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Abstract

Modern chip multiprocessor (CMP) cache coherence protocols are extremely com­
plex and error prone to design. Modern symbolic methods are unable to provide much 
leverage for this class of examples. In [1], we presented a method to verify hierarchi­
cal and inclusive versions of these protocols using explicit state enumeration tools. We 
circumvented state explosion by employing a meta-circular assume/guarantee tech­
nique in which a designer can model check abstracted versions of the original proto­
col and claim that the real protocol is correct. The abstractions were justified in the 
same framework (hence the meta-circular approach). In this paper, we present how 
our work can be extended to hierarchical non-inclusive protocols which are inherently 
much harder to verify, both from the point of having more corner cases, and having 
insufficient information in higher levels of the protocol hierarchy to imply the sharing 
states of cache lines at lower levels. Two methods are proposed. The first requires 
more manual effort, but allows our technique in [ 11 to be applied unchanged, barring 
a guard strengthening expression that is computed based on state residing outside the 
cluster being abstracted. The second requires less manual effort, can scale to deeper 
hierarchies of protocol implementations, and uses history variables which are com­
puted much more modularly. This method also relies on the meta-circular definition 
framework. A non-inclusive protocol that could not be completely model checked
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even after visiting 1.5 billion states was verified using two model checks of roughly
0.25 billion states each.

1 Introduction

Modem chip multiprocessors (CMP, or “multicores”) employ extremely complex cache 
coherence protocols which must not contain concurrency bugs. Modem symbolic methods 
are unable to provide much leverage for this class of examples, as the state bits in these 
protocols cannot be easily projected away. There are examples where SAT-based methods 
could handle ordinary circuits with millions of bits, but could not finish on simple cache 
coherence protocols [2]. Explicit state methods, when applied to industrial scale protocols, 
do not finish in realistic amounts of time (e.g., a day or two) even for protocol instances 
modeling about 3 CPUs, and are known to exceed realistic storage limits (e.g., 4GB of 
memory) even when running with reasonable degrees of lossy state compression enabled 
(e.g., with 40-bit state signatures stored instead of full state vectors).

Remote Cluster 1 Home Cluster Remote Cluster 2

Figure 1: A 2-level cache coherence protocol for MCMP systems.

We now introduce some terminology. Referring to Figure 1, the term Inclusive means that 
the content of the L I cache is a subset of that of the L2 cache on the same cluster. Exclusive 
means that any block that is present in an LI cache cannot be present in the L2 cache in 
the same cluster. Non-inclusive lies between Inclusive and Exclusive: overlaps, without 
containment, are allowed. For illustration, some processors of the Intel Pentium family use 
non-inclusive caches, and processors of AMD Atholon and Operton use exclusive caches.

For inclusive caches, the local directory at the L2 cache knows which LI cache(s) have 
valid copies. Upon a cache miss in an LI cache that hits in the L2, the cache controller 
only needs to copy the data to the missing LI cache. However, when a block is replaced 
in the L2 cache due to a conflict or capacity miss, the same block must be evicted from all

exclusive
can be the sum of the LI and L2 caches. For non-inclusive caches, the L2 controller often



has to “snoop” across all L is, as we shall see. If we can effectively verify hierarchical 
cache coherence protocols with the non-inclusive caching policy, we can in fact verify 
hierarchical protocols with any caching policy (inclusive, exclusive, or non-inclusive).

In [1], we considered a complex inclusive cache coherence protocol benchmark that we had 
developed with the help of an industrial collaborator. Even though this protocol instance 
only had three clusters (or CPU sockets) with each cluster containing two CPUs, and we 
modeled only one cache line (a typical approach that we also follow here), we could not 
model check the protocol directly within reasonable space/time limits. The meta-circular 
assume/guarantee method that we proposed in [1] did succeed in proving this inclusive 
protocol correct. At that time, we did not know whether the technique would extend to 
non-inclusive

In this paper, we show that while the technique would extend, it is not straightforward to do 
so, especially when the non-inclusive protocol hierarchy gets any deeper. We present a new 
technique that is much more modular, and promises to extend to arbitrary depths of pro­
tocol hierarchy, and arbitrary variations of inclusive versus non-inclusive across protocol 
hierarchy levels. The modularity is achieved by using a variant of history variables [3,4], 
the variation being that the value of the history variables must also be determined in a 
meta-circular manner.

