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Abstract

We propose Computational Sensor Networks as a methodology to exploit models of physical phe-

nomena in order to better understand the structure of the sensor network. To do so, it is necessary

to relate changes in the sensed variables (e.g., temperature) to the aspect of interest in the sensor

network (e.g., sensor node position, sensor bias, etc.), and to develop a computational method for its

solution. As examples, we describe the use of the heat equation to solve (1) the sensor localization

problem, and (2) the sensor bias problem. Simulation and physical experiments are described.
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1 Introduction

A model-based approach to the design and implementation of Computational Sensor Networks

(CSNs) is proposed. This high-level paradigm for the development and application of sensor device

networks provides a strong scientific computing foundation, as well as the basis for robust software

engineering practice. The three major components of this approach include (1) models of phenom-

ena to be monitored, (2) models of sensors and actuators, and (3) models of the sensor network

computation. We propose guiding principles to identify the state or structure of the phenomenon

being sensed, or of the sensor network itself. This is called computational modeling. These methods

are then incorporated into the operational system of the sensor network and adapted to system per-

formance requirements to produce a mapping of the computation onto the system architecture. This

is called real-time computational mapping and allows modification of system parameters according

to real-time performance measures. This paper deals mainly with computational modeling.

CSNs represent a scientific computing approach, and this includes the Verification and Validation

(V & V) methodology of that discipline[28]; that is, model implementations must be verified (e.g.,

for correctness or numerical properties like error and convergence), and appropriate tests embedded

in the system to monitor system correctness during execution. However, an important new aspect of

this approach is that a CSN has the ability to sense and interact with the environment, and thus can

run its own validation experiments to confirm or refute model structure or parameter values. Another

intrinsic capability offered by CSNs is that models can be used to determine unknown aspects of

the structure of the measurement system itself given a known state of the physical phenomenon.

For example, given the heat flow PDE and known temperatures at fixed (but unknown) sensor node

locations, the equations can be reworked so as to determine the sensor locations (i.e., to solve the

sensor localization problem). This can be done for a wide variety of initial conditions and depends

only on the equations defining the physical process and the specific realization of the process in

the world. Thus, real-time V & V are performed and this permits a scientifically repeatable basis

for sensor network experiments. Real-time computational steering is achieved by (1) embedding

verification and validation modules into the executable code, and (2) modeling module performance

in terms of statistically meaningful characterization of output features conceptually defined by the

user.

On the sensor network side, many advances have been made in sensor network technology and algo-

rithms in the last few years. See [39, 40] for an overview of the state of the art. Work has been done

on: architecture [20], systems and security [9, 29, 38], and applications [26]. Our own work has fo-

cused on the creation of an information field useful to mobile agents, human or machine, that accom-

plish tasks based on the information provided by the sensor network [3, 5, 4, 12, 16, 13, 14, 15, 18].

In order to address sensor networks in a comprehensive manner, the sensor network community has

initiated a research program[22] that includes work in the areas of sensor network architectures,

programming systems, reference implementations, hardware and software platforms, testbeds and

applications. Here we explore the impact of a computational science approach on all these as-

pects of sensor networks, and show that much benefit can be derived [10, 11]; in particular, the

tools developed here can be highly leveraged across many scientific communities. CSNs will pro-
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Figure 1: Computational Sensor Network Large-Scale Utilization Paradigm.

vide software engineering support for scientists and engineers to exploit sensor networks where it is

notoriously difficult to develop and validate systems, for example, in our proposed snow monitoring

application.

2 Introduction

The Computational Sensor Network (CSN) paradigm is displayed in Figure 1. Physical phenomena

of interest are monitored by a set of CSNs, each with its own models. ❈❙◆✐ produces its results

(as specified by the requirements) which are passed along to other CSNs as well as to the general

computational grid. These results may provide information for observers, decision makers, or may

provide dynamic data for large-scale, multi-physics simulations. Figure 2 gives our vision of the

two major issues addressed by the CSN system development framework:

1. Computational Modeling: It is necessary to develop a framework within which it is possible

to define models of physical phenomena of interest, as well as sensors and actuators, and to

produce computational methods to determine state or structure of either the monitored system

or the sensor network itself.

