
A General Compositional Approach
to Verifying Hierarchical Cache

Coherence Protocols

Xiaofang Chen and Ganesh Gopalakrishnan

UUCS-06-014

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

November 26, 2006

Abstract

Modern chip multiprocessor (CMP) cache coherence protocols are extremely com­
plex and error prone to design. Modern symbolic methods are unable to provide much
leverage for this class of examples. In [1], we presented a method to verify hierarchi­
cal and inclusive versions of these protocols using explicit state enumeration tools. We
circumvented state explosion by employing a meta-circular assume/guarantee tech­
nique in which a designer can model check abstracted versions of the original proto­
col and claim that the real protocol is correct. The abstractions were justified in the
same framework (hence the meta-circular approach). In this paper, we present how
our work can be extended to hierarchical non-inclusive protocols which are inherently
much harder to verify, both from the point of having more corner cases, and having
insufficient information in higher levels of the protocol hierarchy to imply the sharing
states of cache lines at lower levels. Two methods are proposed. The first requires
more manual effort, but allows our technique in [11 to be applied unchanged, barring
a guard strengthening expression that is computed based on state residing outside the
cluster being abstracted. The second requires less manual effort, can scale to deeper
hierarchies of protocol implementations, and uses history variables which are com­
puted much more modularly. This method also relies on the meta-circular definition
framework. A non-inclusive protocol that could not be completely model checked

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

even after visiting 1.5 billion states was verified using two model checks of roughly
0.25 billion states each.

1 Introduction

Modem chip multiprocessors (CMP, or “multicores”) employ extremely complex cache
coherence protocols which must not contain concurrency bugs. Modem symbolic methods
are unable to provide much leverage for this class of examples, as the state bits in these
protocols cannot be easily projected away. There are examples where SAT-based methods
could handle ordinary circuits with millions of bits, but could not finish on simple cache
coherence protocols [2]. Explicit state methods, when applied to industrial scale protocols,
do not finish in realistic amounts of time (e.g., a day or two) even for protocol instances
modeling about 3 CPUs, and are known to exceed realistic storage limits (e.g., 4GB of
memory) even when running with reasonable degrees of lossy state compression enabled
(e.g., with 40-bit state signatures stored instead of full state vectors).

Remote Cluster 1 Home Cluster Remote Cluster 2

Figure 1: A 2-level cache coherence protocol for MCMP systems.

We now introduce some terminology. Referring to Figure 1, the term Inclusive means that
the content of the L I cache is a subset of that of the L2 cache on the same cluster. Exclusive
means that any block that is present in an LI cache cannot be present in the L2 cache in
the same cluster. Non-inclusive lies between Inclusive and Exclusive: overlaps, without
containment, are allowed. For illustration, some processors of the Intel Pentium family use
non-inclusive caches, and processors of AMD Atholon and Operton use exclusive caches.

For inclusive caches, the local directory at the L2 cache knows which LI cache(s) have
valid copies. Upon a cache miss in an LI cache that hits in the L2, the cache controller
only needs to copy the data to the missing LI cache. However, when a block is replaced
in the L2 cache due to a conflict or capacity miss, the same block must be evicted from all

exclusive
can be the sum of the LI and L2 caches. For non-inclusive caches, the L2 controller often

has to “snoop” across all L is, as we shall see. If we can effectively verify hierarchical
cache coherence protocols with the non-inclusive caching policy, we can in fact verify
hierarchical protocols with any caching policy (inclusive, exclusive, or non-inclusive).

In [1], we considered a complex inclusive cache coherence protocol benchmark that we had
developed with the help of an industrial collaborator. Even though this protocol instance
only had three clusters (or CPU sockets) with each cluster containing two CPUs, and we
modeled only one cache line (a typical approach that we also follow here), we could not
model check the protocol directly within reasonable space/time limits. The meta-circular
assume/guarantee method that we proposed in [1] did succeed in proving this inclusive
protocol correct. At that time, we did not know whether the technique would extend to
non-inclusive

In this paper, we show that while the technique would extend, it is not straightforward to do
so, especially when the non-inclusive protocol hierarchy gets any deeper. We present a new
technique that is much more modular, and promises to extend to arbitrary depths of pro­
tocol hierarchy, and arbitrary variations of inclusive versus non-inclusive across protocol
hierarchy levels. The modularity is achieved by using a variant of history variables [3,4],
the variation being that the value of the history variables must also be determined in a
meta-circular manner.

For the experimental validation of our method, we created a non-inclusive variant of the
benchmark protocol in [1]. This new protocol has even more states than the original pro­
tocol, and hence could not be model checked using traditional approaches: the search was
aborted after visiting 1.5 billion states. Using our new technique, we could model check
two abstract models that, each, have only roughly 0.25 billion states, and formally claim
that the original protocol has no errors. Our contributions are: (i) evidence of verifying
an example more complex than previously verified in the area of hierarchical cache co­
herence protocols (the example can serve as a valuable benchmark for others), and (ii) an
understanding of how the meta-circular abstraction can be set up so that the user effort is
minimized, and the verification complexity is contained.

