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Abstract: We present a semantic theory that allows us to discuss the 
semantics of indeterminate operators in a dataflow network. The assumption is 
made that the language in which the indeterminate operators are written has a 
construct that allows for the testing of availability of data on input lines. We 
then show that indeterminacy arises through the use of such an operator 
together with the fact that communication channels produce unpredictable 
delays in the transmission of data. Our scheme is to use special tokens called 
hiatons to represent delays as measured locally, and then to filter out the 
hiatons to obtain ordinary streams. This filtering process produces 
indeterminate behavior at the level of ordinary streams. We indicate how this 
can be justified using the formalism of abstract interpretation. We show that a 
particular fairness anomaly does not arise. 
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1. Introduction 

In this paper we discuss a new approach to the semantics of dataflow networks 

containing indeterminate operators. The major advantages of our formalism are: (i) we 

are able to derive the denotations of indeterminate operators given their implementation 

in terms of an imperative language resembling that of [Kahn 771, (ii) we are able to 

formally realise the assertion that indeterminacy arises through arbitrary delay in the 

arrival of data at the nodes of a network, (iii) we are able to recover the standard view of 

indeterminate dataflow networks through the use of abstract interpretation, (iv) we are 

able to reason about fairness properties of certain indeterminate operators and (v) we do 

not need to introduce an explicit oracle as an additional construct. 

The earliest investigation into the formal semantics of such networks was carried out by 

Kahn [Kahn 74] who showed that if the communication between the nodes was restricted 

to reading from input channels and writing onto output channels then the network would 

be determinate. [Keller 78] proposed a new formalism in which nodes are allowed to test 

for the availability of data on their input arcs, thus leading to the possibility that some of 

the nodes are indeterminate when viewed as acting on streams of data tokens. We give 

a formal semantics to this extended Kahn-Keller language. 

Our formalism incorporates two recent developments. The first is the use of a special 

token called a hiaton [Park 82] to represent a delay in the propagation of data. We shall 

use the symbol l' to represent a hiaton. Thus, a typical stream will contain data values 

interspersed with 1'S. The interpretation of such a stream will be clarified in the next 

paragraph. The virtue of introducing such a special token is that we can give definitions 

of indeterminate operators on streams as determinate functions on T-enriched streams. 

The second recent development that we make use of is the idea of an "abstract" 

interpretation [Mycroft 81] [Mishra 84]. The key idea here is to map the semantic domain 
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onto a (in some suitable sense) simplified domain and to reinterpret the language 

constructs in terms of the simplified domain. The technical details of abstract 

interpretation will be discussed in the next section. We will use abstract interpretations 

in a slightly different way than it has traditionally been used. In our case the original 

domain will be the domain of T-enriched streams (T-streams) and the simplified domain 

will be the standard domain of streams. Via the abstraction process, the determinate 

functions over the domain of T-streams are reinterpreted as indeterminate operators over 

the domain of standard streams. 

In interpreting the T symbols we make the following assumptions. Each node has an 

internal clock which is not synchronized in any way with the internal clock of any other 

node. The ticks of the clocks mark time periods during which the basic communication 

actions occur. These basic actions are: read from an input channel, write onto an output 

channel and test a channel for availability of data. Thus a T on the input stream would 

represent the non-appearance of data on that channel during a cycle. The T symbols 

thus convey information about the relative rates of appearance of data at a particular 

node. The nodes that we model are perfectly determinate with respect to T-enriched 

streams, as no additional indeterminate primitives, such as internal choice are allowed. 

The meaning of a particular node is defined by a function from T-enriched streams to 

streams, as the only explicit indeterminate behavior that we incorporate at this level is 

that the channels between nodes insert T symbols into the output stream in an 

unpredictable way. Thus, the T symbols cannot be used to obtain effective 

synchronization between different nodes. One novelty of our approach is that we have 

succeeded in incorporating timing considerations into our theory without having to 

introduce any global clock. 
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The formalism we present may be visualized through the following diagram: 

OUR VIEW: 

STANDARD VIEW: 

NODES DATA PATHS 
are determinate are indeterminate 

NODES 

I 
I ABSTRACTION (Ignore ~s) 
I 

\11 
DATA PATHS 

are indeterminate are determinate 
(in fact are identity) 

The rest of the paper is organized in the following way. In the next section we discuss 

the basic formalism of abstract interpretation. In section 3 we introduce a simple 

programming language for writing implementations of the nodes and we give its 

semantics in terms of ~-enriched streams. In the following section we abstract this 

interpretation to the domain of ordinary streams and show how indeterminacy arises. 

