operations. The lowest level utility functions
should have a maximal amount o f flexibility since it is not known what or how more powerful constructs
built upon them will be used. In the prototype system they are implemented as methods attached
to FROB classes which define major components o f the system. These classes and their methods
form the templates from which application systems are synthesized. The application specific rules
use knowledge o f these templates to apply the line interpretation rules by relying on the transparent
nature of the methods to handle lower level hardware or operating system specific tasks.

An example is the FROB representing the class o f cameras. Knowledge about operating this class
o f camera is represented in a “run” method which is local to the class. It executes operating system
commands which are not o f concern to the object using the method. A “ run” method is also provided
to other sensors which have other operating system commands which are transparent to the caller of
the method.

3.1.2 Language Issues

Since the application system is created from FROBS in the same environment as the knowledge-based
system, the application system runs in the Common Lisp environment. To require that all o f the
algorithms in the system be written in Common Lisp would be a severe restriction to its flexibility.
The object-based approach allows algorithms written in any language to be incorporated into the
system as an algorithm object.

Methods are used to run the algorithm and provide it with the necessary I /O . Since the internal
representation o f the object is transparent to I /O from the outside, algorithms written in any language
can be incorporated into the system as long as there are low level utilities in the system to support
the methods which run them.

17

When designing a CBCV vision system using objects, there must be a well defined way for one object
sensor to pass information to another. Logical sensors address this problem in an abstract sense,
but a specific protocol must be chosen which has the flexibility to accept all kinds o f data. The
protocol is represented in the slots and methods o f the logical sensor objects. There must be a way
to pass information from machine to machine as well as an efficient way to pass information in the
Lisp environment itself. We separate the two as different types o f information passing, file piping and
S-expression passing. •

Passing S-expressions between objects is a trivial task. All that is required is a slot in the algorithm
object which stores the expression to be passed. This slot is read by any object requiring the expression
as input. To perform file piping on any host in the system, the simplest approach is to use the Unix
pipe facility which allows executables to work as filters passing their output to the next program in
the pipe. This is the easiest implementation since it is supported by the remote shell command “rsh”
which is used to perform tasks on remote machines. It requires, however, that most programs written
for the knowledge-based system be written in filter form on machine supporting Unix. This is not an
unreasonable requirement since Unix is a widely supported operating system and it is good modular
style to have a system designed with filters. Other programs can be run as well as filters although it
is up to the user to supply names and flags in slots o f the object which contains the program. Only
filters are handled “automatically” by the piping method.

At some point in the CB CV system’s operation, information from a remote machine will have to be
read by an object in the Lisp environment or vice-versa. This requires some special processing on the
part o f the methods performing the pipe. To send the S-expression output o f a Lisp algorithm to a non
Lisp algorithm, certain conventions must be adopted. The program receiving the S-expression must
know that its input is in such a form. Each algorithm in the knowledge base must have information
regarding what format it expects its input to be in and what format is produced as output. This is done
with methods using slot information in the algorithm object. These methods determine what format
conversions are necessary for information piped between algorithms. Information transfer between
machines is performed when objects have slots indicating that their executables are on different
machines.

3.1.3 Object Communication Protocol

4 2D Capabilities Applications
Although the general goal o f CAD-Based Computer Vision is to recover the 3D nature o f the objects
in a scene, many tasks can be handled using 2D techniques. This amounts to extracting regions of
interest from the 2D image and analyzing the features o f those regions. There are many approaches
to this problem, and we present two simple techniques which are available in CBCV: global feature
matching and Local Feature Focus.

Both techniques require that objects in the image be separated from the background and that
distinct connected regions have unique labels. Then, features are computed for each region. Global
features are derived from some measure of the entire set of pixels o f the region; for example, area is a
global feature. Local features are those which are restricted in spatial extent and only require a small
percentage o f pixels from the region; corners and holes are examples of local features.