Related work: Other than our own past work [1] and this paper, nobody else, to our knowl­
edge, has verified hierarchical directory based protocols of non-trivial complexity. The
details addressed in our benchmark protocol (Section 2) are important to point out, as the
success of a method is directly measured by them; our protocol far exceeds the complexity
of popular benchmarks such as FLASH [5]. Our paper in [1] and this paper derive their
basic ideas from Chou et.al.’s work [6] which was a method for parametrized verification
for non-hierarchical cache coherence protocols. McMillan’s work on compositional model

history variables
verification goes back several decades (e.g., [3,4]), our particular usage of history variables

in the context of our abstraction, and how it helps dramatically simplify the verification of
hierarchical protocols has not been pointed out before.

Roadmap: Section 2 presents our non-inclusive protocol to some detail. Section 3 presents
the challenges due to non-inclusive protocols. Section 4 presents our two approaches to
refinement. Section 5 presents the assume/guarantee verification argument embodied in
the new approach, and the conclusion follows.

2 A 2-level non-inclusive cache coherence protocol1

Our benchmark protocol [81 is composed of two levels. The level-1 protocol is intra cluster.
Tt is a directory-based MSI protocol [91, maintaining cache lines in three states: modified,

inter cluster
protocol. The global directory always records which specific cluster has a valid copy in
what state. As is typical in model-checking based verification for coherence, only one
address is modeled. With respect to this address, there are three NUMA (Non-Uniform
Memory Access) clusters: one home cluster and two identical remote clusters. Each clus­
ter has two symmetric LI caches, an L2 cache and a local directory. “RAC” stands for the
controller to communicate with other clusters and the global directory. The main mem­
ory in reality can be attached to every cluster. The fact there is only one memory is a
consequence of the 1-address abstraction of our protocol.

Three types of network channels are available between each LI and the L2 cache pair in
level-1. One is the set of request/reply channels, represented as “ReqMsgfl” in the fol­
lowing. The second is the set of invalidation channels, used for invalidation and the corre­
sponding acknowledgments, represented as “InvMsgfl ” The third is the set of broadcasting
channels, represented as “SnoopMsgfl”. They are used when there is a cache miss in the L2
but the local directory has no record of which LI cache has a valid copy. These three types
of channels are separated out, because all channels for the same L1-L2 pair can transfer
messages at the same time, and these messages do not have to maintain FIFO ordering. (Tn
hardware, these channels can share one set of physical channels.)

As an example, when a request (from inside or from outside a cluster) is received by the
local directory which has no record for the line, the level-1 directory protocol will first
broadcast the request to both the LI caches. If a reply containing a valid copy is received,
the reply is forwarded to the requesting LI (or to the outside requester). If no reply contains

'This section may be skimmed on first reading.

a valid copy, the request will either be forwarded to the global directory or be NACKed,
according to where the request is generated.

Other than these channels used for each L1-L2 pair, there are two other types of messages
which could only be used by one of the LI caches at any time. “WbMsg” is for the write­
back request, i.e. an LI cache writes back its exclusive copy to the L2. “ShWbMsg” is
for the shared-writeback request, i.e. an LI cache with an exclusive copy supplies the
data to a forwarded request, modifies itself to be either shared or invalid (dependent on the
requesting type), and at the same time notifies the local directory about these modifications.

The non-inclusiveness of the L2 cache allows silent dropping of L2 cache lines under cer­
tain conditions, and at the same time removing the corresponding records in the local direc­
tory. For exclusive lines in L2, silent-drop is allowed when the most recent copy of the line
is in one LI cache in the cluster. This could happen for example, when an LI cache initially
requests an exclusive copy, the local directory gets the copy from the global directory and
then replies to the requesting LI cache. For shared lines in L2, silent-drop is allowed if
they are not “the dirty copies from the perspective of the whole system” 2. For all the other
cases when a valid line is in L2, writeback to the main memory is required before the data
can be dropped.

Rem ote C luster 1

L1 cache-1 L1 cache-2 Local Dir G lobal Dir

Figure 2: Imprecise state record in the local directory.

The characteristics of non-inclusion could make the local directory have an imprecise
record of a cache line. Figure 2 shows a simple scenario of how the imprecision could
happen. Initially, an LI cache and the L2 cache in remote cluster-1 has a shared copy and it
is recorded in the local directory. Tn Step 1, L2 silently drops the cache line and the record
in the local directory is also swapped out. Tn Step 2, another LI cache requests a shared

2This could happen for example, after the cluster obtains an exclusive copy, an L 1 cache inside the cluster
requests a shared copy and it is directly granted. A t this time, the state o f the local directory becom es shared.

copy. As the local directory has no record about this line, the request is broadcasted inside
the cluster in Step 3. The LI cache-1 NACKs this request in Step 4, as it only has a shared
copy. The reason is that the broadcasting messages “SnoopMsgO” could be interleaved
with an invalidation messages “TnvMsgfl” coming from outside, in any order. So it is not
safe for a shared copy to supply its data when receiving a broadcasting request. These are
all subtle comer cases that do not arise with inclusive protocols.