For the experimental validation of our method, we created a non-inclusive variant of the 
benchmark protocol in [1]. This new protocol has even more states than the original pro­
tocol, and hence could not be model checked using traditional approaches: the search was 
aborted after visiting 1.5 billion states. Using our new technique, we could model check 
two abstract models that, each, have only roughly 0.25 billion states, and formally claim 
that the original protocol has no errors. Our contributions are: (i) evidence of verifying 
an example more complex than previously verified in the area of hierarchical cache co­
herence protocols (the example can serve as a valuable benchmark for others), and (ii) an 
understanding of how the meta-circular abstraction can be set up so that the user effort is 
minimized, and the verification complexity is contained.

Related work: Other than our own past work [1] and this paper, nobody else, to our knowl­
edge, has verified hierarchical directory based protocols of non-trivial complexity. The 
details addressed in our benchmark protocol (Section 2) are important to point out, as the 
success of a method is directly measured by them; our protocol far exceeds the complexity 
of popular benchmarks such as FLASH [5]. Our paper in [1] and this paper derive their 
basic ideas from Chou et.al.’s work [6] which was a method for parametrized verification 
for non-hierarchical cache coherence protocols. McMillan’s work on compositional model

history variables
verification goes back several decades (e.g., [3,4]), our particular usage of history variables



in the context of our abstraction, and how it helps dramatically simplify the verification of 
hierarchical protocols has not been pointed out before.

Roadmap: Section 2 presents our non-inclusive protocol to some detail. Section 3 presents 
the challenges due to non-inclusive protocols. Section 4 presents our two approaches to 
refinement. Section 5 presents the assume/guarantee verification argument embodied in 
the new approach, and the conclusion follows.

2 A 2-level non-inclusive cache coherence protocol1

Our benchmark protocol [81 is composed of two levels. The level-1 protocol is intra cluster. 
Tt is a directory-based MSI protocol [91, maintaining cache lines in three states: modified,

inter cluster
protocol. The global directory always records which specific cluster has a valid copy in 
what state. As is typical in model-checking based verification for coherence, only one 
address is modeled. With respect to this address, there are three NUMA (Non-Uniform 
Memory Access) clusters: one home cluster and two identical remote clusters. Each clus­
ter has two symmetric LI caches, an L2 cache and a local directory. “RAC” stands for the 
controller to communicate with other clusters and the global directory. The main mem­
ory in reality can be attached to every cluster. The fact there is only one memory is a 
consequence of the 1-address abstraction of our protocol.

Three types of network channels are available between each LI and the L2 cache pair in 
level-1. One is the set of request/reply channels, represented as “ReqMsgfl” in the fol­
lowing. The second is the set of invalidation channels, used for invalidation and the corre­
sponding acknowledgments, represented as “InvMsgfl ” The third is the set of broadcasting 
channels, represented as “SnoopMsgfl”. They are used when there is a cache miss in the L2 
but the local directory has no record of which LI cache has a valid copy. These three types 
of channels are separated out, because all channels for the same L1-L2 pair can transfer 
messages at the same time, and these messages do not have to maintain FIFO ordering. (Tn 
hardware, these channels can share one set of physical channels.)

As an example, when a request (from inside or from outside a cluster) is received by the 
local directory which has no record for the line, the level-1 directory protocol will first 
broadcast the request to both the LI caches. If a reply containing a valid copy is received, 
the reply is forwarded to the requesting LI (or to the outside requester). If no reply contains

'This section may be skimmed on first reading.



a valid copy, the request will either be forwarded to the global directory or be NACKed, 
according to where the request is generated.

Other than these channels used for each L1-L2 pair, there are two other types of messages 
which could only be used by one of the LI caches at any time. “WbMsg” is for the write­
back request, i.e. an LI cache writes back its exclusive copy to the L2. “ShWbMsg” is 
for the shared-writeback request, i.e. an LI cache with an exclusive copy supplies the 
data to a forwarded request, modifies itself to be either shared or invalid (dependent on the 
requesting type), and at the same time notifies the local directory about these modifications.

The non-inclusiveness of the L2 cache allows silent dropping of L2 cache lines under cer­
tain conditions, and at the same time removing the corresponding records in the local direc­
tory. For exclusive lines in L2, silent-drop is allowed when the most recent copy of the line 
is in one LI cache in the cluster. This could happen for example, when an LI cache initially 
requests an exclusive copy, the local directory gets the copy from the global directory and 
then replies to the requesting LI cache. For shared lines in L2, silent-drop is allowed if 
they are not “the dirty copies from the perspective of the whole system” 2. For all the other 
cases when a valid line is in L2, writeback to the main memory is required before the data 
can be dropped.