2. Real-time Computational Steering: Given a method developed in (1), it is necessary to

combine it with a conceptual model of the sensor network, and a set of verification and vali-

dation requirements to produce a set of executable tasks which can be mapped onto the sensor

network architecture as well as a wider computational grid and provide a high-level interface

for human understanding.
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The layout of an individual CSN is shown in Figure 3. CSNs provide a sensor network programming

paradigm built from a combination of (1) scientific computing practice (e.g., see [23]), and (2)

the Instrumented Logical Sensor methodology[7]. This combination permits the construction of

qualitatively different applications by incorporation of the specific models for the phenomena being

monitored, the sensors and actuators deployed, and the software requirements imposed.

3 Computational Modeling

One of the major innovations of this approach is the incorporation of a strong model of the phe-

nomenon to be observed. This allows the system developer great insight into the V & V require-

ments. We demonstrate the usefulness of the CSN approach by way of two examples:
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Figure 4: Heat Flow in a Uniform Rod.

✎ Sensor Node Localization: Given a strong model of the physical phenomenon, and a set of

sensor nodes in unknown, but fixed, locations, use the computational model to determine the

sensor node locations.

✎ Sensor Bias Check: Given a sensor model that includes a term for sensor bias, use the

computational model to determine the amount of bias in each sensor.

3.1 Sensor Node Localization

To demonstrate how this methodology can be applied, we show how the sensor node localization

problem can be solved. Oftentimes sensor devices are dropped at random into an environment or

maybe moved (e.g., in a snow monitoring application, the devices may move with the snow both

in depth as well as tangential to the surface). Many approaches to sensor node localization have

been proposed [6, 24, 27]; see [35] for a survey. As one example, Whitehouse and Culler propose a

macro-calibration method for localization [36]. Their ad hoc localization system estimates distance

between nodes using received signal strength information and acoustic time of flight. Although

these phenomena can be modeled in the CSN context, their approach requires additional sensors

(microphones) and processes. Moreover, CSNs solve an inverse problem based on the physical

phenomenon - the example given in this paper uses the heat equation (note that temperature sensors

are ubiquitous and the method is robust).

Consider a rod of uniform cross-section and length 1 that is completely isolated except at the ends

(see Figure 4). The heat flow is therefore limited to the ① direction and the development of the

temperature ② over time can be described by the following partial differential equation (known as

the diffusion equation[37]):

❅②

❅t
❂ ❉ ✁

❅
✷②

❅①✷
✇✐t� ❉ ❂

✔

❝ ✁ ✚

where ✔ denotes the thermal conductivity, ❝ the specific heat capacity and ✚ the density of the rod.

Figure 5 shows how the temperature changes over time for an arbitrary initial state. [Note that

usually the temperatures at the ends are fixed and the temperatures settle to a linear ramp (one could

easily assign locations to the nodes given a temperature then); however, the basic requirement is that
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Figure 5: Simulation of Heat Flow Equation.

the temperature values in the rod change according to the heat equation in order for the method to

work. It is also possible to allow the ends to vary. Also, there exist temperature distributions which

are ambiguous, and thus where the method will not work – e.g., a constant temperature across the

whole rod.]

Such PDE’s are usually solved by discretization and approximation of the derivatives. Then the

temporal variation of the rod at any location can be determined using the standard finite difference

approach: a grid of discrete, general points over the domain is considered and the derivatives are

replaced by their finite-difference expressions at those points. We denote the points along the ①-axis

by ①✐, the time points by t❥ (with ✁t the time step) and finally the temperature at point ①✐ and time

t❥ by ②✐�❥ . Then:
✒
❅②

❅t

✓

✐�❥

❂
②✐�❥✰✂ ✄ ②✐�❥

✁t

✒
❅✷②

❅①✷

✓

✐�❥

❂

☎✆✝✞❀✟✠☎✆❀✟
✡✆✝✞✠✡✆

✄
☎✆❀✟✠☎✆☛✞❀✟
✡✆✠✡✆☛✞

✂
✷✭①✐✰✂ ✄ ①✐✠✂✮

which yields:

