
A Lisp-based OCCAM Interpreter 

MIKE STARKEY 

UUCS-91-002 

Department of Computer Science 
University of Utah 

Salt Lake City, UT 84112, USA 

March 6, 1991 

Abstract 
The OCCAM programming language is an implementation of Communicating Sequential Processes and 

is used in a number of different areas. These areas usually require explicitly describing small-grain par­
alleslism. OCCAM programs formed by such descriptions can be tested for correctness by executing them on 
commercially availabe transputers. Unfortunately, this environment requires that all components be written 
in OCCUM instead of being able to describe parts of the program with behavioural models written in a more 
powerful language. TIle interpreter described llere solves this problem. It allows programs to be written in 
OCCAM with behavioural descriptions in Lisp. A number of large programs which take advantage of this 
powerful environment have been implemented and tested. 



University of Utah, Department of Computer Science 
Technical Report UUCS-91-002 

A Lisp-based OCCAM Interpreter 

MIKE STARKEY 
University of Utah 
Dept. of Computer Science 
3190 Merrill Engineering Building 
Salt Lake City, Utah 84112 

(starkey@cs.utah.edu) 

Abstract. The OCCAM programming language is an implementation of Communicating Se­
quential Processes and is used in a number of different areas. These areas usually require 
explicitly describing small-grain parallelism. OCCAM programs formed by such descriptions 
can be tested for correctness by executing them on commercially available transputers. Un­
fortunately, this environment requires that all components be written in OCCAM instead of 
being able to describe parts of the program with behavioural models written in a more pow­
erfullanguage. The interpreter described here solves this problem. It allows programs to be 
written in OCCAM with behavioural descriptions in Lisp. A number of large programs which 
take advantage of this powerful environment have been implemented and tested. 

1 Introduction 

Entia non sunt multiplicanda praeter necessitatem. 
William of Occam (Occam's razor) 

The OCCAM programming language conforms well to Occam's Razor since 
it is not excessively complicated. This language, based on Hoare's Communi­
cating Sequential Processes[3] is very simple. The original language definition 
contains only 22 reserved words and allows very low-level descriptions of ex­
plicit parallelism. 

Apart from being a powerful programming language, OCCAM is also a design 
formalism[6]. As a programming language, OCCAM has been used for applica­
tions in areas such as computer graphics[2]. As a design formalism, OCCAM has 
recently been used as an asynchronous circuit description language[l]. Each of 
the OCCAM primitives can be translated into a small self-timed asynchronous 
circuit. Combining these small circuits by way of an OCCAM program creates 
an entire circuit through translation. As long as each of the components has 
been designed to perform in an electrically correct manner, and the combina­
tion of these components maintains correctness, the resulting circuit should at 
least be electrically correct. 



2 

a) PRDC buffer (CHAN in<l> out<l» 
VAR temp<l>: 
SEQ 

temp := 0 
WHILE TRUE 

in 7 temp 
out ! temp 

MIKE STARKEY 

b) (proc buffer «chan in<l> out<l») 
(seq «var temp<l») 

(set temp 0) 
(while true 

(7 in temp) 
(! out temp»» 

Figure 1: An example of OCCAM written in the traditional style (a) and the 
Lisp-like format (b). Note that using parentheses does not preclude also using 
indentation. 

Although programs written in OCCAM can be proven by construction to be 
mathematically or electrically correct, this construction does not assure that 
the program executes the desired function. The programmer must verify that 
it does. Verifying functionality provides motivation for being able to run these 
programs interpretively to watch or test their behaviour. The commercially 
available transputers[4] which were designed around the OCCAM language can 
be used to test any such programs which are written entirely in OCCAM. Here 
the power ofthe interpreter becomes apparent. Programs can be written which 
use the OCCAM constructs for describing parallelism. Instead of each process 
consisting of only one primitive, a process can be a much larger entity. It 
is assumed that the behaviour of this larger process is known as far as its 
interface to the OCCAM program, and that this behaviour can be described. 
The language used for describing such processes in the interpreter is Lisp. 