Figure 11 shows the steps involved in applying these matching techniques. The training data is
used to construct a model of the object under consideration. As indicated earlier, such a model is
usually based on visual features o f the object; other kinds o f features could be used, such as weight
or surface roughness, but those will not be considered here. The standard approach to get the visual
features o f the object is to examine several views (digital images) o f the object. These then constitute
the training data, and after the features of the object are extracted, then some statistical analysis
o f the features is performed. Robust features are then selected to represent the object; that is, the
mean values o f the features are determined as well as their variances. Finally, some sort of comparison
measure is selected; this includes both distance functions (e.g., Euclidean, Mahalanobis, Manhattan),
as well as similarity measures (e.g., the correlation coefficient).

The images used as training data can be obtained several ways. Sometimes an actual part is
available and images are taken from the camera and image acquisition system. When a CAD model
is available, the test images can be produced by rendering several views of the object. Alternatively,
one view is sufficient if the statistical properties of the feature calculation processes are known.

It may be possible to determine the vision model directly from the CAD model without resorting
to the use o f images. For example, the surface area o f a face can be calculated from the definition of
the profile curve. When using manufacturing features such as pockets or holes, their dimensions are
usually part o f the definition o f the part. In this case, ideal values are obtained, and it is necessary
to take into account the error introduced by the manufacturing process and the image acquisition
system.

4.1 Global Feature Matching

The feature class is defined as a very simple class consisting o f these slots:

• name: the name of the feature,

• command: the executable command line, and

• features: a list comprised of:

- a select switch (T or NIL)
- the mean value o f the feature, and
- the variance o f the feature.

The FR O B definition for this is:

19

6

(def-class feature nil
:slots (name ;; Feature name.

command ;; Command line for executable,
features ;; Feature list (T /N IL mean var).

)) '

Once the fea tu re class has been defined, individual features can be defined. For example, the area
fea tu re is defined as: ■

(def-class area class feature
:init ((nil (name ’area)

(command ’’p a t h / area”)))
)

Thus, area is a fea ture and has the name ’area’ and is invoked by running ’p a t h / area’ at the shell level.
O f course, ’p a th ’ must be expanded into the correct path to the area binary file.

Other features are defined similarly: aspect, d ia m e te r , n l , n2, n3, n4, n5, n6, n l , p e r im e te r and
th in n ess . These frames comprise the knowledge (at this level of the IS A hierarchy) about features.
However, to create executable instances requires the definition of the ’make’ method, for example:

(def-method (class area make) ()
(let ((instance (new-instance Sself)))

instance))

defines a method for making instances of the area feature.
Now we can define useful methods which operate on features. The most basic operation is to run

the feature operator on an image to produce a feature value for each connected region in the image:

(def-method (class feature run) (inputdata)
(let ((stream (start-feature-process inputdata (command Sself))))

(unwind-protect
(read-feature-output stream)
(close stream))))

The s ta r t - fea tu re -process function takes inputdata as the segmented image and passes it to the feature
command line. The output is then piped into the variable s trea m and is read from there by the
rea d - fea tu re -o u tp u t function which is returned as the value of the method.

For example, to run the area feature on the image scene, img, the following command is issued:

(run {class area} “scene.img”)

4.1.1 A n Exam ple

We now give an example of CBCV using the global feature matching technique to inspect the linkage.
The training command is given first:

(setq *r* (make-recognizer :hint ’global :training-data *crocfiles*))

20

where *crocfiles* is a FROB variable that has the name of the training files (see Figures 12, 13 and
14). The result is an algorithm:

ALGORITHM 0 has the following values:
(ALGORITHM ALGORITHM) =* GLOBAL 0
(ALGORITHM HINT) =► GLOBAL
(ALGORITHM OCCLUSION) =► NIL
(ALGORITHM SPACE) =► NIL
(ALGORITHM TIME) =► NIL .
(ALGORITHM NAME) => NIL

All features are tested for robustness, and in this case, only perimeter, n7, diameter, and area survive:

THINNESS 2 has the following values:
(FEATURE NAME) =► THINNESS
(FEATURE COMMAND) ” A /thinness”
(FEATURE FEATURES) =► NIL

PERIM ETER 2 has the following values:
(FEATURE NAME) =► PERIM ETER
(FEATURE COMMAND) =► ” A/perim eter”
(FEATURE FEATURES) =► ((T 824.333333333333 4016.88888888889))

N7 2 has the following values:
(FEATURE NAME) =► N7
(FEATURE COMMAND) => ” A /m om ents — A /n 7”
(FEATURE FEATURES) =► ((T -1.17363033333333 2.85431257070555))