②✐�❥✰✂ ❂ ②✐�❥ ☞
✌✁t✍

✭①✐✰✂ ✄ ①✐✠✂✮
✭

②✐✰✂�❥

✭①✐✰✂ ✄ ①✐✮

✄
②✐�❥

✭①✐✰✂ ✄ ①✐✮
✄

②✐�❥

✭①✐ ✄ ①✐✠✂✮
☞

②✐✠✂�❥

✭①✐ ✄ ①✐✠✂✮
✮

To solve the localization problem in this case, the set of equations (one for each ②✐) must be solved

for the ①✐ values. This requires solving a set of degree 3 polynomial equations - which can be a

difficult problem. For example, given ♥ sensor nodes, there are up to ✸✎ distinct solutions (most
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are complex solutions, and thus not feasible). See [2, 31] for analytical solution methods, e.g.,

homotopy continuations. We do not pursue such methods here since we have discovered that in

the case of sensor networks, a search over uniform samples can be performed which produces the

sensor node locations quite efficiently. Consider Algorithm Heat 1D.

Algorithm Heat 1D

———————————————————

On input:

n: the number of sensor nodes

❚
✭❥✮
♥ : the temperature at node � at time ✁

①✵❀ ❚✵: min ① value and temperature there

①♥✰✂❀ ❚♥✰✂: max ① value and temperature there

On output:

❙✐, ✄ ❂ ✶ ✿ ✿ ✿ �; sensor node locations

begin

�☎✆ s✝✆✞✟❡s ✥ ✶✠✠ – number of location guesses

❙✐❥ ✥ ❯✡①✵❀ ①♥✰✂☛ – uniform samples for locations

❚
☞✭❦✮
✌✍✎ ✥ ❍❡✝✏ ✶❉ ❙✄✆ – predicted temps for ①✐
❉✐ ✥ ✑❚

☞
✐ ✒ ❚✑ – distance from actual temps

❉ ✆✄� ❂ ✆✄�✡❉✐☛ – best temperature match

while ❉♠✄� ❃ thresh

❙✂✓✓✓✂✵ ✥ choose best guesses

❙✂✂✓✓✓✂✵✵ ✥ add more random samples

❚
☞✭❦✮
✌✍✎ ✥ ❍❡✝✏ ✶❉ ❙✄✆ – predicted temps for ①✐
❉✐ ✥ ✑❚

☞
✐ ✒ ❚✑

❉ ✆✄� ❂ ✆✄�✡❉✐☛

end

end

The algorithm generates random locations for the sensors, then simulates the heat equation to obtain

predicted temperatures given the assumed node locations, then uses a distance norm to obtain an

estimate of how much the actual and predicted temperature values differ. Finally, it determines the

minimum error guess. If the best estimate is within a certain threshold, then the algorithm returns

the locations that best fit the actual data. Otherwise, new guesses are generated from perturbations

of the best guesses, and random samples added for the rest, and the process continues.

The results of Algorithm Heat 1D are shown in Figures 6- 7. The performance of the algorithm

is given in terms of number of guesses produced versus number of nodes and error in the sensor

locations found. Several sets of node locations were used in this simulation experiment, and there

is no assumption on the order of the nodes along the rod. The algorithm has also been implemented

and run on the Tmote Sky, and runs quite efficiently; however, it has not been used in physical

experiments yet. [Note that in order to get ❖✡✔✏ ✕ ✡✔①☛✷☛ error in approximation, we must select
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Figure 6: Number of Locations Expanded by Algorithm Heat 1D.
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Figure 7: Error (m) in Solution Location by Algorithm Heat 1D.

✁t sufficiently small to guarantee stability; i.e., ✁t ✔
✭�①✮✷

✂ . Sparse sampling on the interval may

result in a relatively large ✁✄.]

We have also applied the method to data taken from an experimental apparatus (Figure 8 shows the

layout). A one meter long stainless steel rod (304CG) of diameter one inch is connected to a steam

chamber at one end and is instrumented with type T thermocouples located at 0.005m, 0.035m, and

0.095m, respectively, from the steam chamber. The thermocouples are connected to 10 channel

selector switches which in turn are connected to a digital readout. The rod is attached to the steam

chamber that provides a constant energy source at the base. The steam is turned on, and temperature
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Figure 9: Forward Temperature Simulation from Tmote Sky Execution.

readings are taken every 20 seconds as the rod heats.