The remaining sections are devoted to certain applications particularly to the analysis of 

fairness. In this context we are able to show that a particular fairness anomaly does not 

arise. 

2. Abstract Interpretation 

Abstract interpretation provides a general framework for the static inference of 

properties of programs. Typically such inference is of use in program optimization, 

transformation and (weak) verification (i.e. where termination issues are not addressed). 

Abstract interpretation was first developed by Cousot & Cousot [Cousot 77, Cousot 81] to 

aid in the analysis of imperative programs. In this setting programs are modelled as 

flowcharts; static inference is expressed as an abstraction of the "collecting 

interpretation" - the natural lifting of the standard semantics from values to sets of 

values. 
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In developing the abstract interpretation of applicative programs, Mycroft [Mycroft 

81, Mycroft 83] observed that the framework of Cousot & Cousot was useful only for 

inference schemes which were weakly correct; termination cannot be expressed in their 

framework. In place of the powerset based formulation as used by the Cousots, a 

powerdomain based formulation is necessary. This view was further developed in [Mishra 

84] where the abstract interpretation of non-flat "stream" domains was considered. 

Our use of abstract interpretation is rather different. We use the formalism to show 

that standard stream based programming with indeterminate operators can be viewed as 

an approximation to programming with 1'-streams, which incorporate a certain degree of 

timing information. This allows us to pinpoint the phenomenon of indeterminacy as 

arising from ignoring the explicit timing information and from the fact that the data lines 

introduce randomness into the relative speeds of transmission of data. Furthermore, our 

formalism does not introduce oracles as an additional construct, as the abstraction map 

serves the role of an oracle. Among the advantages of our approach is that it articulates 

in a precise fashion the relation between indeterminacy and imprecise information about 

the computational details. This has frequently been expressed in the literature in an 

intuitive fashion but has never before captured preCisely. Another benefit is that the 

introduction of explicit delay allows us to reason about fairness, something which is very 

difficult otherwise. 

The domains of interest in the present work are the domain of ,,-streams, written TS, 

and the domain of streams. These can be defined as: 
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TS = streaa[integers + T] 

S = stream[integers] 
The connection between the two is established by: 

Ab: TS --> S 
where 
Ab: nil = nil 
Ab: T"X = Abs:x 
(Here, and in what follows, " represents. the infix stream constructor, 
"followedby" or "cons".) 

The domain of ordinary streams over a set of data values V, is the solution of the 

recursive domain equation 

S = []+V+(V x S) 

and has the usual prefix ordering. The domain of T-streams is the solution of the 

recursive domain equation 

TS = []+(V U {T })+((V U {T}) x TS) 

once again with the prefix ordering. It is easy to see that the function Ab defined above 

is a continuous map from TS to S. 

We cannot use the published accounts of abstract interpretation for our analysis, since 

the best results available apply only to domains of finite height [Mycroft 83]. We use 

instead the formalism of [Panangaden 84], which is applicable for general domains. This 

formalism uses categories, rather than complete partial orders, to model computability 

concepts. The idea is that the existence of a morphism from an object X to another 

object Y expresses the fact that X might "improve" to Y. However, approximation is no 

longer antisymmetric, as there might be morphisms in both directions between two 

objects. This broadening of the concept of approximation is necessary when dealing with 

sets of values. The fact that we no longer have a partial order may appear to deprive us 

of the concept of limits, based as it is on the notion of a least upper bound; in categories 
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we can, however, make use of the theory of direct limits [Arbib 75] to serve this purpose. 

Using morphisms to express approximation between objects allows us to distinguish 

different ways in which two objects may approximate each other, a distinction crucial to 

the formalism. Further details may be found in [Panangaden 84]. 