2 The OCCAM Programming Language 

OCCAM programs consist of a number of single-primitive processes which are 
connected by constructs that describe their execution method. These execu­
tion methods include being executed in parallel, sequentially or dependent on 
certain conditions or guards. In the specification of OCCAM, the set of processes 
which may be executed within these constructs is delimited by the number of 
indenting characters before the primitive. This method of process delineation 
is good for small sets of processes, since the hierarchy can easily be seen. How­
ever as sets of processes become large characters are either lost off the right 
hand edge of the screen or paper, or the processes become so long that the 
structure is difficult to view. 

Due to the problems caused by many indentations, a Lisp-like syntax bor­
rowed from [1] is used to create programs. Lisp statements are built by sur-



A LISP-BASED OCCAM INTERPRETER 3 

rounding a function name followed by its arguments in parentheses. Programs 
are constructed by hierarchically imbedding parenthesized expressions within 
others. The program structure is easily viewed by matching sets of parentheses 
(Figure 1). 

An additional benefit to using the Lisp-like format is for parsing the program. 
Lisp includes some powerful features for processing and parsing lists. A list in 
Lisp is a set of lists or atoms (data values) encapsulated within parentheses. 
Using this approach, an OCCAM program becomes a complex list which can 
easily be manipulated in Lisp. 

Program = 
Process 
Primitive = 
Assignment = 

Input 
Output 
Construct 

Seq-Construct = 
Guarded-Proc 
Guard 
Cond-Proc = 
Decl = 
Decl-Part 

Variable 
Channel 
Funcvar = 
Expression 

Func-call 
Cond 
Macro 

Process 
Primitive I Construct 
Assignment I Input I Output I (SKIP) 
(SET Variable Expression) 
(SETFUNC Funcvar Func-call ) 
(? Channel [ Variable] ) 
(! Channel [ Expression] ) 
Seq-Construct 
I (PAR Decl {Process} ) 
I (ALT {Guarded-Proc}) 
I (IF {Cond-Proc}) 
I (WHILE Cond Process) 
{Process} I (SEQ Decl {Process} ) 
( Guard Process) 
( Cond Input) I ( Cond (SKIP)) 
( Cond Process) 
( {Decl-Part} ) 
(CHAN {chan-name [< int > ]} ) 
I (VAR {var-name [ < int > ] } ) 
I (FUNCVAR {( funcvar-name function-name) } ) 
var-name I (SU BSEQ var-name int int ) 
chan-name I (SUBSEQ chan-name int int ) 
funcvar-name 
Variable I Funcvar 
I ( gate-name { Expression}) 
( function-name { Expression } ) 
boolean-expression 
(PROC macro-name Decl {Process} ) 

Figure 2: Lisp-like OCCAM Syntax[l]. 

The general OCCAM commands which are supported are not specific to any 
application. However, since this system was designed primarily for describing 
asynchronous circuits, a number of application specific commands have been 



4 MIKE STARKEY 

a) (defun addition-function (inputs) 
(+ (car inputs) (cadr inputs»)) 

b) (describe-function ' '+' , 'adder-function) 

c) (add-function "+" '(16 16 16) 

d) (funcvar surn<16> adder) 

e) (setfunc surn (+ 45 32)) 

Figure 3: Steps required to define (a), register (b,c) and use (d,e) a behavioural 
model of a process in the interpreter. 

added. The flexibility of these additional commands allows them to be easily 
used for other applications. The commands described in Figure 2 provide 
support for behavioural descriptions of processes, but do not demonstrate how 
to associate these descriptions with the program. 

2.1 Adding Behavioural Descriptions of Processes 

To associate behavioural descriptions with the OCCAM program, a number 
of steps are required. First, a Lisp function must be written to perform the 
appropriate behaviour (Figure 3a). The interface can have any number of 
inputs and one output. The value of the output will be placed in the desired 
variable on return from the function. If the function must maintain some state 
between invocations, a closure can be used. The Lisp function is then registered 
with the system (Figure 3b). Next, the widths of the inputs and output are 
specified to permit type checking (Figure 3c). The function can now be used in 
the system wherever the programmer desires. To use the function, a variable is 
defined which is restricted to accept only the value from that function (Figure 
3d). The assignment can then be performed by evaluating the function at that 
time and placing the value in the variable (Figure 3e). 