In analyzing this data, an alternate algorithm was developed. Given knowledge of the initial condi-

tions once the steam is activated (namely, 100 degrees C at one end and room temperature elsewhere

along the rod), it is possible to run a careful simulation to obtain temperature curves at a dense sam-

ple of points along the rod (e.g., 1,000). Code was developed for the Tmote Sky and Figure 9 shows

the results of a mote calculation. Each sensor is then matched independently to determine the best

fit location. Call this Heat 1D dense.
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① ❂ ✵✿✵✵� ① ❂ ✵✿✵✁� ① ❂ ✵✿✵✂�

sim/measured sim/measured sim/measured

65.2/65.2 30.2/30.2 20.6/20.6

85.4/68.3 33.9/33.1 21.2/20.7

88.2/71.0 35.7/35.5 21.4/21.0

89.5/73.4 37.6/37.6 21.6/21.1

90.4/75.9 39.5/39.8 21.8/21.3

91.1/77.9 41.4/41.9 21.9/21.6

91.6/79.8 43.2/43.9 22.1/22.0

Table 4.1 Simulated and Measured Temperature Data for Heated Rod Experiment.

Table 4.1 gives the simulated and measured temperature values. The actual and recovered locations

are: ✭✵✿✵✵�❀ ✵✿✵✁�❀ ✵✿✵✂�✮ and ✭✵✿✵✄✄❀ ✵✿✵✁�❀ ✵✿✄✵✵✮, respectively. As can be seen, the heat transfer

model fits better away from the steam source.

Discussion

Several issues arise in terms of the application of this method. First, there is a tradeoff between

coarse simulation (e.g., large spacing and time step) versus high resolution simulation. Next, one

approach is to compute a sparse solution using only the points where data is taken (or assumed

taken). This involves running the coarse simulation for each separate guess as to the locations of

the sensors. Alternatively, it is possible to run one fine-grained simulation, if the initial conditions

are known and satisfied, and then simply match the sensor data to the location with the temperature

trace which most closely matches the measured data. Note that even if the data is not taken from

time 0 (i.e., when the steam is turned on), it is possible to find the best matching locations for the

measured data considered simultaneously.

Another major issue is the determination of an adequate model of the phenomenon. We take as our

starting point that this is possible, especially when the structure of the model is known, and all that

remains is to identify parameters. For recent work on this, see [30]. They derive the system model

and the measurement model by the finite spectral method and show how nonlinear phenomena with

complex boundary conditions can be reconstructed and predicted. More work needs to be done to

characterize the types of functions which allow unique solutions in these circumstances.

These preliminary results are very encouraging. However, there is much work to be done:

1. Analysis: The mathematical basis for the approach must be established. This is an instance

of the Inverse Heat Transfer Problem [1]. We would like to couple the Heat 1D method with

some nonlinear solvers (e.g., Newton type methods). In this way Heat 1D would provide

starting points for faster nonlinear solvers.
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2. Stochastic Methods: Simple Monte Carlo techniques are used here; however, we intend to

explore Markov Chain Monte Carlo, Bayesian methods, Quasi-Monte Carlo, etc.

3. Experimental Considerations: Further experimentation needs to be performed to establish the

method. We plan to build and test an experimental apparatus for monitoring snow. 2D and

3D methods must be developed.

A few words are in order about the practicability of the method:

✎ Each sensor node can solve the problem independently in terms of sensor data from its neigh-

bors.

✎ Generally, there will not be a large number of neighbors, and thus the system should be readily

solvable.

✎ The only communication required is a time sequence sample of temperatures from the neigh-

bors.

✎ Solutions can be shared between nodes to improve efficiency and accuracy.

✎ Temperature values can be averaged to reduce the effect of noise.

✎ Off-network computation of the numerical solution is also possible.

3.2 Sensor Networks and Bias Estimation

As another example of the computational sensor network approach, consider sensor bias estimation.

