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1 I n t r o d u c t i o n

Currently available hardware specification languages have two serious deficiencies: (i) inadequate 

protocol definition capabilities; (ii) lack of a compositional model. We now explain these in more 

detail.

1. Lack of an Interface Protocol Definition Capability: A concise and complete description of 

the usage protocols of modules cannot be stated in those hardware specification languages 

that we have come across. Some illustrative scenarios that aren’t adequately handled are: 

(i) “Consider a two-phase clocked register. The register can be requested to perform load 

during phase-a; during the same phase-a, the register’s output still reflects its old state (it is 

master/slave); during phase-b, it delivers a value equal to the loaded value” , (ii) “A domino 

logic stage provides valid output during a certain phase and this output is destroyed due to 

precharging during the next phase” . W ith these and other examples in mind, we make two 

specific observations:

(a) Events (such as control lines attaining certain combinations at certain phases, etc.) as 

well as synchronization skeletons/protocols are important notions in VLSI specification; 

however most hardware specification languages (e.g. [Bar8 l], [Cam84], [Joh84], [She85], 

[CGM86]) don’t support these notions well.

(b) Values delivered on data ports depend upon states as well as input values. It is desirable 

to be able to treat complex circuit modules encompassing large amounts of state—such 

as a stack or a CAM—as modules possessing a single high-level state at the modeling 

level as well, rather than insisting (e.g. as most of the above hardware specification 

languages do) that every storage unit be bared. Those languages that insist that every 

state and combinational unit be separated as well as bared have two shortcomings:

i. They provide very low-level “next state” and “output” equations (maybe in a func

tional or logic style);

ii. Often such a separation is not satisfactory (a domino stage is a module with “stor

age” but usually implements boolean functions).

Our solutions (elaborated later) are: For addressing point la, we have designed a language 

“HOP1” with emphasis on behavior and protocol specification; For point lb , we propose the 

use of abstract data types to model the states and port values resulting from them. In this 

way, we can write “state equations” as well as “output equations” in terms of larger and 

more meaningful state entities. Our past research ([GSS86], [GS87], [Gop86]) supports this 

observation, in addition to some large examples recently specified by us ([FTG88]).

2. Lack of an Underlying Compositional Model: A specification language L is defined to provide 

a compositional model for the circuits it describes if, for an associative and commutative (AC) 

circuit composition operator ‘o’ and an AC specification composition operator ‘||’ in L, and a 

mapping Beh that yields the syntactic behavioral description of a given circuit as expressed 

in L, and a suitable behavioral equivalence relation =:

Beh (Ci o C2) = ((Beh (Cj) || Beh (C2))

The availability of such a compositional model opens up several new ways of attacking familiar 

but hard VLSI design problems, as we show in this paper.

'Hardware viewed as Objects and Processes
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In this paper,

11 . 1 We present a specification language called HOP that, we hope to show, provides an adequate (in 

terms of rigor and practical appeal) protocol and behavioral specification capability for specifying 

modern VLSI. HOP borrows many ideas from Milner’s Synchronous Calculus of Communicating 

Systems [Mil82]. We show that directly applying any of the existing Calculii of Communicating 

Systems (including SCCS) leads to problems in modeling communication through data busses. We 

introduce a new primitive for process interactions called data assertions to solve these problems.

HOP is vastly more simple than SCCS. HOP can describe only lockstep-synchronous circuits 

with deterministic behaviors under the conservative clocking [MC80] assumption. W ithin this 

framework, HOP boasts some new capabilities. Each HOP specification has two distinct sections: a 

timing protocol section written in a simple process specification notation, and a functional behavior 

section written in a first order functional programming language (that may use abstract data types). 

HOP specifications have so far proved to be easy and natural to write (and read) to us. Currently 

HOP is being used to specify an IC as complex as a Memory Management Unit that we are currently 

designing [FTG88].

12 . | We present an algorithm PARCOMP. W ith it, the above equation for compositionality becomes:

Beh (C io C 2) =  PARCOMP (Rep(o),Beh(C i),Beh(C 2 ))

where Rep maps the connectivity of the circuits to the equivalent representation (renamings and 

hidings as in CCS [Mil80]) used in HOP. Informally, PARCOMP statically computes a closed-form 

behavioral specification for an entire module from behavioral specifications of the submodules as 

well as their interconnections. The algorithm works by statically evaluating programs that use the 

operator || (our || is closest to CSP’s || used in [Hoa84, Chapter-2]). This static evaluation always 

terminates (for reasons shown later). This static evaluation also capitalizes on the event hidings (as 

in [Mil80]) to achieve a few orders of magnitude speed-up than a naive static evaluation that doesn’t. 

The resultant closed-form behavioral expressions present all producer/consumer relationships very 

abstracty and readably.

The main reason for achieving this abstraction is now illustrated. Suppose module M  is triggered 

by the controller to produce a value f (E )  on output port \p at tick t. Suppose module N  is triggered 

to consume a value x on input port Ip  (ports Ip and Ip  are connected according to our conventions) 

and then use x in creating the next data-path state <7(2 ) of N  at tick t + 1 . PARCOMP first 

grinds through such low-level specifications and displays as the net result the following, much more 

succinct, representation: (i) M  produces value \p at tick t, (ii) N  attains data-path state g (f(E ))  

at tick t + 1 .

On the other hand, if PARCOMP encounters two non-synchronizing events, say el and e2, 

at tick t which are hidden (i.e. el and e2 are localized within a module), it would report an 

error, indicating a “synchronization failure” . This major side-benefit of PARCOMP therefore helps 

in detecting sequencing errors (“synchronization failures” in a high-level sense) present in user’s 

stated synchronization requirements, without any simulation. This should be contrasted with current 

practices which involve (for example) running a circuit with test data and hoping that this test data 

would cause the control-sequencer to reveal its sequencing bug, which, in turn, is very indirectly 

observed (if at all) by seeing the wrong module getting activated, two modules clashing on a bus,

We know of no other comparable work that “deduces behavior from structure” (similar to 

PARCOMP), other than in very-low level automata theoretic models that introduce one modeling- 

level state for every data path state; our technique introduces one modeling-level state only for 

every control state which are far fewer in number.
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MODULE XOR 
PORT ?il, ?i2, !o 
PROTOCOL
XOR <= x=?il. y=?i2, !o=(x © y) — XOR 

END XOR

Figure 1: The Absproc Specification of an XO R  Gate

We also note that manual controller specification languages such as [AM84,Hen8l] could easily 

be transliterated into HOP; in addition if the data paths that these controllers control are also 

specified in HOP, current VLSI design methodologies could profit from PARCOMP.