Rem ote C luster 1

L1 cache-1 L1 cache-2 Local Dir G lobal Dir

Figure 2: Imprecise state record in the local directory.

The characteristics of non-inclusion could make the local directory have an imprecise 
record of a cache line. Figure 2 shows a simple scenario of how the imprecision could 
happen. Initially, an LI cache and the L2 cache in remote cluster-1 has a shared copy and it 
is recorded in the local directory. Tn Step 1, L2 silently drops the cache line and the record 
in the local directory is also swapped out. Tn Step 2, another LI cache requests a shared

2This could happen for example, after the cluster obtains an exclusive copy, an L 1 cache inside the cluster 
requests a shared copy and it is directly granted. A t this time, the state o f the local directory becom es shared.



copy. As the local directory has no record about this line, the request is broadcasted inside 
the cluster in Step 3. The LI cache-1 NACKs this request in Step 4, as it only has a shared 
copy. The reason is that the broadcasting messages “SnoopMsgO” could be interleaved 
with an invalidation messages “TnvMsgfl” coming from outside, in any order. So it is not 
safe for a shared copy to supply its data when receiving a broadcasting request. These are 
all subtle comer cases that do not arise with inclusive protocols.

Continuing the scenario, in Step 5, the request is then forwarded to the global directory, and 
it is granted in Step 6. At this time, because the local directory has lost the information that 
LI cache-1 has a shared copy, it can only record that the LI cache-2 has a valid copy for 
this line. Such imprecision could lead to coherence violations for certain cache coherence 
properties, as subsequent invalidations will forget to invalidate the copy in LI cache-1.

Such bugs are avoided in our protocol through a conservative assumption. When the global 
directory receives the forwarded request in Step 5, it can realize that remote cluster-1 al­
ready has a shared copy. So in addition to the reply and the data supplied in Step 6, a tag 
is also attached in the message indicating possible imprecision. When the local directory 
of remote cluster-1 receives this message, it will record that all the LI caches inside the 
cluster have a valid shared copy, thus avoiding the imprecision.

3 Non-inclusive Coherence Protocol Verification

In our previous work [11. we developed a compositional approach to verify a 2-level inclu­
sive coherence protocol in a hierarchical system similar to that shown in Figure 1. Essen­
tially, three abstract protocols are built from the overall hierarchical protocol M ; they are 
M i, M 2, and \I.>. (.\/-_> and M 3 happen to be identical due to the symmetry between the two 
remote clusters). The home cluster of Mi is identical to that of M. Likewise, the Global 
Dir and Memory at the root node are also identical to that of M . However, the remote 
clusters of M i have their LI caches and part of their local directories removed. This means 
that all inputs coming into L2 Cache + the retained part of the Local Dir of these units 
now comes completely unconstrained by the state of the removed pieces. M 2 is similar

remote
cluster-2 are abstracted. Tn effect, each A f  is constructed from M  by simply projecting 
out (unconstraining) selected global variables, and correspondingly overapproximating the 
protocol transitions. Different variables are projected out for each M i; and therefore, each 
Mi presents a different overapproximated view of M . Thereafter, counterexample guided 
refinement is used for verifying each Af.



The underlying logic is that we first overly approximate the protocol, and then reduce 
the degree of overapproximation and recover some semblance of proper behavior through 
guard strengthenings. In particular, we strengthen the transition guards in Mi and at the 
same time, add verification obligations to one of Mi, M2 or Ms, depending on where 
those strengthenings can be evaluated! For example, we may strengthen a guard g in Mi to 
become gAp, but add the verification obligation g0 => p to M2, because p involves variables 
present in M2, but not Mi. Here, g0 is the guard of the corresponding rule of g in M. This 
causes mutual (apparent) circular dependencies between the systems. We formally proved 
in [1], through induction, that the product of Mi simulate M ; thus, once the three simpler 
protocols are verified, the original protocol can be concluded to be correct (with respect to 
coherence, in our case).