N6 2 has the following values:
(FEATURE NAME) =► N6
(FEATURE COMMAND) => ” A /m om en ts— A /n 6”
(FEATURE FEATURES) =► NIL

N5 2 has the following values:
(FEATURE NAME) =► N5
(FEATURE COMMAND) =>■ ” A /m om en ts— A /n 5”
(FEATURE FEATURES) =► NIL

N4 2 has the following values:
(FEATURE NAME) => N4
(FEATURE COMMAND) => ” A /m om en ts— A /n 4”
(FEATURE FEATURES) =► NIL

21

N3 2 has the following values:
(FEATURE NAME) => N3
(FEATURE COMMAND) => ” A /m om ents — A /n 3”
(FEATURE FEATURES) => NIL

N2 2 has the following values:
(FEATURE NAME) => N2
(FEATURE COMMAND) => ” A /m om ents — A /n2”
(FEATURE FEATURES) => NIL

N 1 2 has the following values:
(FEATURE NAME) => N1
(FEATURE COMMAND) => ” A /m om ents — A /n l”
(FEATURE FEATURES) => NIL

DIAM ETER 2 has the following values:
(FEATURE NAME) => DIAMETER
(FEATURE COMMAND) => ” A /diam eter”
(FEATURE FEATURES) => ((T 285.096666666667 10.4814888888889))

ASPECT 2 has the following values:
(FEATURE NAME) => ASPECT
(FEATURE COMMAND) => ” A /aspect”
(FEATURE FEATURES) => NIL

AREA 4 has the following values:
(FEATURE NAME) => AREA
(FEATURE COMMAND) => ” A /area”
(FEATURE FEATURES) => ((T 12527.0 1248.66666666667))

Next, the global matcher can be run on a scene image (see Figure 15):

(match *r* :image-data “scene-image.img”))

Then the results of the global analysis are reported:

Feature match success: ’’scenel-seg.im g”
T

4.2 Local Feature M atch in g

The Local Feature Focus method proposed by Bolles[3] is a robust 2D shape recognition and localiza
tion scheme. The method is organized as follows:

• Model Building

22

1. Enumeration of potentially useful features

2. Location of structurally equivalent features

3. Enumeration of secondary feature groups

4. Selection of secondary feature groups ■

5. Ranking of focus features

• Recognition and Localization

1. Get scene features

2. Match focus graph

3. Generate hypothesis (including pose transformation)

4. Verify match

4.2.1 A n E x a m p l e

We will now use this technique to locate the linkage part. The CBCV system invokes a sequence of
filters to obtain the features from the CAD image of the object (see Figure 16). First, a boundary file
is produced (see Figure 17). Next, the center of mass of the object is found: (104.326981 104.861526);
this is used to produce feature descriptions located with respect to the object’s center of mass. The
corners are found next:

18 66 90.00045.000
174 79 90.000135.000
174 131 90.000225.000
18 144 90.00(15.000
18 129 90.00045.000
18 82 90.00(15.000

#

From this information, the feature types are determined:

0 circular hole 3 X y diameter
1 noncircular hole 3 X y diameter
2 external corner 4 X y angle orientation
3 internal corner 4 X y angle orientation

«

0 0 diameter 0.00
1 0 diameter 0.00
1 1 diameter 19.35
2 0 angle 0.00

2 1 angle 90.00

3 0 angle 0.00

23

c

2 -86.33 -38.86 90.00 -45.00

2 69.67 -25.86 90.00 -135.00

2 69.67 26.14 90.00 -225.00

2 -86.33 39.14 90.00 45.00

2 -86.33 24.14 90.00 -45.00

2 -86.33 -22.86 90.00 45.00

1 9.17 0.45 19.35 0.00

From this information, the focus features are determined:

This then constitutes the model.
Given a scene, as shown in Figure 18, the system must discover the transformation. The features

in the scene are determined in much the same way as for the model image, and are as follows:

circular hole

1 noncircular hole 3

2 external corner 4

3 internal corner 4

x y diameter

x y diameter

x y angle orientation

x y angle orientation

0 0 diameter 0 00

1 0 diameter 0 00

1 1 diameter 19 35

2 0 angle 0 00

2 1 angle 90 00

3 0 angle 0 00

2 1 36 48 -85 03 97.13 -138.81

2 1 26 48 68 97 97.13 -228.81
2 1 -24 52 69 97 90.00 45.00
2 1 -40 52 -84 03 90.00 -45.00

2 1 -24 52 -83 03 97.13 -138.81

2 1 20 48 -85 03 97.13 -41.19

1 1 0 01 8 85 21.89 0.00

After matching model features to scene features, the system identifies the transformation, and
produces the match shown in Figure 19.