Simple functions can also be defined (Figure 4). In asynchronous circuits, 
these functions represent gates. The differences between these definitions are 
required to direct the translation of these programs to circuits. In the trans­
lation, functions and gates have different implementations. For other applica­
tions, gates are sufficient. A library of useful gates which may have different 
definitions required for certain applications can be maintained. Many of the 
useful gates are included in the interpreter base, but these definitions can be 
overridden. 



A LISP-BASED OCCAM INTERPRETER 5 

a) (defun and-function (inputs) 
(logand (car inputs) (cadr inputs))) 

b) (describe-gate "and" 'and-function) 

c) (add-gate "and" '(1 1 1)) 

d) (if (and i 1) (set i 0)) 

Figure 4: Steps required to define (a), register (b,c) and use (d) a simple 
behavioural model in the interpreter. 

2.2 Extracting Parts of Variables 

The variable type used in this version of OCCAM is a string of bits of any 
length. To assist in decoding individual bits or groups of bits from a variable, 
an instruction is included which defines a variable as containing a sub-sequence 
of bits from another variable. The syntax of this function is (DEFINE sub-var­
name (SU BSEQ vaT-name int int)) This definition of the sub-vaT-name variable 
is global. Wherever it is used, the vaT-name variable must be defined. 

2.3 Providing User Interaction 

While debugging or running a program, it is sometimes useful to display 
certain variables or to direct the program with different user inputs. Printing 
messages or prompting the user for data can be done in three ways. One 
method is to define a behavioural model of a process in Lisp which has the 
side effect of printing or obtaining data. This method is very flexible, since the 
data can be formatted by the associated Lisp code as desired. The data can 
also be printed or read from a file. 

Another method of transferring data to and from the user is to use predefined 
channels and gates. Two channels have been predefined to allow data transfer. 
Sending data to the OUTPUT channel causes data to be displayed on the 
screen. The channel definition is modified slightly by allowing not just bit 
strings of data but also character strings for debugging purposes. Receiving 
on the INPUT channel will prompt the user for data. The command syntax is 
the same as with any other channel command. These two channels are global 
and can be redefined by the user as desired. 

The third method is to use a pair of special gates. These gates help to 
monitor and affect expression evaluation. The GET gate gets data from the 
user and effectively replaces that instance of the GET in the expression with 



6 MIKE STARKEY 

the entered value. The PUT gate displays the value of an expression. It 
is transparent to the expression evaluation and therefore does not affect the 
program execution. 

3 Interpreting An OCCAM Program 

A simple example of an OCCAM program is included in Figure 5. This pro­
gram implements a two stage FIFO buffer. This example demonstrates a num­
ber of OCCAM constructs and primitives and will be used in subsequent sections 
to demonstrate how the interpreter is used and the types of information it can 
display. 

(proc buffer «chan in<l> out<l») 
(seq «var temp<l») 

(set temp 0) 
(while true 

(1 in temp) 
(! out temp»» 

(proc environment «chan env-in<l> env-out<l») 
(par «var temp<l») 

(! env-out 1) 
(! env-out 2) 
(! env-out 3) 
(1 env-in temp) 
(1 env-in temp) 
(1 env-in temp») 

(par «chan buffer-in<l> mid<l> buffer-out<l») 
(buffer buffer-in mid) 
(buffer mid buffer-out) 
(environment buffer-out buffer-in» 

Figure 5: Simple example of an OCCAM program. 



A LISP-BASED OCCAM INTERPRETER 7 

3.1 User Interface 

The user interface of the simulator is menu driven. The menu includes many 
commands which allow files to be loaded, processes or channels to be traced, 
program execution to be graphically displayed, and programs to be terminated. 
A help function and a command to automatically generate documentation have 
also been included. 

Commands 

Only enough characters to identify the command are required. 