Now assume that there are ♥ ✰ ✶ sensors ❙✐❀ � ❂ ✵❀ ✿ ✿ ✿ ❀ ♥ equi-spaced along the rod with ❙✐ at po-

sition ①✐ (①✁ ❂ ✵❀ ①✂ ❂ ✶). Those sensors supply us with measurements of the actual temperatures

where ③✐✄☎ denotes the measurement of sensor ❙✐ at time t☎ . The measurements themselves are noisy

and furthermore we assume that each sensor ❙✐ has a bias of ❜✐:

③✐✄☎ ❂ ②✐✄☎ ✰ ❜✐ ✰ ✈ ✈ ✘ ◆✭✵❀ ✛
✷
✮

Our goal is to estimate values for the ❜✐ based solely on the sensor measurements and the system

model. To do so we rewrite the last equation to

②✐✄☎ ✙ ③✐✄☎ ✆ ❜✐
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Figure 10: Errors Depending on ✁① and the Approximation Formulas.

and insert this one into the finite difference approximation of the system model:

③✐�✂✰✄ ☎ ③✐�✂

✁t
❂

❉

✭✁①✮✷
✭③✐✰✄�✂ ☎ ❜✐✰✄

✆③✐✝✄�✂ ☎ ❜✐✝✄ ☎ ✞③✐�✂ ✆ ✞❜✐✮

✱ ☎❜✐✝✄ ✆ ✞❜✐ ☎ ❜✐✰✄ ❂

✭✁①✮✷

❉ ✟ ✁t
✭③✐�✂✰✄ ☎ ③✐�✂✮ ☎ ③✐✰✄�✂ ☎ ③✐✝✄�✂ ✆ ✞③✐�✂

⑤ ④✠ ⑥
✡☛r☞

Since we know the correct temperatures for ①✵ ❂ ✌ and ①♥ ❂ ✶ we can set ❜✵ ❂ ❜♥ ❂ ✌. This leads

to the following tridiagonal system (since the rhs of the above equation is known):

✍

❇
❇
❇
❇
❅

☎✞ ✶

✶
. . .

. . . ✶

✶ ☎✞

✎

❈
❈
❈
❈
❆

✟

✍

❇
❅

❜✄
...

❜♥✝✄

✎

❈
❆ ❂

✍

❇
❅

✏✄
...

✏♥✝✄

✎

❈
❆ (v)

which can be solved with direct methods (or in case of over-determined systems, can be solved

using least squares).

We carried out some simulation experiments to see how our approach for bias detection performs.

We used the same settings as before and simulated temperatures using spectral methods to generate

the data for the experiments. The sensor located at the center of the rod was assigned a bias of

❜♥✑✷ ❂ ✺ while all other sensors had no bias. There are two sources of error to the bias estimate:

inaccuracies introduced by the finite difference approximations and noise. Figure 10 demonstrates

the influence of the former. The figure compares true and estimated bias values; ✁t ❂ ✞s was
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chosen as time step. For the estimation we used the approximation formula already introduced (error

is ✷ ❖✭✭�①✮✁✮) as well as the following approximation formula which has error ✷ ❖✭✭�①✮✹✮:

✒
❅✁②

❅①✁

✓

✐✂✄

❂
✶

✶☎✭�①✮✁
✭✆②✐✝✁✂✄ ✰ ✶✞②✐✝✟✂✄ ✰

✸✠②✐✂✄ ✰ ✶✞②✐✡✟✂✄ ✆ ②✐✡✁✂✄✮

To apply this formula one has to assume that the two first and last bias values are known in advance

(we set them to zero). As expected the higher accuracy of the latter formula also leads to better

values for the ❜✐.

To demonstrate the influence of noise, we added white Gaussian noise to the (simulated) measure-

ments. Now a single estimate is not sufficient any more since it is influenced by this noise. Therefore

it becomes necessary to take into account more than just two consecutive measurements. This can

be accomplished by using the equation several times for different measurements and solving this

now over-determined system, or by solving the individual equations independently and computing

the mean value. For different levels of noise Figure 11 shows how the bias estimate converges as

more and more measurements are included (we used the same initial temperatures and bias values

as above, 15 sensors and the ❖✭✭�①✮✹✮ finite-differences approximation).

So far we have done all of our sensor bias experiments with equi-spaced sensor nodes; this is a

constraint that will rarely hold in real world applications and for unequally spaced sensors other

approximations formulas have to be used, like derivatives of interpolating polynomials, for example

(note that the resulting terms will still be linear in the ❜✐).