13. | PARCOMP has been implemented in Common-Lisp. We show some results obtained in using 

it.

14. | The following additional spin-offs from PARCOMP are (briefly) discussed: (i) a new new way 

of simulating digital circuits (somewhat similar to that in [Mil85]); (ii) formal verification tech

niques; (iii) A possibility for automating pipelining, using semantics preserving transformations 

conducted on HOP specifications; (iv) possibility of symbolically simulating VLSI (combinational 

and sequential) circuits.

The main thrust of this paper will be in presenting HOP and algorithm PARCOMP.

Roadmap

The rest of this paper is organized as follows. Section 2 presents HOP through several examples. 

Section 3 provides an overview of the semantics of HOP. Section 4 presents PARCOMP through an 

example. Section 5 outlines work in progress. Though we often indicate where missing details exist 

in the appendices, there is no need to read the appendices to follow this paper. We will present a 

detailed literature survey in a longer version of this paper.

2 I l l u s t r a t i o n  o f  H O P

Let us start with two simple modules, an XOR  gate and a flip-flop (FF), specify them both in HOP, 

and be able to read and intuitively understand their specifications. These submodules will then be 

used in an MLS counter, whose behavior we will deduce using PARCOMP.

2.1 An X O R  gate

Figure 1 shows salient excerpts from the specification of an XO R  gate written in HOP. A 

specification that specifies a hardware system as a black-box without revealing its internal structure 

is called an Absproc specification. It states enough timing details (external timing protocols) to 

permit the module to be used in a larger context. It typically includes a large amount of “code” in 

a purely functional language that specifies how states and values are created.

Though our XO R  gate is combinational and is “usable at any time” , in a synchronous digital 

system it gets used only at clock ticks. Here we assume that it is used only during phases a or b of 

a two-phase clock train.

At each time step, inputs x and y (respectively) are consumed via ports ?tl and ?i2, and a data 

assertion (xQy) is made on the output port !o. No events are declared, and the XO R  gate repeatedly 

performs the above task. The process diagram in figure 2(a) depicts the HOP specification of the
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MODULE FF
CONTROL Id, a, b
DATA ?din, Idout
EVENT
copy = b
load = Id A a
circ = -i Id A a
PROTOCOL
FF [s] ■<= load, x=?din, !dout=s —► copy —*■ FF[x]

| circ, !dout=s -> copy -> FF[s]
END FF

Figure 3: The Circuit and Absproc Spec, of a Two-phase Clocked MS FF

X O R  gate. The basic unit of time is the “tick” of one of the phases. Note: All our specifications 

have their “starting phases” as phase-a.

Similarly, a multiplexor can be specified as per figure 2(b), and a CTRLR module (which we 

will use shortly) in figure 2(c).

2.2 A Two-phase Clocked Master-slave Flip-flop

The circuit schematic of a Flip-flop and its Absproc specification are shown in figure 3. The 

events to which the Flip-flop F F  responds to are load,copy and circ. load occurs if during phase 

a the input signal Id is asserted; otherwise circ occurs, copy always occurs during phase b. In 

figure 3, we do not show the boundary control wires as well as the circuitry to generate the events 

load, copy and circ. The starting phase of FF is phase-a.

This is how to read the specification of FF: The CONTROL wires coming into FF are Id, a 

and b. The DATA wires are '!din, and !dout. The EVENTS copy, load and circ are all input events; 

we denote an “output event e” by e. Note that events are defined as logic combinations of control 

wires and CLOCK wires a,b.

Finally, the PROTOCOL section states the following. The FF  process in data-path state 

s, as represented by  FF  [s]. (The stuff inside [] is almost always a data path state.) FF[s] offers 

two “choices” of events: load and circ. These guards are to be mutually exclusive by definition 

(thereby guaranteeing determinacy). If load is asserted by the user of FF while supplying x through 

?din, !dout is held at s during phase a, during the next relevant time (—► shows passage of one tick 

of time) the copy event must occur (phase b ticks). Following this, the behavior is similar to FF[x].

Especially noticeable is the fact that the flip-flop may be read during phase a regardless of whether 

load is asserted during phase a or not. This fact is always exploited by hardware designers in 

overlapping “read” and “write” on a flip-flop—but never made explicit in any formal hardware 

specification language to our knowledge. Many such details, such as “read from cache is OK while 

write-through is progress in main-memory” , can be expressed in HOP.

2.3 A Two B it Maximal Length Sequence (MLS) Counter

The schematic and Absproc specifications of a two-bit Maximal Length Sequence (MLS) counter 

are shown in figure 4, and depicted in figure 2(e). This specification was not m anua lly  w ritten , 

b u t com puted using PARCOMP. The effect of PARCOMP is to infer the boxed process diagram 

of the MLS counter from the rest of the process diagrams in figure 2. (Details soon to be presented.)

According to the inferred behavior, initially the sel inputs of the MUX modules could be set 

to permit the loading of the Flip Flops FF l and FF2 (the data loaded is non-zero). Thereafter,
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To give an overview of the current prototype of the HOP system, we present excerpts from the 

Absproc specification of the FF module and the Realproc specification of the MLS counter module, 

in appendix A.6.

3  O v e r v i e w  o f  t h e  S e m a n t i c  B a s i s  o f  H O P  a n d  P A R C O M P

Here, we deliberately simplify the presentation of the theory behind HOP to leave more room for 

examples. The abstract syntax of HOP is presented in figure 8, appendix A .I. A HOP specification 

specifies a collection of processes interacting with each other in lockstep synchrony, at the beats 

of a (uni or multi-phase) clock. At first glance, a HOP specification can be thought to specify a 

collection of “communicating Mealy machines”. The differences are:

• The events that label the Mealy machine’s transitions have a rendezvous [Hoa84] semantics; 

that is, if machine M\ would produce an output event e on its transition TO to be taken at 

time t and machine M 2 would produce an input event e on one of its transitions T I to be 

taken at time t, then the machines can make progress via TO and TIk', else they deadlock. This 

deadlock models synchronization failure because the intended synchronization requirements 

were not met at time t. This situation is exactly as in [Mil82].

• Transitions are, in general, labeled by data queries and data assertions. It is via these that 

data value communications take place. Data assertions define port value bindings that are in 

effect for one tick. If a data query is meanwhile issued by another module, it gets the value 

binding defined by the data assertion. Data queries and assertions do not rendezvous, thereby 

giving considerable leeway in process interactions. Nevertheless proper usage of events (that 

have a rendezvous behavior) is essential for meaningful data transfers. This is one of the 

major differences between HOP and SCCS. (Note: Data assertions can also model idealised 

switches by simply asserting an equality constraint.)