24

Figure 13: Training Image 2

Figure 17: CAD Model Boundary Image

30

Figure 18: Scene Image

31

Figure 20: Example image

5 F ilters
In this section we give brief descriptions of the filters available for image analysis and manipulation.
Examples are given to illustrate each. The examples will be given in terms of the image shown in
Figure 20. (This is a 64x64 version of the original 512x512 image shown in Figure 22.)

5.1 A R E A
The area filter takes in an image that has been run through segment and outputs the area for each
region in the segmented image. The output is organized with one area per line with the first line the
area of region 1, the second line the area of region 2, etc. The output for the region in Figure 20 is:

626

5.2 A SP E C T
The aspect filter produces the aspect ratio for each object in a segmented image and outputs them
one per line. The output for the region in Figure 20 is:

2 .571429

5.3 BF
The bf filter implements a boundary following routine and given a segmented image as input, it
outputs:

* x y c l c2 c3 . . . cn

for each region found, where the plus symbol signifies an exterior boundary, the boundary starts at
(x,y) and the ci’s are the chain codes of the boundary. For every hole within a connected region, the
output is:

x y c l c2 c3 . . . cn

The output for the region in Figure 20 is:

Thus, we see that there is one region and its external boundary is given after the , while there is one
hole within that region and its boundary is given after the # .

5.4 CENTER_OF_MASS
The center_of_mass filter takes in a segmented image and returns the (x,y) location of the center of
mass for each region, one pair of numbers per line. The output for the region in Figure 20 is:

15.001597 27 .215654

Thus, the x mean is 15.001597, while the y mean is 27.215654.

5.5 C O R N E R
The corner filter takes in the output of the bf filter and produces a list of all the corners of each region,
one set of corners per line. The output includes:

x y theta alpha

where (x,y) is the location of the corner, theta gives the angle of the corner, and alpha gives the
orientation of the corner (i.e., the direction of the bisector of the angle). The output for the region in
Figure 20 is:

*
9 4 116,.565 -6 3 . 435

22 5 90,.000 -1 3 5 . 000
25 57 90,.000 -2 2 5 .,000
22 57 90..000 45.,000

8 57 90,.000 -2 2 5 . 000
5 57 90,.000 45..000
8 6 126..870 0,,000

12 27 243,.435 206..565
18 27 243..435 -2 6 .. 56E

This indicates that there are 7 external boundary corners (the first and last are actually both generated
by the real corner, as can be seen by the angle assigned to each corner), and there are two corners
found in the hole boundary (these are artifacts of the small image size).

5.6 D IA M E T E R
The diameter filter takes in a segmented image and produces the greatest cross section of each region
and outputs them one per line. The output for the region in Figure 20 is:

64.11 •

This is the longest chord across the object.

5.7 FIX -IM A G E “
This shell script massages the IKS version image from the VICOM into a usable format for the rest
of the filters; in particular, it is:

iwindow -r60 -c60 -w380 -d380 I \

threshold S3 I \

iffmap -t /n/sunset/c/cs537/cbcv/lib/fliplut I \

segment

Thus, this is a hardwired set of transformations from VICOM to segmented images.
As an example, given the image shown in Figure 21 brought in by get-image, then fix-image

produces the image shown in Figure 22.

5.8 G ET-IM AG E
This shell script calls up the VICOM to obtain an image from the Fairchild camera in the CED lab.
It returns a 512x512 IKS image and requires that the user has an account on the croc vax. The script
is:

rsh croc /n/croc/u/tch/vsh/real_stuff/hp/get-image

image 512 512 < /n./croc/tmp/scene. img > $1

See Figure 21 for an image acquired with get-image.