Difficulties due to Non-inclusive Protocols: For non-inclusive protocols, a valid cache 
line at level LI may not exist at level L2. Also, the local directory may not have a record 
of the presence of the cache line in LI. Two categories of problems make the verification 
of the non-inclusive case hard. First, most ordinary formulations of the cache coherence 
property in non-inclusive protocols involve the states of LI cache lines in different clus­
ters (the property cannot be directly formulated in terms of L2 states, as is possible with 
inclusive protocols). For example, one such property could be that no two lines with the 
same address can be in the exclusive state concurrently. Formally, it can be represented as 
StateCohProp  in the following:

d
m
n

Basic cache line 
Clusters 

LI caches 
L2 caches 

StateCohProp

The number of data bits in a cache line 
The number of clusters in a MCMP system 
The number of LI caches in one cluster 
CL =  { state: {M,S,I}; data: array l..d of bits;}
P  =  {pi, . . . ,pm}
Vi e [l..m], Ll(pi) =  { l l n , . . . .  l l in}
Vi e [l..m], L2(pi) =  {I2i}
Vi. j  e [l..m] :

7̂  3 = *> ~'(l2i.state = Excl A 12j.state = Excl))A 
(Vfc. I e [l..n] : (k I =4> -i(Zlj£.state =  Excl A 11 ji.state =  Excl)))

To verify this property, we need to check the states of all the cache lines in the L 1 and L2 caches 
in the system. For inclusive coherence protocols, the corresponding property can simply be repre­
sented in each abstracted protocol Mp as

Vi. j  e  [1 ..to] : (i ^  j  =4> -i(l2i.state =  Excl A 12j . state =  Excl))A
Vfc. I € [l..n] : k 7  ̂ I =4> - i (11 state =  Excl A l lpi.state =  Excl)

In this property, the first subexpression states that no two L2 caches can have exclusive lines concur­
rently in the system, and the second subexpression states that no two LI caches can have exclusive



lines concurrently, in the same cluster. There is no need to check if two L I cache lines in different 
clusters can be exclusive at the same. As our abstraction always retains the L2 cache in each cluster 
and all the details of cluster p  in M p, this property can be checked in each abstracted protocol. This 
does not work so directly for a noninclusive coherence protocol, as its S ta tc C o h P r o p  requires the 
state information of all the LI and L2 caches.

L2: L2:
(Excl, data1) -> (Excl, data2) (Invld, -) -> (Excl, data2)

Figure 3: The L2 cache line state of an inclusive (left) and a non-inclusive (right) coherence 
protocol, on a w riteback from an LI cache.

The second difficulty is that the spurious counterexamples become extremely convoluted and prove 
to be difficult to eliminate. Figure 3 shows such an example. The left half of this figure shows the 
situation of an L2 cache receiving a writeback message from an L I cache in an inclusive protocol. 
After receiving this message, the L2 line will change from the state of “(Excl, datal)” to “(Excl, 
data2)”. If this cluster is abstracted in an M;, the state modification of the L2 line will become a 
transition which, if described in the rule-based language of Murphi [ 10], reads as “(12.,;.state =  Excl) 
—► 12;.data :=  new-data;”. This transition is a normal protocol behavior, as in any MSI protocol a 
cache line with an exclusive copy can update its data to a new value. On the other hand, the right 
half of Figure 3 shows the writeback in a non-inclusive protocol where the L2 cache initially does 
not have the cache line. After receiving the writeback, the L2 cache line will change from “(Invld, 
- )” to “(Excl, data2 )”. When this cluster is abstracted in an M;, the transition modeling the resulting 
state update reads T  = “(12.;. state =  Invld) —► begin 12;.state :=  Excl; 12;.data :=  new-data; end;”. 
Obviously, this transition is overly approximated, as the latter transition can easily lead to coherence 
violation.

In the next section, we will present two approaches to solving these problems. One requires much 
more manual effort, but allows our technique in \ 1] to be applied unchanged. The other requires 
less manual effort, is modular, and can scale to deeper hierarchies of protocol implementations, as 
are being proposed for many cluster architectures. It involves the use of history variables, but in the 
context of meta-circular reasoning.

4 Two Approaches to Verify Non-inclusive Protocols

Given a cluster in which the L2 cache does not have a valid line, we can infer if there is any 
exclusive copy inside the cluster in two ways. One approach is to infer with respect to the state



elements situated outside the cluster, i.e. the global directory and the network channels in the level-
2 protocol, and the L2 cache line state. The other approach is to infer with respect to the state 
elements inside the cluster, including the LI cache states, and the network channels in the level-1 
protocol.