The formal operational semantics of HOP is provided in appendix A.2, figures 9 and 10. Basically 

these figure defines the transition relation —► via structural induction over the syntax of HOP. 

In  more p la iner terms, this defines “what all a HOP process can do” for all HOP processes. 

We illustrate just one of these rules: Parcomp. (Note: We discuss only a simplified form of this rule):

2.3.2 Lisp Representations of HOP Specifications

p ^ p ' , q^ q '

(P\\Q)câ a2(P ’\\Q')

According to this definition, if process P  can participate in action cal and transform itself into 

P  , and if process Q can participate in action ca2 and transform itself into Q , then (P  || Q) can 

participate in action cal,ca2 and transform itself into P  || Q . The notation cal,ca2  stands for 

the “action product” of actions cal and ca2 (in the same way action product is defined in SCCS). 

Basically, the “action product” construct captures the process of interaction among the actions cal 

and ca2. The concept of action product is a concise way of specifying synchronizations as well as 

value communications among modules. Figure 9 defines the action product operator.

According to rule Parcomp, computing the parallel composition of two processes P  and Q 

involves:

• Starting of P  and Q at their start states Sp and Sq ;

• Clashing all possible actions of P  and Q at these states;



• Generating all pairs of next states of P  and Q;

• Continuing the above process, in the presence of value bindings generated from the previous 

clashings;

• Stopping when all pairs of reachable control states have been examined.

The procedure is superficially similar to performing a product of two synchronously working au

tomata; pairing the respective states that are an equal number of transitions away from the re

spective start states, and then connecting these pairs of states with transitions labeled by paired 

events. However there are two key differences.

'i) transitions are labeled by data queries as well as data assertions; their interactions lead to value 

communications among the processes; (ii) events have to synchronize, or else the process deadlocks.

The termination of PARCOMP is due to the finite number of control state pairs in a cartesian 

product. We however generate far fewer states due to: (i) the “equal distance merge” that doesn’t 

pair certain states; (ii) pruning synchronization trees [Mil80] by capitalizing on hiding information.

4  I l l u s t r a t i o n  o f  P A R C O M P

4.1 Illustration of PA R C O M P  on the MLS Counter

• To deduce the Absproc description of the MLS counter, given diagrams 2(a) through (d) and the 
interconnectivity specification among the submodules (figure 5)—actually a more detailed CONNECT 
specification as in appendix A.6. We express the goal as:

MLS [sl,s2] = Connect dnterconnections of the MLS> in Hide {copy,load,il,i2} in

(FFl[sl] || FF2[s2] || XOR || MUX1 || MUX2 || CTRLR)

where FF1 and FF2 are of type FF, and MUX1, MUX2 of type MUX.

(Hiding p hides ?p and !p; hiding e hides e and e; e is a “synchronized event”.)

• The connect specification is handled by renaming all nodes interconnected to common names. Also 
all variables within processes are renamed to avoid name clashes. Then we have:

= Hide {?copy,!copy,?load,!load,?il,!il,?i2,!i2} in 

(FFl[sl] || FF2[s2] || XOR || MUX1 || MUX2 || CTRLR)

• Observe that the event circ is not generated by any of the participant modules. Therefore the choice 
offered by FF  1 as well as FF2 on circ are satisfiable only if some module outside the boundary of 
MLS generates circ. However, circ event is hidden; that is, no module from outside can supply circ. 
Therefore, we immediately prune the arm of FF1 and FF2 labeled by circ. In practical terms this 
means that FF1 and FF2 are always used as shift registers—no recirculation of data is done! (Note: 
In our actual implementation of the parallel composition procedure, this pruning take a few more 
fixed-size simple steps.)

• The parallel composition now reduces to: (i) taking the action product of the events offered by all the 
modules for the first instant of time; (ii) continuing with the remaining instants of time. We write the 
initial events offered by each of the modules in separate lines below, followed by —► which is followed 
by the collective behavior of the system from the second time instant onwards. One may read-off these 
lines from the figure 2.

(Offered by FF1) load, x l=?il, !ol=sl,

(Offered by FF2) load, x2=?i2, !o2=s2,

(Offered by XOR) x3=?ol, y3=?o2, !xo = x3©y3,

(Offered by MUX1) x4=?dil, y4=?xo, z4=?sel, !il=if(z4,x4,y4),

(Offered by MUX2) x5=?di2, y5=?ol, z5=?sel, !i2=if(z5,x5,y5),

(Offered by CTRLR) !load
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The following behavior under bindings B1 (defined below) :

( (icopy — FFl[xl]) || (!copy — FF2[x2]) || XOR || MUX1 || MUX2 || (!circ -► CTRLR))

• The binding B1 is generated by the action product occurring during the first time instant. It is:

{<xl «— if(z4,x4,sl0s2)>, <x2 *— if(z5,x5,sl) >,

<x3 *— sl>, <y3 <— s2>, <y4 <— sl0s2>, <y5 <— sl> }

The generation of such a binding is required by rule Data-assns of figure 10.

• The parallel composition procedure continues by: (i) unraveling the behavior starting at the second 
time instant; (ii) pruning away all unsynchronized but hidden events (there are none for the MLS); 
(iii) terminating if all control combinations have been exhausted. In the current example, after ex

panding the behavior at the second time instant, we would be faced with:

( FF1[..] || FF2[..] || XOR || MUX1 || MUX2 || CTRLR )

for some arbitrary arguments to FF1 and FF2. At this point, our procedure can stop because it 

is the control combination <FFl,FF2,XOR,MUXl,MUX2> that we began with. We call this a control 
combination because it represents an execution control status of all the subprocesses.

• Thus, we get diagram 2(e).

4.2 Results of the Run from Our Implementation

Our implementation took the inputs given in appendix A.6 produced the listing, shown in ap

pendix A.6 (edited for visual clarity). It says that the entry-point is control state (0 0 0 0 0 0). 

Entering there, we see that the process generates no events, generates a few data assertions that 

specify ports and expressions (D I and DO). (The strange variable names are obtained after renam

ings to avoid name clashes.) The next control state is (1 1 0 0 0 l)  and the next data path state 

is also specified. At control state (1 1 0 0 0 1 ) ,  we perform some actions and come back to control 

state (0 0 0 0 0 0). This corresponds to figure 2(e). The computation takes a few seconds of elapsed 

time on a HP-Bobcat running HP Common Lisp.

Roughly ten times more time is taken, on the average, if we do not capitalize on the event 

hiding information. For another larger example (a FIFO queue), not using the hiding information 

resulted in the generation/re-examination of roughly a hundred times more control states.

4.3 Statically Detecting Synchronization Failures

We plugged in a bad CTRLR module that has copy and load switched with respect to figure 2(c). 