? 
base-change 
channel-trace 
execute-limit 
documentation 
function 
gate 
help 
introduction 
kill-program 
load-program 
no-trace 
occam 
process-trace 
quit 
restart 
simulate 
view-program 
xdisplay 

- Prints help summary 
- Change the base of displayed numbers 
- Set channel trace on 
- Set execution limit for simulation 
- Produce the documentation in LaTex form 
- Describe a function definition 
- Describe a gate definition 
- Print help summary 
- Print the introduction to the simulator 
- Kill the current program 
- Load a new program 
- Turn off all traces 
- Display OCCAM syntax 
- Set process trace on 
- Quit the simulator 
- Restart program 
- Perform simulation 
- View the program structure 
- Start X display 

During trace and view operations, the values of variables will be 
printed between brace brackets '{}' in the selected numerical base 
whenever they are known. Widths will be printed as specified, between 
'<>'. For example, a set process may be displayed as: 

SET x<4> (and a{1} b{O}){O} 

Figure 6: Menu provided by the interpreter. 



8 MIKE STARKEY 

3.2 Tracing Program Execution 

Tracing program execution is a very important feature in the interpreter. 
The user can set the granularity of the traces to print channel information 
only (Figure 7) or process and channel information (Figure 8). Alternatively, 
the trace can be disabled. 

Sending 1 on channel BUFFER-IN 
Received 1 on channel BUFFER-IN 
Sending 2 on channel BUFFER-IN 
Sending 1 on channel MID 
Received 1 on channel MID 
Sending 1 on channel BUFFER-OUT 
Received 1 on channel BUFFER-OUT 
Received 2 on channel BUFFER-IN 
Sending 3 on channel BUFFER-IN 
Sending 2 on channel MID 
Received 2 on channel MID 
Sending 2 on channel BUFFER-OUT 
Received 2 on channel BUFFER-OUT 
Received 3 on channel BUFFER-IN 
Sending 3 on channel MID 
Received 3 on channel MID 
Sending 3 on channel BUFFER-OUT 
Received 3 on channel BUFFER-OUT 
Deadlock reached 

Figure 7: Channel trace of the example in Figure 5. Note that macro expan­
sions have replaced the local names with the global names. 

3.3 Graphical Display of Program Execution 

The interpreter can be used to analyze the execution of a program. In some 
applications, knowing the critical processes can help to optimize certain parts 
of the program. A critical process is one which is very active. This activity is 
easily viewed by means of a graphical display. As each process becomes active, 
it is highlighted. Very active processes can be easily detected by monitoring 
the frequency at which they are highlighted. The example in Figure 9 shows 
highlighted processes at one instance of program execution; it also provides a 
display of the program structure. 



A LISP-BASED OCCAM INTERPRETER 

Executing Process: SEQ 
Executing Process: SET TEMP<1> 0 
Executing Process: SEQ 
Executing Process: SET TEMP<1> 0 
Executing Process: PAR 
Executing Process: BUFFER-IN<1> 1 
Sending 1 on channel BUFFER-IN 
Executing Process: BUFFER-IN<1> 2 
Executing Process: BUFFER-IN<1> 3 
Executing Process: ? BUFFER-OUT<1> TEMP<1> 
Executing Process: ? BUFFER-OUT<1> TEMP<1> 
Executing Process: ? BUFFER-OUT<1> TEMP<1> 
Executing Process: SEQ 
Executing Process: WHILE TRUE{1} 
Executing Process: ? BUFFER-IN<1> TEMP<1> 
Received 1 on channel BUFFER-IN 
Executing Process: SEQ 
Executing Process: WHILE TRUE{1} 
Executing Process: ? MID<1> TEMP<1> 
Executing Process: PAR 
Executing Process: BUFFER-IN<1> 1 
Executing Process: BUFFER-IN<1> 2 
Sending 2 on channel BUFFER-IN 
Executing Process: BUFFER-IN<1> 3 
Executing Process: ? BUFFER-OUT<1> TEMP<1> 
Executing Process: ? BUFFER-QUT<1> TEMP<1> 
Executing Process: ? BUFFER-OUT<1> TEMP<1> 
Executing Process: SEQ 
Executing Process: WHILE TRUE{1} 
Executing Process: ! MID<1> TEMP{1} 
Sending 1 on channel MID 
Executing Process: SEQ 
Executing Process: WHILE TRUE{1} 
Executing Process: ? MID<1> TEMP<1> 
Received 1 on channel MID 
Executing Process: PAR 
Executing Process: BUFFER-IN<1> 2 
Executing Process: BUFFER-IN<1> 3 
Executing Process: ? BUFFER-OUT<1> TEMP<1> 
Executing Process: ? BUFFER-OUT<1> TEMP<1> 
Executing Process: ? BUFFER-OUT<1> TEMP<1> 
Executed 5 primitives 

Figure 8: Process trace of the example in Figure 5. 