4.1 Inferring exclusive from outside the cluster

Take the protocol in Figure 1 as an example. If M\ is the abstracted protocol where the two re­
mote clusters are abstracted from M, the transition “p.l2.state =  Invld —► begin p.l2.state := Excl; 
p.l2.data := new_data; end;” will be a transition on one remote cluster p. We need to ensure that 
this transition can only happen when there is indeed an exclusive copy inside p. The following 
expression IsExcl describes how this inference can be done:

IsExcl(p) =  Dir.State = Excl A
GUniMsg[p1.Cmd /  (ACK V IACK V ImACK) A 
GUniMsg[h].Cmd /  (ACK V IACK V ImACK) A 
GWbMsg.Cmd = GWB None A , ,
((GShWbMsg.Cmd = GSHWB_None A  ̂ J
Dir.HeadPtr = p) V 
(GShWbMsg.Cmd = DXFER A 
GShWbMsg.Cluster = p))

IsExcl states that for a given cluster p, if the global directory (Dir.State) shows there is an ex­
clusive line in the system, and there is no granted message to p (GUniMsg[p]) and to the home 
cluster h (GUniMsg[h]), and there is no writeback (GWbMsg) messages, then if there is no shared 
writeback (GShWbMsg) messages or the shared writeback channel is containing a message which 
indicates that the exclusive copy is to be transferred to p, p must already contain an exclusive copy.

As I s  E x c l  only uses the variables in the level-2 protocol, which are retained in each Mj, we can 
simply use I s E x c l  to strengthen the guard of the transaction T  as described in Section 3. That is, 
“(12j.state = Invld A IsExcl(i)) —► begin 12j .state := Excl; 12,;.data := new_data; end;” At the same 
time an additional verification obligation V O  needs to be added in Mj, with an instance of i  — 1 
shown in the following. This expression is added to ensure that the guard strengthening is sound. 
That is, we know that the transition T  was abstracted from the situation when an L2 cache line in 
invalid state receives a writeback. If VO is valid, it means that I s E x c l  always holds under such 
situations. So we can safely use it to strengthen the guard of T.

V O  =
h.WbMsg.Cmd = WB -»■ IsExcl(h)



As for the example S ta te C o h P r o p  in Section 3, we can use two obligations to indirectly verify it. 
The first obligation can be described as: Vp €  P . Vi €  [1 ..re] : 11 pi.s ta t e  =  E x c l  =4> I s E x d ( p ) .  
Based on this, we can then verify Vp. q €  P  : (p ^  q) =4> - i ( I s E x d ( p )  A l s E x d ( q ) )  as the second 
obligation.

This approach of inferring whether a cluster has an exclusive copy, when viewed from outside the 
cluster, is already quite complex, and hence barely feasible in verifying 2-level protocols. The dif­
ficulty of constructing an expression such as I s E x d  would be much higher for realistic 2-level 
protocols. It would become extremely complex with higher numbers of levels. To illustrate this 
point, consider Figure 4 which shows a 3-level hierarchical protocol. In this example, each L2 
cache is non-inclusive of the LI caches, and the L3 cache is also non-inclusive of the L2 caches. 
The level-1 protocol involves two LI caches, the L2 cache, the local directory-1, and a communi­
cation controller (RAC1). In this example, the four instances of the level-1 protocol are symmetry. 
Similarly, the level-2 protocol involves two L2 caches, the L3 cache, the local directory-2, and so 
on. In level-3, the global directory tracks which specific cluster has a valid copy and its cache line 
state. Similar with the protocol in Figure 1, when accessing the main memory, the home cluster has 
a set of different behaviors than that of the remote cluster.

R em ote C luste r Hom e Cluster

Figure 4: A 3-level non-inclusive protocol I I .

Based on the approach in [1], verification of this hierarchical protocol I I  can be decomposed into 
verifying two abstracted protocols H-\ and I I -2 shown in Figure 5. The underlying idea of this 
decomposition is that these two protocols are able to cover all the details of the level-1, level-2 and 
level-3 protocols, albeit with a suitably defined (and far more complex) definition for I s E x d .

More specifically, according to the abstraction, we know that in H-\ and I I 2 there is an overly 
approximated transition U  which is similar to T  in Section 3, namely

U  = “(p.l2.state =  Invld) —» begin p.12.state := Excl; p.l2.data := new_data; end;”.



R em ote Cluster

Home Cluster

Figure 5: The two abstracted protocols Hi (left) and H2 (right) for the 3-level protocol H.

To strengthen this transition, inferring if there is an exclusive copy inside a cluster from outside this 
L2 cache may be very complex. The complexity of this expression can be estimated by looking at 
the expression T s E x d ( p ) in [4 — 1]. The corresponding I s E x c l  in the case of H  will involve the 
information from the global directory, the network channels in level-3, the L3 cache, and the local 
directory and the network channels in level-2. Such a complex expression may be very error-prone 
and difficult to correctly formulate.