The parallel composition yielded a process with no transitions at all (STOP of [Hoa84]).

Any finite process— a process that has a finite sequence of actions leading to a deadlock— is 

useless for building digital systems. A module, after all, has to run forever! Upon detecting a 

deadlock our system reports the cause for it; in this case, revealing that the user made a high-level 

sequencing error, thereby preventing the event load from getting synchronized. No simulation was 

performed to reveal this synchronization error.

We can similarly detect this, and other errors such as: (i) errors due to omission of data port 

interconnections, causing UNKs to propagate; (ii) two syntactically different values clashing on a 

port, for the MLS, and much larger examples.

5 W o r k  i n  P r o g r e s s

This section touches on many design automation issues centered around HOP. Due to the page 

lim its, we present only one in detail. The rest are in appendix A.5.
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TESTER <= !sel=l !dii=0 !di2=l — C0UNT[4]
COUNT[N] <= if (N=0) then PRINT.N.STOP ‘

else !sel=0 — C0UNT[N-1]

PRINT.N.STOP print(“Counting test over") —*• STOP

Figure 6: A Tester Process for an MLS Counter, Expressed in HOP

(MLS[sl,s2] || TESTER) <=
( !sel=l, !dil=0, !di2=l, !ol=sl, !o2=s2, !xo=sl0s2 —►
( !xo=UNK, MLS[if(z4,x4,sl0s2), if(z5,x5,sl)] ) || COUNT[4] )
under bindings '

{< x4 *— 0 >, < x5 *- 1 >, < z4 +— 1 >, < z5 +— 1 >}

If we start FFl and FF2 in states 0 and 1 respectively, and unravel the parallel composition via the simulator, 
we can obtain the following:

( (!ol=0, !o2=l, !xo=l —► <some outputs> —*• COUNT[2]) || MLS[1,0]) 
and then

( (!o l= l, !o2=0, !xo=l —► <some outputs> —► COUNT[l]) || MLS[1,1]) 
and then

( (!o l= l, !o2=l, !xo=0 —► <some outputs> —► COUNT[0]) || MLS[0,1]) 
thus completing one cycle.

As will be seen shortly, this is also the basic technique for symbolic simulation.

Figure 7: Parallel Composition of a MLS Counter and Its Tester

A New Approach to Simulation

A great advantage of HOP is that we do not need a separate simulation command language; 

HOP itself suffices! Example: the tester process defined in HOP to test the MLS counter figure 6. 

This tester process sets the !sel port to 1 (to permit loading the flip-flops), !d il to 0 and !di2 to 1 

(the data items to be loaded), all during the first time instant. Starting at the second time instant, 

the behavior of TESTER is the same as that of C0UNT[4]. The COUNT[N] process counts N times 

in a loop. Until N gets to zero, the !sel line is kept at 0, thereby permitting data to flow among 

the submodules. When the count runs out, a message is printed (an event only for humans) and 

the simulation halts. Halting is simply achieved by virtue of the fact that STOP is a process that 

is capable of no actions at all.

In order to simulate a circuit: (i) statically compute the parallel composition of the module to 

be tested with a “tester” process; some errors could surface now; if not we get (we believe) faster- 

to-simulate functional expressions; (ii) simply “unravel” the result of the parallel composition. The 

result of taking such a parallel composition is given in figure 7.

Pipelining

Some languages (e.g. SLIM [Hen8l]) have the ability to specify automata, and additionally state 

that certain outputs be generated earlier or later relative to other events. These help in pipelining 

systems, albeit manually. In HOP, we can model the idea of pipelining used in SLIM. The idea 

is to substitute one controller for another in a subsystem and check that the overall behavior is 

unaffected, except for the gained speed. We have some examples that support our research in this 

direction. One example is given in appendix A.8.
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We have currently completed the formal verification of a large ASIC that we are designing. We could

present excerpts from this in the final paper. Some details of the latter are in appendix A .5.1.
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Notes: The abstract syntax has to be augmented with the following rules:

• A choice (|) may not be offered among different output events. Essentially, being in a control state 
determines the output events generated uniquely.

• Choices must contain mutually exclusive input events in their input guards (initials citeCSP-book). In 
reality, the input guards are also exhaustive: all other events lead the process to STOP , i.e. deadlock.

process.definition
rename.process

rename Junction 
hide.process 
hide.function 
par.process

deterministic.choice 
rest.o/.choices

seq.process

compound.event

simple.event 
dataio .assertion

processed [ parameters ] = rename.process 
rename.function hide.process 
| hidejprocess
| i f  (condition, rename.process, rename.process ) 

rename event.pori.names to event.pori.names in  
hide.function par.process \ parjprocess 
hide event.pori.names in  
deterministic.choice 
| deterministic.choice \ \ parjprocess 
| process.id [ actuals ]
| process.id [ actuals ] I I par.process 
| rename.process 
| par.process I I rename.process 
( rest.of.choices ) 
seq.process

| seq.process I rest-of.choices 
process.id
| process.id [ actuals ]
| compound.event -> seq.process 
simple.event
| simple.event , compound.event 
| dataio.assertion
| dataio.assertion , compound.event 

eventid \ eventid \ eventid \ idle 
variable = ?portid | !poriid = expression

Figure 8: Abstract Syntax of HOP, with terminals in te le type  font

A  A p p e n d i x

A . l  T he  A b s tr a c t  S y n tax  o f H O P

See figure 8.

A .2 T he  F o rm a l O p e ra t io n a l S em an tics  o f H O P

See figures 9 and 10. Some explanations are now presented.

Separately defined processes with different event and port names may be made to interact with each 
other by renaming their interface events and ports to common names. A processes may be prevented from 
interacting with another through an event or a data port by hiding that event or data port.

We have found that having three kinds of events input, output and synchronized is helpful both seman
tically and pragmatically in the following ways:

• Specifications are made to relate to practical reality (driven signals .vs. input signals) better. In 
addition, our definition of event products (figure 9) is based on our intuition of how synchronous 
hardware systems work. In order to capture this intuition faithfully, we have found it necessary to 
have these three kinds of events.

• to have broadcast semantics for events (e behaves like e as far as event product goes; both of them 

can “meet and annihilate” an input event.
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e, e => e (i)
e, e => e (2)
e, e => € (3)
e, e => e (4)
e, e => ? (5)
e, e => € (6)

= port => port = E, with binding [E/x ] (7)

Figure 9: Definition of Action Product in HOP

• to distinguish a synchronized action (?) from an unsynchronized action '(e) with respect to hiding; 
Hiding an unsynchronized event causes deadlock whereas hiding a synchronized event is equivalent to 
replacing that event with an idling event.