Given domains 0 and E and continuous functions from 0 to E, we wish to extend these 

functions to "sets of values" in such a way that the extension process (lifting) is 

continuous and the lifted functions are also continuous. The first step is to redefine the 

original functions so that they now run from 0 X ? to 0 X E, where ? is the one point 

domain. Given a function f:O -- > E we define f9:0 X ? -- > 0 X E by 

f9«d,?»=<d,f(d». Clearly f9 is continuous and monotonic iff f is. We now define the 

category PG(O.?); the objects are all subsets of 0 X ?, the morphisms are increasing maps. 

Similarly, we define the category PG(O,E). A function f9 from 0 X ? to 0 X E is now 

extended to a functor F from PG(O,?) to PG(O,E) in the following way: 

1. The action of F on an object X is 
F(X) = {<d,f(d»I<d,?>IX} 
2. The action of F on a morphism Ie from X to Y is to yield a morphism 
F(Ie) from F(X) to F(Y) defined by: 
if Ie«d.?»=<d'.?> then F(K)«d,f(d»)=<d',f(d'». 

The domains 0 X ? and 0 X E can be embedded in the obvious way into PG(O.?) and 

PG(O,E) respectively. In [Panangaden 84J it is shown that these embedding are 

continuous. 

An abstract interpretation can now be defined in the following way. First "simplified" 

domains A and B are introduced, then PG(A.?) PG(A,B) are constructed in the same way as 

before. Now the simplification is expressed via abstraction maps 'Y 1 and 'Y 2 from PG(O.?) 

to PG(A.?) and from PG(O,E) to PG(A,B) respectively. The requirements for an abstraction 

map to be acceptable are that if a morphism exists from X to Y then it should be 

possible to find a morphism from 'Y 1,2(X) to 'Y 1.2 (Y). This is a slightly weaker condition 
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than requiring them to be functors. The abstraction maps should also satisfy a "weak" 

continuity requirement which is explained in [Panangaden 84]. 

In our application we will use TS and S as the domains 0 and E respectively and S for 

both A and B. Thus our abstraction is to ignore the timing information contained' in 

'T-streams. In section 4 we briefly discuss the formalism sketched in this section as it 

applies to streams and 'T-streams. 

3. The Language 

We present a simple imperative language for writing implementations of the nodes 

(operators) in a dataflow network. The language is essentially the same as the language 

presented in [Kahn 74] with the addition of a construct called "poll" [Keller 78] which tests' 

for the availability of data on the input channels. The communication between nodes is 

via input and output channels. These channels are viewed as unbounded queues. A 

program for a particular node contains a declaration of the input and output channels. 

The interaction between a node and its channels is carried out by read, poll and write 

primitives. A read operation on a channel removes a token from that channel and puts 

the token in the local store. Similarly, a write operation takes a token from the local 

store and copies it onto the output channel. The poll operation on an input channel is 

boolean valued and returns false when there is no token available, in other words, when 

the first item in the input stream is a hiaton. We assume that there is always at least a 

single hiaton on every input channel to start with. The remaining language primitives 

allow one to manipulate the local store and construct arithmetic and logical expressions 

in the standard fashion. 

The syntax of the language is given by the following grammar: 

<program>::=<declarations><body> 
<declarations>: : =input channel: <identifier> I output channel : <identifier> 
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<body>::=<varlable declaratlons><statements> 
<statements>:::AI<statement>;<statements> 
<statement>:::lf<boolean>then<statements>else<statements>1 

while<boolean>do<statements> 1 
<ldentlfler>:=<expresslon>! 
read from<ldentifier> into <identifier>! 
write<identifier> onto <identifier> 

<boolean>: :=poll <identifier>I ••• 

The syntax for expressions and booleans is assumed to be standard. 

An example program in this language is shown below [Keller 78]. 

input channel:a,b 
output channel:c 
variable:x 
while true do 
if poll a then 

read from a into x; 
write x onto c 
if poll b then 

read from b into x; 
write x onto c 

else 
continue; 

else 
if poll b then 

read from b into x; 
write x onto c 

else 
continue. 

This program [Keller 78] implements a fair merge operation. It is clearly a determinate 

program when viewed as acting on T-enriched streams, but when viewed as acting on 

ordinary streams it becomes indeterminate. This particular style of programming 

language has been implemented by [Tanaka 83] on the REDIFLOW simulator [Keller 83]. 