4.2 Inferring exclusive from inside the cluster

We now try to constrain the overly approximated transitions in the abstraction using information 
inferred from inside a cluster. Consider our 2-IeveI non-inclusive protocol in Figure 1. For the 
abstracted transition T ,  we want to use the LI caches and the level-1 network channels to infer if 
there is an exclusive copy available in the cluster. This seems a contradiction, as during the over­
approximation of T , information pertaining to the LI caches and the level-1 network channels seems 
to be lost. How can we restore this information?

Recall, however, that in our approach, for a coherence protocol at each level, there is always an 
abstracted protocol Mj which includes all the details for that level. So we can use the detailed 
instance, e.g. M^.j ^  k, to provide and verify the value of the bit..

In more detail, we implemented this approach by adding an additional bit to the L2 cache line in the 
abstracted protocols. This bit is a function over the LI caches and messages in the level-1 network 
channels. Figure 6 shows the data structures of a detailed cluster in M  and an abstracted cluster in 
Mi and M 2.

In Figure 6, we can see that an abstracted cluster projects away many details of the original cluster. 
The extra bit is represented as IE, as implicit exclusive. It has a corresponding function, shown as



ABSProcState: record 
L2: record

-- extra bit 
IE: boolean;

—  B3.2 local dir 
State: L2State; 
Data: DataSet;
OnlyCopy: boolean;

end;

-- B4 comm. controller 
RAC: record

State: RACState; 
InvCnt: ProcsCnt;

end;
end;

Figure 6 : Data structures of a detailed cluster in M, and an abstracted cluster in M\ and 
All.

“ImpIicitExd” in the following.

Vp € P. I m p l ic i t  E x c l (p) =  3i €  [1 ..m ] : (p.II ,;.State=ExcI V
p.SnoopMsg[i].Cmd = (Put V PutX) V 
p.ReqMsg[i].Cmd = PutX) V 

p.WbMsg.Cmd = WB V 
p.ShWbMsg.Cmd = ShWb V 
p.ShWbMsg.Cmd = FAck

Here, I m p l ic i t  E x c l says if a cluster has an LI cache line with an exclusive copy, or the broadcast 
channel contains a grant reply, or a request channel contains a grant exclusive reply, or a valid 
writeback or an exclusive ownership transfer message, the cluster must have an exclusive copy 
available somewhere other than in the L2 cache. So this bit can be regarded as restoring some 
information from the details projected away in the abstraction. More importantly, it changes an 
abstracted protocol into a pseudo-inclusive protocols where, for example, the L2 cache can always 
know if it can supply an exclusive copy from inside the cluster. Note that such transformation from 
“non-inclusion” to “inclusion” only happens in building the abstracted protocols. We do not need 
to modify the original hierarchical protocol.

ProcState: record
—  B1 L1 caches
L1: array [NODE] of NODE_STATE;

—  B2 network channels used inside a processor
ReqMsg:
InvMsg:
WbMsg:
ShWbMsg:
NakcMsg:

array [NODE_L2] 
array [NODE_L2] 
WB_MSG; 
SHWB_MSG; 
NAKC_MSG;

of UNI_MSG; 
of INV_MSG;

SnoopMsg: array [NODE] of Broadcast_MSG;

local dir 
record 
—  B3.1
pending:
ShrSet:
InvCnt:
HeadPtr:
ReqId:
ReqType:
ReqCluster
ifHoldMsg:

used only by level-1 protocol 
boolean;
array [NODE] of boolean 

CacheCnt;
NODE_L2;
NODE;
boolean;
Procss; 
boolean;

ifBroadcast: boolean; 
ifReplied: boolean;
-- B3.2 used by both levels 
State: L2State;
Data: DataSet;
OnlyCopy: boolean;

—  B4 comm. controller with other clusters and 
-- global dir 
RAC: record

State: RACState;
InvCnt: ProcsCnt;

end;



With these extra bits in the system, the challenges discussed in Section 3 can be solved fairly easily. 
Firstly, for the coherence property StateCohProp, it could now be stated and checked in each M*. 
The following shows this property in M\, where the home cluster h keeps all the details while the 
remote clusters are abstracted.