• to define a function interpret that takes a process and reveals its execution history, by traversing 
that path (unique due to determinacy) of the synchronization tree [Mil80] that is labeled solely by 
synchronized events and data assertions. The third precondition of rule for parallel composition as 
well as the notes given in figure 8 guarantee the determinacy of HOP.

In figure 9 we provide the action product axioms of HOP. They define the way in which we wish to 
see simultaneously occurring events and data assertions interact. Specifically: synchronization is defined; 
unsynchronized simultaneous events are allowed, hoping that under future parallel compositions these events 
would get synchronized. The relation => may be read as “may be simplified to”. The action product operator 
V is commutative and associative with identity element idle.

In figure 10, we present the operational semantics of HOP as a labeled transition system. For each 
compound action ca, the relation — ► is the smallest relation closed under the rules given in figure 10. These 
rules are to be applied only after a canonical representation for action products defined by figure 9 has been 
obtained.

Action and Det-choice These are basis cases of the transition relation, with Action being a special case 
of Det-choice. The rule Det-choice says that a process defined as a deterministic choice of compound actions 
ca, can evolve to P, via caj.

Parcomp This rule defines the parallel composition of two processes. Consider the first two precondi

tions of this rule (for ease of understanding). If P  and Q can evolve via cal and ca2, P  || Q can evolve via 
cal,ca2, the action product of cal and ca2. The third precondition of this rule is what guarantees determi
nacy; if Q can disrupt the mutually exclusive nature of the choices offered by P, the parallel composition of 

two processes P  and Q doesn’t have any transitions defined.

This rule captures how individual data assertions interact upon parallel composition andData-assns
impart a binding to variables present in the receiving process. The cases of contradicting assertions (two 
modules driving a data bus with different values) is handled naturally; a port identifier would be equated to 
two different values. By admitting a value HIZ (to model open busses) and suitable resolutions of bindings 
such as port =  H IZ , port = 22 => port = 22 “wired functions” also can be modeled. Likewise modeling 
bidirectional flow of information, such as in a pass transistor, is easy; both ends of the pass transistor are 
asserted to have the same value.

Hiding-sync When event e is hidden from process P, all synchronized events e in P  are replaced with

idle, the identity event for action products.

Hiding-unsync When an unsynchronized event cal is hidden from P, the branch of the synchronization 

tree of P  labeled by cal (as well as the subtree following cal) is pruned.

Obvious.Iliding-dout, Hiding-din and Renaming

Conditionals and Recursion The rule for recursion is essentially that defined on [Mil82, page 8],
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Action (ca —+ P) — ► P  

Det-choice (|,- ca,- —► P,) Pj
„  Co 1 i „  ca 2 ' . „ e l , ca 1 i „e2  ,ca2 „/> _  SSL . _ -  S ,  , « e 5 ,e 4 ,c o 3 „ / .,

P a rco m p-’ Q— ' Q  '  ̂ —" ’ ---  ’ e36<e1' ^ ’ e4e{e2,72}z> not(Q —► Q ))
ca 1 ,c a 3 . / 1| _  / .

(p IIQ) ( P W )
p (,=rt,ea lp , (P=£),ea2

Daca-assns ---

JTidiflg-syjic

(P I, g) (P . || .j.) [C/I]

___________ P - ^ P '___________

Hide e in  P eâ l£l/^ Hide e in  P'

D  n 1 n  •  _  4_■ i• P  — ► P  , P  — ► P  , e or e G cal 
Jfjajng-unsync ------------ -------------

(Hide e in  P) (Hide c in P") 

p  C0 'P = g  p '

Hiding-dout ---------- —----------
Hide p in  P  — ► Hide p in  P'

Hiding-din
p  p >

Hide p in  P  — ► Hide p in  P'with x unbound

Renaming-e ------------- —— -——--------------
. Rename e to el in  P  — ► Rename e to el inP '

Renaming-e ------------- ——_ ^ --------------
Rename e to el in  P Rename e to el inP*

„  . P P  , da uses p
Renaming-port

Conditional

Rename p to p i in  P <,al£ l^  Rename p to pi inP '

P I -^Up

( if  true then P i else P 2) — P'
ca

( if  /a/se then P I else P2) — ► P' 

P, [/ix T .P/X] P'
ca

f k i  n r  a h' i a i .
Recursion

fix i X . P - ^ P '

Notes: The transition for Parcomp may be strengthened to include: (i) clashing outputs on a bus; (ii) two 
modules generating an output event (seldom happens, and skews make this dangerous!).

Figure 10: Operational Semantics of HOP
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Cl

C2

p Data Output

Data Query

Data Query

Figure 11: Use of Data Assertions

A .3 The Computational Model Underlying HOP

A collection of processes Pi, P2, ..., Pjv, share a global clock and interact with each other on each clock beat 

through a finite set of named events e*, ej, etc. At each time step, a process P: waits for one of several 
mutually exclusive events ei,...,em to come true (offers a ’’deterministic choice” in the sense of cite[Chapter- 
2]Hoare-book) or idles. A process that idles has no effect on the other processes. A process P  offering a 
choice £  = ej, ...,em at time step t deadlocks if none of £  = rf, are produced by some other process
during time step t. If, however, ej £ £  is produced, P synchronizes on ej and continues to behave like some 
process, Pj. Each output event ej can synchronize with more than one input event ej. Non-synchronizing 
events ei,e7 , etc. may occur simultaneously, too.

So far our computational model has resembled that of SCCS citeMilner-sccs except for determinacy and 
broadcast semantics for output events. But now we start differing. Each process possesses a finite set of 
named data input and data output ports p,-. A set of ports can be regarded to be connected if they have 
the same name. Such a connection is called a node. At each time step a process can make data assertions 
on its output ports or query data from its input ports. A data assertion is written Ip = E  where \p is a port 
(! to indicate it is an output port) and E  is an expression denoting some value (such as integers). A data 
query is written x =?p where a: is a variable that has not been used so far in the lexical scope of the process 
description (? to indicate input direction). Data assertions and data queries on a set of connected ports are 
meant to interact; therefore if data assertion Ip = E  is true at time t, a data query x =?p binds * to E  in 
the process making the query. However, data assertions may be made without any contemporaneous queries 
going on; or queries may be properly contained in the interval in which assertions are made. In this sense, 
value communications (as opposed to synchronization signals) between processes is not through rendezvous, 
unlike all existing Calculii of Communicating Systems.