The technique presented here also has another drawback. The computation is performed globally so

that the measurements of all sensors first have to be sent to a central node before computation can
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start. But consider the following scenario: the sensor network could frequently test itself by com-

puting the bias of a single sensor under the assumption that the neighboring sensors have zero bias

(this computation can be done locally since it involves only measurements from a constant number

of sensor-nodes – 3 sensors for the ❖✭✭�①✮✷✮✮-approximation and 5 sensors for the ❖✭✭�①✮✹✮✮-

approximation). Although the condition of zero-biased neighboring nodes may not hold, the sensor-

network should still be able to detect malfunctioning nodes this way and can exclude those from

further computations.

We have demonstrated the ideas already presented for a concrete example: we estimated sensor bias

solely based on sensor measurements and the system model. The accuracy of the approximation

formulas had a clear impact on the reliability and the convergence behavior of the estimates –

but more accurate approximations will also result in higher computation costs. We furthermore

discussed that this approach may still be of practical use even if the costs of global computation are

not acceptable.

4 Real-Time Computational Steering

Given a computational method, such as one of those described previously, the next major goal

is to develop a framework to facilitate mapping it onto a sensor network architecture. A strong

requirement is to build on existing architectures (e.g., SNA, Tenet, etc.) and to provide value added

for information analysis methods (e.g., COMPASS and WaveScope). Our approach to this is to

extend our previous logical sensor system specification methodology (ILSS) into the CSN arena.

Recall that the SNA group has stated [21] that an architecture is not an end in itself, but that the

task at hand is “the dense monitoring and analysis of sizable extents of the physical world,” and

that “sensor networks allow the understanding of the systematic behavior of various phenomena.”

The CSN approach allows a more quantified understanding of physical phenomena and the sensor

network, too.

The most relevant aspect of the SNA architecture to this proposal is the programming architecture

which is composed of two aspects:

✎ internal programming interface (IPI): how processing is performed across the numerous

nodes of the sensor network, and

✎ external programming interface (EPI): how information extracted from the sensor network is

processed on conventional computing resources.

We focus here on the IPI. CSN’s require an organization of the task structure, as well as load

balancing, communication minimization, etc. We have a great deal of experience with this in large-

scale, multi-physics simulation [25], and propose to develop a similar approach for CSN’s.
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Certain aspects of CSN’s require more detailed exchange of information through the interface: (1)

error analysis, (2) physical phenomena models or computational methods, and (3) V & V require-

ments. Our particular approach to these interface problems is to exploit our previous work on

Instrumented Logical Sensors to the sensor network context.

4.1 Internal Programming Interface

An early architectural approach which advocated strong programming semantics for multisensor

systems is the Logical Sensor System (LSS) [19]. This approach exploits functional (or applicative)

language theory to achieve that. The most developed version of LSS is Instrumented LSS [7].

The ILSS methodology is designed to specify any sensor in such a way that hides its physical

nature. The main goal behind ILSS was to develop a coherent and efficient presentation of the

information provided by many sensors of different types. This representation provides a means for

recovery from sensor failure, and also facilitates reconfiguration of the sensor system when adding

or replacing sensors [17]. We propose ILSS as a CSN specification.

ILSS is defined as an extension to LSS, and it has the following components (see Figure 12):

1. ILS name: uniquely identifies a module;

2. Characteristic Output Vector (COV): strongly typed output structure, with one output vector

and zero or more input vectors;

3. Commands: input commands to the module(❈♦��✁✂✄☎✐✆), and output commands to the

other modules (❈♦��✁✂✄✝✞✟);

4. Select function: selector that detects the failure of an alternate and switches to another alter-

nate if possible;

5. Alternate subnets: alternative ways of producing the ❈❖❱✝✞✟; it is these implementations of

one or more algorithms that carry the main functions of the module;

6. Control Command Interpreter (CCI): interpreter of the commands to the module;

7. Embedded tests: self-testing routines that increase robustness and facilitate debugging;

8. Monitors: modules that check the validity of the resulting COVs; and

9. Taps: hooks on the output lines to view different COV values.

These components identify the system behavior and provide mechanisms for on-line monitoring and

debugging. In addition, they give handles for measuring the run-time performance of the system.
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Figure 12: Instrumented Logical Sensor Module.