We shall define a meaning function ~ for this language assuming that ~ is already 

defined for the purely sequential part of the language. We then give semantics for read, 

write and poll. The meaning function will map statements to functions from 
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environments to environments. The environment is a function that maps the local 

variables to values and the input channels to 1"-streams and the output channels to 

ordinary streams. The expressions get mapped to functions from environments to values. 

The propagation of values along the data paths is modelled by the extraction of the 

appropriate output stream from the environment and the insertion of an unpredictable 

number of delay tokens via a closure operation. Thus the input to the next node will be a 

set of possible input streams rather than a single stream. We define the action of a node 

on a set of possible input streams as the pointwise extension of its action on individual 

streams. We are suppressing the full mathematical details in this discussion as they 

would clutter up the formalism. However, in [Panangaden 84] we shall give the 

mathematical details involving the categorical collecting semantics. 

The semantics of the poll construct is as follows: 

~(poll a)(env)=<newenv,val> 
where 
val = false if first(env(a))=1" , val=true otherwise 
and if val = false then newenv=env(al-rest(env(a))) else newenv=env. 
The modifications to the environment are indicated by the 1- symbol, thus 
env(al-rest(env(a))) means that the binding of a in the environment is 
changed to be bound to rest of the old binding. 

Thus the poll construct essentially detects the presence of hiatons. If there is a hiaton 

on the channel being polled then the poll operation consumes it, this ensures that poll is 

in fact time sensitive. The read construct is hiaton insensitive, thus it consumes all the 

leading hiatons from a channel unless it is guarded by a poll operation. The write 

construct will not produce any hiatons at all. The semantics of these constructs are as 

follows: 

~(read a into x)(env) = 
env(al-rest(strip _1"(env(a)));xl-first(stri p _"I'( env(a)))) 

l4(write x onto b)(env) = env(bl-addtoend(env(b),env(x))), 

where the addtoend function is defined as: 
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addtoend(x,y)=rev(y "(rev(x))). 

It is now easy to see that the action of the merge node is given by the following 

function: 

J.4(merge)(env)=if first(env(a))=.,. then f(newenvl) else 
f(newenv2) 

newenvl = env(al-rest(env(a))) 
newenv2 = env(al-rest(env(a)),cl-addtoend(env(c),first(env(a)))) 

f(env) = if first(env(b))=.,. then J.4(merge)(env(bl-rest(b))) else 
J.4(merge)(env(bl-rest(env(b)),cl-addtoend(env(c),first(env(b))))). 

The next issue that we discuss is how to derive the meaning of a network of operators 

given the meaning of the individual nodes. To do so it is necessary to discuss the action 

of a data line in transmitting a stream from one node to another. In the case of ordinary 

streams a data line is merely the identity function. On .,.-streams, however, a data line 

causes an unpredictable delay in the transmission of data values and hence causes the 

insertion of arbitrarily many hiatons. The action of a data line is thus a function from 

ordinary streams to sets of .,.-streams. This action is most easily expressed in terms of 

the inverse of the abstraction map. Recall, from section 2, that the abstraction map is a 

map from .,.-streams to streams which removes all the hiatons from the .,.-stream. The 

inverse map, therefore, maps a stream to the set of .,.-streams that result by arbitrary 

insertion of hiatons into the stream. Thus the action of a data line on a stream s is 

simply Ab-1 (s). The action of an operator 0 with input line a and output line b is thus 

Ab-1(~(O) (t)), 

where t is the input .,.-stream on a. 

If the output line b is connected to the input line of another operator then its meaning 

function acts on each member of the set of T-streams produced by O. Thus composition 

of the meaning functions of operators is effected via the action of Ab- 1. This extends in 

the obvious way to operators that have several input and output lines. 
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4. Abstraction in Our Context 

In our approach we have two structures to reason about, the domain of timed streams 

and the domain of ordinary streams. As has been discussed in sec. 2, the formal 

justification of our abstraction is done via the powergraph construction. In other words 

the domain of .,.-streams must be first viewed as a category. We must then show how to 

abstract to the category of streams. 