Also note that the synchronization behavior of a process is solely determined by events. A proper 
synchronization skeleton of events is vital for meaningful data communications. Yet there is considerable 
flexibility in the manner in which data assertions can meaningfully interact (see figure 11). We could not 
find any way to satisfactorily model such situations modularly in existing Calculii of Communicating Systems 
(“CCSes”) or other process specification languages. In existing CCSes a process performing an output action 
cannot make progress without another process performing a matching input. Also, using existing CCSes 
we had to explicitly wire in timings into process descriptions. Despite this extension, we have a simple and 
elegant operational semantics for HOP A.2, much like that for SCCS citeMilner-sccs. HOP also provides 
conditional expressions of the form P[x] ■<= i f  p(x) then P[f(x)] else Q[x]. This then is HOP’s underlying 

computational model.

A .4 The Parallel Composition Algorithm

Input: An expression Hide HS in || {Pj[Xj],..., Cj[Xj],...} for i € {l..m}, j  £ {l..n}. Cj are 

conditional processes of the form C,[X7] = i f  qj then 7}[<7j(Xj)]else Fj[hj(Xj)] and P, are non

conditional processes of the form P,[Xi] = 2/i : initialsi —► i2j(y,); Each P* offers a set of initial
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choices initiahi and for each choice j/j that is offered, the future behavior of Pi is Ri(x/i). HS is the 
Hidden Set, the set of events and ports hidden from the parallel composition.

Output: A behaviorally identical process P[Xi, ..., X j , ...].

A done-list is maintained for each parallel composition || {Pj[X7|,...} that has already beenMethod:
computed. Upon getting a call for performing parallel composition, the done-list is first consulted.

• If the requested parallel composition is in the done-list, return. Else enter it in the done-list and 

proceed as follows.

• Combine all conditional processes into one conditional process C. Combining two conditional processes 

is done as follows:

= if  9 ithen 7i[ffi(^D]else *i[M^D]

C2[^2] = i f  92 then T2[g2 (X2)] else

Cif^T] || C,2 [A’2] =  i f  (9 1 A q2) then ||

else i f  (91 Ano<(}2)) then Ti[0i(Xi)] || i?2[/i2(X^)] 

else ...etc. (all four combinations)

• Now we are left with the task of computing Hide HS in || {PjfxT],..., C). Let C be of the form

i f  qi then Ci[</i(Xi)]else i f  q2 then C2[j2(X 2)]e<c.

|| {.PjfXi],..., C) reduces to a conditional process with g,- as the conditions. This conditional has in 
it parallel compositions of the form || {.PjfXi],..., C,}. that is (recursively) computed. Eventually we 
are faced with composing non-conditional processes in parallel. We take this up next. „

• Consider || {Pj[Xi],...}. Let each P, be

PifiQ  = ca\

ca? -  R?V?'(X7)}

• Generate tuples
T = <  ca*1, ca^, >

i.e. a tuple of the Xith initial compound action offered by P\, the x2th initial compound action offered 
by P2 , etc. This tuple T is assumed to be the irreducible form arrived at after applying the action 
product rules of figure 9. According to the rule for parallel composition (Parcomp of figure 10), all 
such tuples would become the initial choices of the resultant process. Following such choices, the 
resultant process would continue to behave like || {72*1 [/f1 (Xi)]Pfa[/2 ...}. However using the 
hiding information HS, we can prune many of these choices. In particular,

- those tuples T that contain unsynchronized events e or e that belong to HS are dropped, and 
the corresponding arm of the synchronization tree is pruned;

- those tuples T that contain synchronized events e that belong to HS are replaced by T[idle/fj.

In computing

the bindings generated by taking action products of the members of T are taken into account. Specif
ically, we construct a let block containing these bindings. □
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A .5 Some Details of W ork in Progress

A.5.1 Symbolic Simulation

Symbolic simulation requires us to carry around non-ground (with free variables) expressions in “unravel
ling” the behavior of the result of parallel composition. Handling non-ground functional expressions during 
symbolic simulation has the following problems:

• Simplification of the functional expressions that arise during simulation is not an easy problem. In 
general it involves reasoning in various mathematical theories. Fortunately, we observe (from the 
examples in [Gop86]) that many such theories are simple and therefore reasoning in them can be 
automated.

• More challenging is the problem of deciding the path to be followed upon encountering a conditional 
branch (the “«/’ process in non-terminal rename_process, figure 8).

At present we have the following ideas: when a conditional expression (such as (N=0) in the specification of 
process COUNT) is encountered, the user is queried for a suitable decision. The user’s response (say “true”) 
is recorded and the simulation proceeds along the prescribed direction. It is then the responsibility of the 
simulator to make sure that future evaluations (including future queries from the user) are checked against 
past responses of the user for consistency. A mixed approach of actual and symbolic simulation is also a 
possible solution.

A .6 Lisp Representations of HO P  Specifications

EX CER P TS FROM T H E  ABSPROC S P E C IF IC A T IO N  O F F F

( (nam e . f f )
( k i n d  . a b s p r o c )

( p o r t  . ( ( d i n . ( I  . B I T ) )  j p o r t  n a n e , d i r e c t i o n ,  t y p e
(d o u t . (0  . B I T ) )  ) )

(e v e n t  . ( (c o p y • I )  : e v e n t  name a n d  d i r e c t i o n
( l o a d . I )
( c i r c . I ) ) )

( p r o t o c o l . (  ( f f . (  (p a r a n  . ( ( s . s t a t e )  )  )

( i o v a r  . (  ( i  . B I T )  )  )

(b o d y  .

(C H O IC E

(S E Q  (S IM U L T  ( I  lo a d )  ( D I  x  d i n )  (DO s  d o u t ) )

(S IM U L T  ( I  c o p y ) )

(BECOM E f f  ( i ) ) )

(S E Q  (S IM U L T  ( I  c i r c )  (DO s  d o u t ) )

(S IM U L T  ( I  c o p y ) )

(BECOM E f f  ( s ) ) )

))))))
(d e f u n  . n i l  )  ; no  f u n c t i o n s  a r e  d e f in e d  h e r e .

)  ; i f  a n y  a r e  n e e d e d , s u p p ly  nam e, a r g s  a n d

; a  la m b d a  e x p r e s s i o n .

EX CER P TS FROM T H E  REALPROC S P E C IF IC A T IO N  O F  T H E  MLS COUMTER

( (nam e . m is )

( k i n d . r e a l p r o c ) ; p a r a m ,c o n s t . t y p e  s e c t i o n s  a r e  a l s o  u s a b le  i n  a n  A b s p ro c  s p e c

(p a r a n  . n i l  ) ; S i z e  p a r a m e te r s  ( e . g .  w o r d le n g t h )  c a n  be s p e c i f i e d

(c o n s t . n i l  ) ; c o n s t a n t s  sis i n  P a s c a l

( t y p e . n i l  ) ; t y p e  d e f i n i t i o n s  a s  i n  P a s c a l

( p o r t . ( ( c d i l . ( I  . B I T ) )  ; p o r t  nam e, d i r e c t i o n ,  t y p e
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(event .
(subprocess

( c o l  

(c o 2  

n i l  )  

. (  (F F 1  . 