9 



10 MIKE STARKEY 

Figure 9: Graphical display of the example in Figure 5. Active processes are 
highlighted as they execute. 



A LISP-BASED OCCAM INTERPRETER 11 

4 Modeling Parallelism 

The interpreter is written in Common Lisp[5] and executes on a uniprocessor 
machine by simulating the parallelism defined in OCCAM. To simulate this 
parallelism, the program is first structured into a tree where the depth of the 
tree is controlled by sequential processes and the breadth of the tree depends 
on the number of processes executed in parallel. Figure 9 demonstrates the 
structure of the example program. Once the program is in a tree structure, 
it can be traversed. This traversal is performed in a breadth first manner to 
ensure that each parallel process is evaluated fairly. To speed up this execution, 
queues of active child processes are maintained and processes are removed from 
their parent's queue as they complete. 

Sends and receives are also handled in this way. In OCCAM, channel com­
munication blocks until both partners in the transfer are ready. If a send is 
reached, it will mark the channel as being ready to send. The program exe­
cution will continue in a round-robin fashion until the corresponding receive 
is reached. At this point the data will be transferred and the channel marked 
as data received. When the sending process is reached again, it will complete. 
The mechanism is similar if a channel is blocked waiting on a receive. 

A side effect of this model is that deadlock can easily be detected. If in one 
entire loop through all active processes, no process is executed then deadlock 
has occurred. Deadlock in this case means that there must be a pending send or 
receive which is blocked and no corresponding receive or send will be executed 
to unblock it. Detecting livelock in a program can still be difficult. 

5 Results 

This interpreter has been used to debug and test some large programs. The 
largest program developed in this environment is an asynchronous Reduced 
Instruction Set Computer (RISC)[7]. This program is approximately 500 lines 
of OCCAM. The interpreter simulated the RISC by allowing test programs to be 
"executed" on the RISC. Another large program implemented, run and tested 
in the interpreter environment is an asynchronous cache controller[8]. 

6 Conclusions 

This interpreter is important for implementing, testing and debugging oc­
CAM programs. These three components of program development are greatly 
simplified by using an interpreter instead of a compiler and transputers. The 
interpreter's user interface provides a useful set of commands to aid in the 
development process. 



12 MIKE STARKEY 

The programs which are developed can be combinations of OCCAM and Lisp. 
OCCAM can be used to describe the control flow of a program while Lisp pro­
vides an easy way to describe the behaviour of processes. Through the inter­
preter, these methods can be combined to build very powerful programs. 

References 

1. BRUNVAND, E., AND SPROULL, R. F. Translating concurrent communi­
cating programs into delay-insensitive circuits. Tech. Rep. CMU-CS-89-126, 
Carnegie Mellon University, 1989. 

2. FAY, D. Working with occam: a program for generating display images. 
Microprocessors and Microsystems 8 (1984),3-15. 

3. HOARE, C. A. R. Communicating Sequential Processes. Prentice Hall, 
1985. 

4. INMOS. Communicating Process Architecture. Prentice Hall, 1988. 

5. KESSLER, R. R. LISP, Objects, and Symbolic Programming. Scott, Fores­
man and Company, 1988. 

6. MAY, D., AND TAYLOR, R. Occam - an overVIew. Microprocessors and 
Microsystems 8, 2 (1984), 73-79. 

7. STARKEY, M., AND FARHANG, A. R. C-risc ii: An asynchronous reduced 
instruction set computer. CS 572 Project Report, 1990. 

8. YIR, B. An asynchronous cache controller. CS 572 Project Report, 1990. 