Monitors are validity check stations that filter the output and alert the CSN or user to any undesired

results. Each monitor is equipped with a set of rules (or constraints) that governs the behavior of

the COV under different conditions. For example, given the bias estimation method in the previous

section, this would be incorporated as a monitor to be run on a regular basis.

Embedded testing is used for on-line checking and debugging purposes. Weller proposed a sensor-

processing model with the ability to detect measurement errors and to recover from these errors

(Weller, Groen, and Hertzberger 1990). This method is based on providing each system module

with verification tests to verify certain characteristics in the measured data, and to verify the internal

and output data resulting from the sensor-module algorithm. The recovery strategy is based on rules

that are local to the different sensor modules. ILSS uses a similar approach called local embedded

testing, in which each module is equipped with a set of tests based on the semantics definition of

that module. These tests generate input data to check different aspects of the module, then examine

the output of the module using a set of constraints and rules defined by the semantics. Also, these

tests can take input from other modules to check the operation of a group of modules.

Specific issues include:

✎ Efficient methods for verifying sensor mote codes during execution. E.g., check that random

samples are from the appropriate distribution, check convergence rates, etc. These may be

compiled into the Instrumented Logical Sensors as automatic tests.

✎ Develop appropriate sensor mote framework for model validation. E.g., check that sensed

values match model predictions, periodically check model parameters, compare results across

motes for consistency.

✎ Implement sensor data integrity checks. E.g., Check that sensor models match actual data

statistics, check for sensor bias, drift, hysteresis, etc. as described in the body of the proposal.

✎ Obtain performance data from application experiments.
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4.2 Demonstration Application

We are engaged in the construction of a sensor network to monitor snow conditions and help de-

termine avalanche probability in back country ski areas in the Wasatch mountains. These sensor

networks will be comprised of devices having the ability to communicate, compute and sense the

environment temperature, light intensity, pressure, and other properties. We have developed sev-

eral distributed algorithms for such networks and demonstrated them in simulation and small-scale

experiments. Our goal is to build and test a 50-60 node network through Fall 2007. Given our

location in the Wasatch mountains in Utah, and the number of deaths each year from avalanche or

snow-related conditions, we are developing a network for deployment in the mountains in popular

cross-country skiing areas.

Several aspects of snowpack and snow crystal conditions may be modeled (see [34, 33] for a dis-

cussion of snowpack simulation, and [8] for the classification and identification of seasonal snow

types). A more complete discussion of the physics of snow and its relation to avalanche prediction

can be found in [32].

Snow generally occurs in layers of different types, and the goal is to sense the correct features and

determine the likelihood of the existence of types of snow grains and slope conditions prone to

fracture and sliding.

5 Future Work

1. As described in II, there is work to be done in terms of computational modeling, including:

analysis, investigation of stochastic methods, analysis of sensitivity and recovery errors, and

analysis of uniqueness of solutions to the sensor localization problem. We propose to inves-

tigate various formulations (1-D, 2-D, and 3-D) of the models of continuous phenomena to

be monitored. In particular, finite difference, finite element and/or spectral formulations will

be evaluated in terms of existence of solutions and complexity of solving resulting systems

of nonlinear algebraic equations. We need to investigate properties of the solution classes to

our model problems, in order to determine the existence of unique solutions, solutions that

are located in small clusters, and/or non-structured solutions. The sensitivity of sensor posi-

tions to the errors in process measurements needs to be investigated. In the case of processes

of high sensitivity (ill- conditioned) we need to investigate adaptive use of multi-precision

computation in order to correctly determine the locations of sensors.

2. The details of the computational mapping methodology need to be worked out and demon-

strated on applications. Given our success in mobile robotics applications, we belive that this

is readily demonstrable.

3. A rigorous set of experiments must be carried out. We intend to monitor snow quality in

the Wasatch mountains; this is an important application, and moreover, one which can di-
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rectly exploit the heat equation to determine degradation of snow quality. In addition, the

temperature at ground level under the snow should remain fairly constant.

Note that these are not simply theoretical issues, but require implementation and experimentation in

the field in order to demonstrate their effectiveness.
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