( F F 2  . 

(MUX1 

(MUX2 

(X O R

( c d i 2  . ( I  . B I T ) )

( c s e l  . ( I  . B I T ) )

( 0  . B I T ) )

( 0  . B I T ) ) ) )

( f f  ) )

( f f  ) )
( m u  ) )

( m u  ) )

( x o r  ) )

FF1  a n d F F 2  a r e  in s t a n c e s  o f  f f .  

one may s u p p l y  a c t u a l  s i z e  

p a r a m e te r  a l s o  w hen i n s t a n t i a t i n g  

th e s e  s u b m o d u le s . e . g .  v o r d l e n g t h  =  1 6 . 

HOP s p e c s ,  c a n  t h u s  h a v e  a  n i c e

( p r o t o c o l  

(C O N N E C T

(d a te m o d e

( c t r l r  . ( c t r l r ) ) ) )  ; t a i l o r a b l e  s t r u c t u r a l  h i e r a r c h y .  

(  (m is  .

S p e c i f y  t h e  f o l l o w i n g  f o r  e a c h  d a t a  n o d e  a n d  e v e n t  n o d e :

I n t e r n a l  nam e, e x t e r n a l  nam e, h id d e n  o r  n o t ,

l i s t  o f  s u b m o d u le s  a n d  t h e i r  p o r t s  t h a t  m eet a t  t h i s  n o d e .

(e v e n tn o d e

. (  
(n m i l  

)
(n m i l

)
( n s e l

)
( n o l

)
(n o 2  

)
(n m o l 

)
(nm o2 

)
(n x o  

)))
. (  ( n l o a d  U N K -E V E N T  h id d e n  (  (C T R L R  . l o a d )  (F F 1  . l o a d )

c d i l n i l ( (MUX1 .. m i l )  )

c d i 2 n i l ( (MUX2 .. m i l )  )

c s e l n i l ( (MUX1 ,. B e l )  (MUX2 . s e l )  )

c o l n i l ( (F F 1  .. d o u t )  (MUX2 . m i2 )

(X O R  .. i l  )  )

co2 n i l ( (F F 2  ., d o u t )  (X O R  . i 2  )  )

U N K -P O R T h id d e n  (  (MUX1 . mo) (F F 1  . d i n )  )  

U N K -P O R T h id d e n  (  (MUX2 . mo) (F F 2  . d i n )  )  

U N K -P O R T h id d e n  (  (XO R  . x o )  (MUX1 . m i2 )  )

(F F 2  . l o a d )  )

(n c o p y  U N K -E V E N T  h id d e n  (  (C T R L R  . c o p y )  (F F 1  . c o p y )

(F F 2  . c o p y )  )

)
(nc 

)
( n c i r c l  U N K -E V E N T  h id d e n  (  (F F 1  . c i r c )  ) )  

( n c i r c 2  U N K -E V E N T  h id d e n  (  (F F 2  . c i r c )  ) )

)
))))))

TH E  R ES U LT O F P A R A LLE L  C O M P O S ITIO N  Y IE L D IN G  T H E  MLS PROCESS

E x p l a n a t i o n :

P ro c e s s e s  a r e  r e p r e s e n t e d  a s  a  s t r u c t u r e  w i t h  t h e  i n d i c a t e d  f i e l d s  (E N V IR O N M EN T, e t c . ) .

EN V IR O N M EN T, E V E N T S , D A TA -A S S N S , N E X T -C T R L -S T A T E  a n d  N E X T -D P -S T A T E

a r e  “ p a r a l l e l  l i s t s ’ ’ , i . e .  t h e i r  i t h  e n t r i e s  c o r r e s p o n d  t o  e a c h  o t h e r  f o r  a l l  i .

A p r o c e s s  may be v ie v e d  as a  f u n c t i o n  fro m

e v e n t s  t o  p r o c e s s e s  (a s  i n  [ H o a 8 4 ] . )  S u c h  f u n c t i o n s  c a n

be c o n v e n i e n t l y  s p e c i f i e d  u s i n g  a r r a y s .  T h i s  i s  w h a t we d o .

A t  e a c h  a r r a y  i n d e x ,  s p e c i f y  t h e  ‘ ‘ c u r r e n t  s t a t e ’ ’ a c t i o n s ;  th e n  

s p e c i f y  t h e  n e x t  c o n t r o l  s t a t e  (a n o t h e r  in d e x  i n t o  t h e  a r r a y )  a n d
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th e  n e x t  d a t a  p a t h  s t a t e .  T h e  d a t a  p a t h  s t a t e  c a n  be m o d if ie d  

o n ly  d u r i n g  p r o c e s s  c a l l s  ( t h e  ‘ ‘ BECOM E”  c o n s t r u c t  i n  t h e  L i s p  

r e p r e s e n t a t i o n ) .

L e t  in d e x  ( 0 0 0 0 0 0 )  ( c o n t r o l  s t a t e )  c o r r e s p o n d  t o  t im e  t .

Ue n o s  s t u d y  t h e  f o l l o s i n g  l i s t i n g .

A t  t im e  t  t h e  ENVIRONM ENT s p e c i f i e s  t h e  b i n d in g s  i n  e f f e c t  

f o r  t h e  d a t a -p a t h  s t a t e  v a r i a b l e s  as v e i l

a s  t h e  I/ O  v a r i a b l e s .  T h e r e  a r e  no e v e n ts  o n  s h ic h  t h e  MIi> s i l l  

r e n d e z v o u s ;  i t  v i l l  s i m p ly  s c o o p  u p  a l l  t h e  d a t a  a s s e r t i o n s  p r e s e n t  

a t  t h a t  t im e  a n d  m a rc h  a h e a d . T h e r e  a r e  some d a t a  a s s e r t i o n s  made 

a t  t im e  t .  A t  t im e  t + 1 ,  Be e n t e r  c o n t r o l  s t a t e  (1  1 0  0 0 1 ) .

T h e  d a t a  p a t h  s t a t e  r e m a in s  th e  seme (F F 1  a n d  F F 2  a r e  e s s e n t i a l l y  

a t  ‘ ‘ s ” ) .  A t  t im e  t + 1 , . . .  r e a d  o n  a g a i n s t  (1  1 0 0 0 1 ) .  We come 

b a c k  t o  c o n t r o l  s t a t e  ( 0 0 0 0 0 0 )  a f t e r  t h a t .