StateCohProp' =
V rl.r2  € Remoteclusters :

-i(3fe. I € [l..n ]; h.llk-state =  Excl A h.lli.state =  Excl)A
-<l(h.l2.IE V h.12.State =  Excl) A (rl.l2.IE V rl.l2.State =  Excl)) A
-i((rl 7̂  r2) A ((rl.l2.TE V r l .12.State = Excl) A (r2.l2.IE V r2.12.State =  Excl)))

Secondly, for the overly approximated transitions like T  in Section 3, T  can be simply strengthened 
as “(p.l2.state = InvldA p.l2.IE) —> begin p.l2.state := Excl; p.l2.data := new-data; end;”. The 
additional verification obligation can now be stated as: VO =  “(p.WbMsg.Cmd = WB A p.l2.State 
= Invld) —> p.l2.IE”. For all the other spurious counterexamples, they can be eliminated similarly 
using these extra bits. Note that the values of these bits only need local reasoning of one level in 
a hierarchical protocol, as contrast with the approach of inferring “exclusive” from all the outside 
information. Therefore, it is a more general method to verifying hierarchical protocols.

Now it comes to the question of how to update each extra bit in the abstracted protocols such that 
its value always equal to the definition. This can be implemented fairly easily in three steps. (1) As 
these bits do not exist in M, we construct another protocol M' which is the same with M  except 
for the updates of the the extra bits. These bits initially are all false. When an exclusive copy is 
granted to an LI cache in a message, the bit for that cluster is set to true (“ReqMsgQ”). When 
an exclusive or shared writeback from an LI cache is received by the L2 cache, the bit is set to 
false  (“SnoopMsgQ, WBMsg, ShWbMsg”). (2) The procedure in the Appendix of [1] is applied 
to generate M\ and \~1>- (3) An additional verification obligation “ImplicitExcl” is added to both 
the Mi,  stating that “I2i-IE = TmplicitExcl(i)”. This property ensures that the value of each bit 
is always consistent with the definition.

5 Verifying the 2-level non-inclusive protocol

For the 2-level non-inclusive protocol M described in Section 2, we use Murphi as an explicit model 
checker to verify it. After enumerating 1.521.900.000 of states3, model checking failed due to the 
state explosion problem. This is not surprising, considering the multiplicative effect of having three 
instances of complex coherence protocols running concurrently.

3 We did all these experiments on an IA-64 machine, with a 1.4GHz Itanium-2 processor and 24GB of 
memory, and 40-bit hash compaction was used for the state representation.



Using the abstraction and the two refinement approaches described in Section 4, we were able to 
verify this complex protocol. In detail, three abstracted protocols M i, M j and M 3 are built from 
M  (M2 and M 3 are the same due to the symmetry between two remote clusters). 17 iterations of 
refinement were applied in each Mj, and after that we were able to claim that the coherence prop­
erty holds in M. Model checking of M i resulted in 234.478.105 states, and M2 in 283.124.383 
states. From these numbers, we can see that our abstraction and refinement approach is in fact very 
effective. It’s also worthwhile to mention that, the second refinement approach of adding extra bits 
in fact do not introduce more states of the protocol. This is reasonable, as the value of each bit can 
be thought as a simple logical expression of other variables in the system.

In the following, we will formally prove that by introducing the extra bits in Mi and M2, our 
approach is still sound. That is, once Mi and M2 can be verified with respect to the coherence 
property 4>coh in M, M  itself must also be coherent on We begin with a theorem and then 
apply it in the context of a particular protocol abstraction.

5.1 A theorem justifying metacircular reasoning

Theorem 1 A state transition system (STS) M =  (S. I. T. Z), where S is the set of states, I C S is 
the set of initial states, T C § x § is the set of transition relations, and Z is a set of properties to be 
checked in M, i.e. Vz e  Z. z : S —> Boolean.

Suppose M , M 1, . . . , M k are (k  +  1) STSs with M =  (S , I ,  T , Z ) ,  M i =  (S i,  h ,T i ,  Z i) ,  and 
a \ , . . . ,  a k are k  functions over S, on : S  —* S i : i € [1 ..k ], k  €  N, such that

Vs € S, V z e  z, 3z 1 e Z 1, . . . , z k e z k ■.
zi(ai(s)) A .. .  A zk(ak(s)) -> z(s)

Then if \  are valid with respect to Si's, i.e. Vzj € Zi, VSj € Si : Zi(si) — true, i € [1 ..k], Z 
must be valid with respect to S. □

Theorem 1 can be proved using a simple contradiction.