The category of .,.-streams is defined in the followlng way: 

Oef 4.1 :The category PG(TS,?) has as objects all subsets of TS X ?, 
where? is the one point domain and TS is the domain of .,.-streams. The 
morphisms are maps between objects that satisfy: if /( is a morphism 
from X to Y and if lC(x)=y then x < = y in the partial order of the 
domain 0 X? 

Maps from TS to S are modelled by introducing the new category PG(TS,S): 

Oef 4.2:The category PG(TS,S) is defined as: (1) the objects are all 
subsets of TS X S, (2) the morphisms are increasing maps between objects. 

First of all maps from TS to S are reinterpreted as maps from TS X ? to TS X S as 

described in section 2. They are then reinterpreted as functors from PG(TS.?) to PG(TS,S). 

In [Panangaden 84] it is shown that this process is mathematically well defined, in other 

words continuity of the lifted functions is assured and the lifting process is itself 

continuous. 

The abstraction is described as a map from the objects of PG(TS,S) to the objects of 

PG(S,S) and another map from the objects of PG(TS.?) to the objects of PG(S.?). The 

maps in our case are obtained by extending the map Ab to sets in the natural pointwise 

fashion. It is clear that channels define indeterminate functions from S to TS and that 

these become identity functions under abstraction. More precisely the abstraction map, 

'Yz, from PG(TS,S) to PG(S,S) is given by: 

'Yz(X) = {<s"sz>l<ts"s2>EX and Ab(ts1(ts1)=sl' 

The abstraction map from PG(TS.?) to PG(S.?) is defined analogously. It is easy to check 
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that these abstraction maps satisfy the conditions required of acceptable abstractions as 

defined in section 2. 

5. Fairness 

In this section we present some preliminary remarks about the application of our 

formalism to reasoning about fairness. One possible application of our formalism is 

reasoning about fairness. The original motivation for the introduction of hiatons in [Park 

82] was to reason about fairness. We have not articulated the distinctions between 

various kinds of fairness in our formalism but we have some preliminary results. 

One question that naturally arises, now that we can derive the denotations of 

indeterminate operators, is whether a given node is fair. An obvious answer is the 

following. Suppose that an operator loops repeatedly over a piece of code in the Kahn

Keller language and suppose that in each loop it tests every input channel for available 

data, then, when abstracted, the resulting indeterminate operator is fair. Furthermore if 

the loop is endless, the operator will be infinity-fair in the sense of [Park 82]. It is now 

immediately clear that the merge program of section 3 is fair. 

This result is of course only indicative of the flavor of possible results in this direction. 

We are currently working on developing non-trivial static tests for fairness properties. 

In [Keller 78] the merge anomaly was first introduced. We have recently observed that 

the same example illustrates a fairness anomaly. Consider a merge operator with its 

output arc connected back to one of its input arcs. Suppose the stream "ab" is fed in at 

the remaining input arc. Then, assuming that the operator is fair, the set of possible 

output streams are {anb(ab)OOln >O)}. If we take the "limit" we obtain the possible stream 

aOo; this corresponds to the situation where the first a cycled through infinitely often 

before the b token appeared. Thus the resulting network is not fair. We need to express 
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a finite delay condition that ensures that this is not possible [Karp 69]. In our 

framework, we can express the finite delay property required in an obvious fashion, we 

ensure that there is always at least one hiaton before the a reappears as an input token, 

then eventually the merge must get the b token. In terms of .,.-streams the fairness 

anomaly cannot occur, and when we abstract the fixed point set resulting from the 

iteration through the merge operator, we will not have the pathological aOo stream. 

6. Conclusions 

To summarize, we have presented a formalism that allows one to derive the behavior of 

indeterminate operators when they are implemented in a lower level language. Typically, 

analyses of indeterminacy focus on deriving behaviors of networks from the behaviors of 

the nodes. We have used a new approach to abstract interpretation that allows us to put 

our theory on a semantically sound footing and we have illustrated how our theory could 

be useful for reasoning about fairness. 

Several other applications are also possible. Two directions we are pursuing are to 

develop static tests for determinacy and for fairness and to study deadlock properties of 

networks containing indeterminate operators [Wadge 79]. 

An interesting observation is that while typically, abstract interpretation is used for 

justifying static analysis by simplifying the domain, we have used it in the reverse 

fashion; that is, we have enriched the standard domain to obtain a useful and interesting 

model. 
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