T h e  N E X T -D P -S T A T E  h a s  some N IL s  i n d i c a t i n g  t h a t  XOR, MUX1 a n d  MUX2 

d o n ’ t  h a v e  d a t a  p a t h  s t a t e s .

EN TR Y C TR L  S T A T E (0 0 0 0 0 0)

PROCESS MLS I S

F F 2 $ F F $ S )

(X 0 R -F N  X0R$X0R$X X 0 R $ X 0 R $ Y ))

(M U X -F N  MUX1$MUX$MX MUX1$MUX$MY M UX1$MUX$MS)) 

F F 1 $ F F $ S )

F F 1 $ F F $ S )

(M U X -F N  MUX2$MUX$MX MUX2$MUX$MY M UX2$MUX$MS)) )

NM02)

(0 0 0 0 0 0):
ENVIRONM ENT ((X 0 R $ X 0 R $ Y

(MUX1$MUX$MY 

(F F 1 $ F F $ X  

(MUX2$MUX$MY 

(X0R $X0R $X 

(F F 2 $ F F $ X  

E V EN TS  n i l

D A TA -A S S N S  ( ( ( D O  (M U X -F N  MUX2$MUX$MX MUX2$MUX$MY MUX2$MUX$MS) 

( D I  MUX2$MUX$MS C S E L )

(DO F F 1 $ F F $ S  C 0 1 )

( D I  MUX2$MUX$MX C D I2 )

(DO (M U X -F N  MUX1$MUX$MX MUX1$MUX$MY MUX1$MUX$MS) 

( D I  MUX1$MUX$MS C S E L )

(DO (X 0 R -F N  X0R$X0R$X X 0R $X0R $Y) H X0 )

( D I  MUX1$MUX$MX C D I1 )

(DO F F 2 $ F F $ S  C 0 2 ) ) )

N E X T -C T R L -S T A T E  ( ( 1 1 0 0 0 1 ) )

N E X T -D P -S T A T E  ( ( ( F F 1 $ F F $ S )  (F F 2 $ F F $ S )  N I L  N I L  N IL  N I L ) ) )

NM01)

(1 1 0 0 0 1): 
ENVIRONM ENT

EV EN TS

D A TA -A S S N S

(M U X -F N  MUX2$MUX$MX MUX2$MUX$MY M UX2$MUX$MS))  

F F 1 $ F F $ S )

F F 1 $ F F $ S )

(M U X -F N  MUX1$MUX$MX MUX1$MUX$MY MUX1$MUX$MS)) 

F F 2 $ F F $ S )

(X O R -F N  X0R$X0R$X X 0 R $ X 0 R $ Y )))

( (F F 2 $ F F $ X  

(X0R $X 0R $X  

(MUX2$MUX$MY 

(F F 1 $ F F $ X  

(X 0R $X 0R $Y 

(MUX1$MUX$MY 

n i l

( ( S I M U L T ) )

( ( ( D I  MUX1$MUX$MS C S E L )

(DO (M U X -F N  MUX1$MUX$MX MUX1$MUX$MY MUX1$MUX$MS) NM01) 

( D I  MUX2$MUX$MX C D I2 )

( D I  MUX2$MUX$MY C 0 1 )

( D I  MUX2$MUX$MS C S E L )

(DO (M U X -F N  MUX2$MUX$MX MUX2$MUX$MY MUX2$MUX$MS) NM02)
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load, x = cdi, cdo = s —► CT7i[x]

up, cdo = s —► CT7Z[up(s)]

down, cdo = s —► CT7i[doum(s)]

cde/, cdo = s —► CT7i[s]

read, a = cdo —► M£M l[s, a]

write, a = cdo, d = mdi —► Mi?Af[u>ritfe(s, a, d)]

mdef —► Mi?Af[s]

read, mdo = read(s, a), a = addr —► M £M l[s, a]

write, mdo = read(s,a), a = cdo, d — mdi

—*• MEM[write(s,a,d)]

mdef, mdo = read(s, a) —► Mi?Af[s]

reset, mdef, cdef —► /oad, mdef —► SCTL

push, mdef, cdef —► up, mdef —► cde/, write —► SCTL

pop, mdef, cdef —► down, mdef —► SCTL

top, mdef, cdef —► cde/, read —► SCTL

sdef, mdef, cdef —► SCTL

Hide {load, up,down,cdef,read, write, mdef, cdo] in  

CTJ?[cs] || M£M[ms] || SCTL

Figure 12: Realization of a Stack 

( D I  x o r $ x o r $ x  c o i )

( D I  X0R$X0R$Y C D 2 )

(DO (X O R -F N  XOR$XOR$X X 0R $X0R $Y) KXO)

( D I  MUX1$MUX$MX C D I 1 ) ) )

K E X T -C T R L -S T A T E  ( ( 0 0 0 0 0 0 ) )

N E X T -D P -S T A T E  ( (F F 1 $ F F $ X  F F 2 $ F F $ X  N I L  N I L  N IL  N I L ) ) )

A .7 One More Example: A Stack

From the definitions in figure 12, we deduced the definition in figure 13.

ST/fPA/^cs, ms] = reset —► x = cdi —► ST/CPAR^, ms]

1 pus/i —► d = mdi —► idle

—► ST.fi_P.A.R[up(cs), write(ms, read(cs), d]

| pop —► idle —► ST7fPAR[doum(cs), ms]

1 top —► id/e —► STTfP-APlfcs, ms, cs]

1 sde/ —► STTfP-APlcs, ms]

ST/v P-AJ?l[cs, ms, a] = (mdo = read(ms, a)), STKP AR[cs, ms]

Figure 13: STKPAR  Obtained via Parallel Composition
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CT-R[s] —

M£M[s] 

Af£7Afl[s,a]

SCTL =

STKREAL[cs,ms] =



NCTL = reset, mdef, cdef —► load, mdef —► NCTL

1 push, mdef, cdef —► up, mdef —► NCTLl

1 pop, mdef, cdef —̂ NCTL2

1 top, mdef, cdef —► cdef, read —* NCTL

1 sdef, mdef, cdef —*■ NCTL

NCTL1 = write, NCTL 

NCTL2- down, NCTL

Figure 14: Realization of a Stack

A .8 A Pipelined Stack Controller .

Figure 14 shows a pipelined stack controller. Using this controller makes the stack operate faster. (NCTL 

has more control states than SCTL though.) The notation “write, NCTL” means: generate write during all 

the initial transitions of NCTL. We would like to automatically derive NCTL from SCTL by a technique 

that rearranges events without disrupting the meaning of the parallel composition. A suitable denotational 

model has been proposed by us for HOP to define process equivalence (see [GFK87]).
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