5.9 HOLE .FE A T U R E S
The hole_features filter takes as input either a segmented image (or the output from bf with the -cc
option) and produces a set of features for each hole in each region. For each hole the the output is:

center_of_mass diameter area perimeter

The output for the region in Figure 20 is:

15.000 24.837 9.327 49 20

Thus, the center of the hole is at x = 15.0 and y — 24.837, while the diameter is 9.327, the area is 49,
and the perimeter is 20.

35

Figure 23: Linear Approximations to the Shape

5.10 L IN A P P
The linapp filter takes in the output of bf and generates a sequence of linear segment approximations
to the boundary. Each line of output is:

xl yl x2 y2

The output for the region in Figure 20 is:

*
9 4 22 5

22 5 25 34

25 34 25 57

25 57 22 57

22 57 22 36

22 36 18 32

18 32 9 34

9 34 8 57

8 57 5 57

5 57 9 4

13 22 12 27

12 27 18 27

18 27 18 23

18 23 13 22

Thus, there are 10 segments generated on the external boundary and 4 on the internal hole boundary.
Figure 23 shows the segments overlaid on the original scene.

38

5.11 M O M EN TS
This filter takes in a segmented image and produces the following moments: (ioo, Hoi> A*io> 1 , (i2 0 ,
H0 2 , H2 1 1 /*12, H03, H30, where

fip q = x py qd x d y ,
Jx Jy

The output for the region in Figure 20 is:

626.000000 22401.000000 9391.000000 335895.000000 165175.000000 936743.000000

5707821.000000 14036605.000000 42547212.000000 3206647.000000

Thus, the area is 626, for example.

5.12 N1
The n l filter takes in a segmented image and for each region produces the following invariant moment:

Vl = *720 + %2

where
t*pq

Vri = “ T"
Wo

and

The output for the region in Figure 20 is:

0.406845

5.13 N2
The n2 filter takes in a segmented image and for each region produces the following invariant moment:

¥>2 = (»?20 - no2)2 + W n

where

t* oo
and

The output for the region in Figure 20 is:

0.080006

39

5.14 N3
The n3 filter takes in a segmented image and for each region produces the following invariant moment:

V3 = (*?30 — 3Vl2)2 + (3t?21 — % 3)2 #

where
_ _ Ppq
Vpi ~ ~7T Moo

and ’

T - £ ± * + .
The output for the region in Figure 20 is:

0.000029

5.15 N4
The n4 filter takes in a segmented image and for each region produces the following invariant moment:

^4 = (t)30 + V 1 2) 2 + (V21 + V0 3) 2

where
77 - 'IPI ~

(*00

and

r = ^ + i

The output for the region in Figure 20 is:

0.007399

5.16 N5
The n5 filter takes in a segmented image and for each region produces the following invariant moment:

V>5 = (»?30 —3»7l2)(»730+»7l2) [(*730 + *7l2)2 — 3(^21 + »703) 2] +(3r?21 — % 3)(% l + % 3) [3(7730 + H n) 2 — (*721 + % 3)2]

where
77 - "pi ~ ,,7/*00

and

T = E ± ! + i
The output for the region in Figure 20 is:

0 . 0 0 0 0 0 3

40

9

The n6 filter takes in a segmented image and for each region produces the following invariant moment:

^6 = (f)20 — V0 2) [(*730 + V 1 2) 2 — (*721 + »703) 2] + 4r7n(T730 + T712)(T721 + 7703)

where

A'oo
and •

. . . . 7=^ +1
The output for the region in Figure 20 is:

0 .002093

5.18 N7
The n7 filter takes in a segmented image and for each region produces the following invariant moment:

<P7 = (3r;i2-»730)(»730 + »7l2) [(*730 + »7l2)2 — 3(7721 + 7703) 2] + (37712- 7703X 7721+ 7703) [3(7730 + 7712)2 — (7721 + 7703)2]

where

Voo
and

The output for the region in Figure 20 is:

0 .000041

5.19 O RIENTATION
The orientation filter takes a segmented image as input and for each region outputs the difference
angle between the y-axis and the principle axis of the region. The output for the region in Figure 20
is:

-8 9 .9 1 9 4 7

5.20 PE R IM E T E R
The perimeter filter takes in a segmented image and for each region produces on output the perimeter
of the region, one per line. The output for the region in Figure 20 is:

5.21 RLE2IFF
The rle2iff filter takes as input an rle format image and produces on output an IKS image.

5.22 ROTATE .
The rotate filter takes a segmented image as input and for each region rotates the region the specified
angle. It translates it the specified amount in x and y after centering in the image. The output is a
similar-sized IKS image. .