5.2 Applying the theorem

Now we prove that for our non-inclusive coherence protocol M, the abstracted protocols M i. M2
Theorem 1

First of all, it is straightforward that M. Mi and M2 can be regarded as STSs, and cache coherence 
properties >̂C£* are the Z of M. For each state s G S' of M, s can be represented as a state



vector containing components v l ,  v 2 , . . . .  v7 , written as s =  ( v l , v 2 ,  t>3, v 4 , v 5 , v 6 , v 7 ) . Here, v l  
represents the state components corresponding to B1, B2 and B3.1 in the home cluster of M  (see 
Figure 6). And v 2  represents the state components of B3.2 and B4 in the home cluster. Similarly 
v 3 ,v 4  are used to represent remote cluster-1 and v 5 ,v 6  are for remote cluster-2. v 7  is used to 
represent the rest of the components in the system. They include the global directory, the main 
memory, and the set of network channels used in level-2.

Secondly, the functions on for Mj : i € [1..3] can be represented simply as follows:

Vs € S' of M, s  = ( v l , v 2 ,  v 3 , v 4 , v 5 , v 6 , v 7 )

(1) a i( s )  =  ( v l ,  v 2 , v 4 , v 6 , v 7 , f ( s ) )

(2) a 2(s )  = (v2 , v 3 , v 4 , v 6 , v 7 , /(s)>

(3) a 3(s) =  (v2 , v 4 , v 5 , vQ, v 7 , f ( s ) )

In aj, /  is a function over S , f  : S —> a r r a y [  1..3] o f  b o o lea n . In detail, for a given state 
s  of M, f  returns one bit of “IE” (implicit exclusive) for each of the cluster. That is, f ( s )  =  
( I m p l i c i t E x d ( h ) , I m p l i c i t E x d ( r l ) , I m p l i c i t E x d ( r 2 ) ) ,  where h  represents the home cluster, 
and r l  and r 2  are for the remote clusters. We can see that Vs € S , i  € [1..3] : a j(s) € S'j.

Thirdly, for each cache coherence property z  e Z of M , according to the abstraction (the procedure 
is detailed in [1]), z has a corresponding property Zj in Mj. Each Zj is an over-approximation of z,
i.e. z =>- Zj. It is obtained by replacing the least sub-expressions of z that contains a variable which 
is abstracted away in Mj with t r u e .  Because Vs € S' of M , the union of « i(s), a 2(s) and a 3(s) 
are already able to cover every component of s, z can in most cases be directly represented using 
z i,z 2 andz3. For example, if z =  Vp € P , Vi € [1.. n], p i l j .  S ta t e  /  E r r o r  S ta te ,  where 
P  = { h , r l , r 2 } ,  then

z \ \  Vi € [1 ..n ), h .H i. S ta t e  /  E r r o r  S ta te  

z 2 \ Vi € [1 ..n ], r l . l l i . S t a t e  /  E r r o r  S ta te  

z3: Vi € [1 ..n ), r 2 J l j .  S ta t e  ^  E r r o r  S ta te

It is straightforward that z \  A z2 A z3 z.

For our non-inclusive hierarchical protocol, with the extra bits I E  and the functions I m p l i c i t E x d  
introduced, we were able to represent each z € Z  of M fairly easily, using the corresponding z \ , z 2 
and z3. The example of S ta te C o h P r o p  illustrated in Section 3 showed how it can be represented 
in each Mj.



In summary, our compositional approach ensures that for the 2-level non-inclusive protocol, once 
Mi, M2 and M3 are verified with respect to the coherence properties (f>coh, M most also be coherent 
with 4>coh-

6 Conclusion

Hierarchical cache coherence protocols are notoriously difficult to verify, as they usually have more 
comer cases than non-hierarchical protocols. And the multiplicative effect of having more than one 
instance of coherence protocols running concurrently can make the state space astronomial. Inclu­
sion, exclusion and non-inclusion are the three caching policies two neighboring level of caches 
often use. In our previous work [1], we proposed a compositional approach to verify a 2-level 
inclusive hierarchical cache coherence protocol used in MCMP systems. However, hierarchical co­
herence protocols using exclusion and non-inclusion pose extra difficulty in the verification. In this 
paper, we propose a general approach which can be used to verify hierarchical protocols with any 
caching policy. By introducing extra bits in a non-inclusive hierarchical protocol, the verification 
becomes almost as easy as that of inclusive ones. And the soundness of this approach is ensured by 
adding an additional verification obligation, to constrain the behavior of these bits to be consistent 
with their definitions. We think this approach is lightweight, and it can be generally applied to the 
verification of hierarchical coherence protocols with more than two levels. Our success of verifying 
a complex 2-level non-inclusive coherence protocol shows that other hierarchical protocols could 
be verified in a similar way.
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