5.23 T H IN N E SS
The thinness filter takes a segmented image as input and for each region outputs the thinness measure
of the region. The output for the region in Figure 20 is:

81 .591057

42

R eferences
[1] R.E. Barnhill and R.F. Riesenfeld eds. C o m p u t e r A id e d G eo m e t r i c Des ign . Academic Press, New

York, 1974.

[2] B. Bhanu and C.C. Ho. CAGD-Based 3-D Object Representations for Computer Vision. I E E E
C o mp u te r , 20(8):19-36, August 1987.

[3] R.C. Bolles and R.A. Cain. Recognizing and Locating Partially Visible Objects: The Local-
Feature-Focus Method. Robo t i c s Research, l(3):57-82, 1982.

[4] R.C. Bolles and P. Horaud. 3DPO: A Three-Dimensional Part Orientation System. Robo t i cs
Research, 5(3):3-26, 1986.

[5] R. Brooks, R. Greiner, and T.O. Binford. The ACRONYM Model Based Vision System. In Proc.
6th IJ C A I , pages 105-113, Tokyo, 1979.

[6] R.A. Brooks. Symbolic Reasoning Among 3-D Models and 2-D Images. A r t i f i c i a l Intel l igence,
17:285-348, 1981.

[7] C.M. Brown. PADL-2: A Technical Summary. I E E E C o m p u t e r Gra ph ic s and App l i ca t i ons ,
69-84, March 1982.

[8] Elizabeth Cobb. De s ig n o f Sculp tured Surface s Using the B-Sp l ine Rep re sen ta t i o n . PhD thesis,
Univserity of Utah, Salt Lake City, Utah, June 1984.

[9] E. Cohen. Some Mathematical Tools for a Modeler’s Workbench. I E E E C o m p u t e r Graph ic s and
A pp l i ca t i ons , 63-66, October 1983.

[10] E. Cohen, T. Lyche, and R.F. Riesenfeld. Discrete B-Splines and Subdivision Techniques in
Computer Aided Geometric design and Computer Graphics. C o m p u t e r G rap h ic s and Image
Process ing , 14(2):87—111, October 1980.

[11] C. Goad. Special Purpose, Automatic Programming for 3D Model-Based Vision. In Proceedings
o f the D A R P A Image Under s tand ing Workshop, pages 94-104, DARPA, 1983.

[12] C.D. Hansen. C A G D - B a s e d C o m p u t e r Vision: The A u t o m a t i c Gene ra t i o n o f Recogni t ion S t r a t e
gies. PhD thesis, The University of Utah, Salt Lake City, Utah, July 1988.

[13] Charles D. Hansen and Thomas C. Henderson. CAGD-Based Computer Vision. I E E E Tran sac
t i ons on P a t t e r n A n a ly s i s an d Mach i ne Inte l l igence , PAM I-11(10):1181-1193, 1989.

[14] Thomas C. Henderson, Eliot Weitz, Chuck Hansen, and Amar Mitiche. Multisensor Knowledge
Systems: Interpreting 3D Structure. In t e rn a t i ona l Journa l o f Robot i cs Research, 7(6): 114—137,
1988.

[15] C.C. Ho. C A G D - B a s e d S -D Objec t Re pre sen ta t i on s f o r C o m p u t e r Vision. Master’s thesis, Uni
versity of Utah, Salt Lake City, Utah, June 1987.

[16] K. Ikeuchi. Model-Based Interpretation of Range Imagery. In Proceedings o f the D A R P A Image
U nders tan d ing Workshop, pages 321-339, DARPA, 1987.

[17] Eric Muehle. F R O B S Manua l . Technical Report PASS-note-86-11, University of Utah, October
1986.

43