Continuing the scenario, in Step 5, the request is then forwarded to the global directory, and
it is granted in Step 6. At this time, because the local directory has lost the information that
LI cache-1 has a shared copy, it can only record that the LI cache-2 has a valid copy for
this line. Such imprecision could lead to coherence violations for certain cache coherence
properties, as subsequent invalidations will forget to invalidate the copy in LI cache-1.

Such bugs are avoided in our protocol through a conservative assumption. When the global
directory receives the forwarded request in Step 5, it can realize that remote cluster-1 al­
ready has a shared copy. So in addition to the reply and the data supplied in Step 6, a tag
is also attached in the message indicating possible imprecision. When the local directory
of remote cluster-1 receives this message, it will record that all the LI caches inside the
cluster have a valid shared copy, thus avoiding the imprecision.

3 Non-inclusive Coherence Protocol Verification

In our previous work [11. we developed a compositional approach to verify a 2-level inclu­
sive coherence protocol in a hierarchical system similar to that shown in Figure 1. Essen­
tially, three abstract protocols are built from the overall hierarchical protocol M ; they are
M i, M 2, and \I.>. (.\/-_> and M 3 happen to be identical due to the symmetry between the two
remote clusters). The home cluster of Mi is identical to that of M. Likewise, the Global
Dir and Memory at the root node are also identical to that of M . However, the remote
clusters of M i have their LI caches and part of their local directories removed. This means
that all inputs coming into L2 Cache + the retained part of the Local Dir of these units
now comes completely unconstrained by the state of the removed pieces. M 2 is similar

remote
cluster-2 are abstracted. Tn effect, each A f is constructed from M by simply projecting
out (unconstraining) selected global variables, and correspondingly overapproximating the
protocol transitions. Different variables are projected out for each M i; and therefore, each
Mi presents a different overapproximated view of M . Thereafter, counterexample guided
refinement is used for verifying each Af.

The underlying logic is that we first overly approximate the protocol, and then reduce
the degree of overapproximation and recover some semblance of proper behavior through
guard strengthenings. In particular, we strengthen the transition guards in Mi and at the
same time, add verification obligations to one of Mi, M2 or Ms, depending on where
those strengthenings can be evaluated! For example, we may strengthen a guard g in Mi to
become gAp, but add the verification obligation g0 => p to M2, because p involves variables
present in M2, but not Mi. Here, g0 is the guard of the corresponding rule of g in M. This
causes mutual (apparent) circular dependencies between the systems. We formally proved
in [1], through induction, that the product of Mi simulate M ; thus, once the three simpler
protocols are verified, the original protocol can be concluded to be correct (with respect to
coherence, in our case).

Difficulties due to Non-inclusive Protocols: For non-inclusive protocols, a valid cache
line at level LI may not exist at level L2. Also, the local directory may not have a record
of the presence of the cache line in LI. Two categories of problems make the verification
of the non-inclusive case hard. First, most ordinary formulations of the cache coherence
property in non-inclusive protocols involve the states of LI cache lines in different clus­
ters (the property cannot be directly formulated in terms of L2 states, as is possible with
inclusive protocols). For example, one such property could be that no two lines with the
same address can be in the exclusive state concurrently. Formally, it can be represented as
StateCohProp in the following:

d
m
n

Basic cache line
Clusters

LI caches
L2 caches

StateCohProp

The number of data bits in a cache line
The number of clusters in a MCMP system
The number of LI caches in one cluster
CL = { state: {M,S,I}; data: array l..d of bits;}
P = {pi, . . . ,pm}
Vi e [l..m], Ll(pi) = { l l n , l l in}
Vi e [l..m], L2(pi) = {I2i}
Vi. j e [l..m] :

7̂ 3 = *> ~'(l2i.state = Excl A 12j.state = Excl))A
(Vfc. I e [l..n] : (k I =4> -i(Zlj£.state = Excl A 11 ji.state = Excl)))

To verify this property, we need to check the states of all the cache lines in the L 1 and L2 caches
in the system. For inclusive coherence protocols, the corresponding property can simply be repre­
sented in each abstracted protocol Mp as

Vi. j e [1 ..to] : (i ^ j =4> -i(l2i.state = Excl A 12j . state = Excl))A
Vfc. I € [l..n] : k 7 ̂ I =4> - i (11 state = Excl A l lpi.state = Excl)

In this property, the first subexpression states that no two L2 caches can have exclusive lines concur­
rently in the system, and the second subexpression states that no two LI caches can have exclusive

lines concurrently, in the same cluster. There is no need to check if two L I cache lines in different
clusters can be exclusive at the same. As our abstraction always retains the L2 cache in each cluster
and all the details of cluster p in M p, this property can be checked in each abstracted protocol. This
does not work so directly for a noninclusive coherence protocol, as its S ta tc C o h P r o p requires the
state information of all the LI and L2 caches.

L2: L2:
(Excl, data1) -> (Excl, data2) (Invld, -) -> (Excl, data2)

Figure 3: The L2 cache line state of an inclusive (left) and a non-inclusive (right) coherence
protocol, on a w riteback from an LI cache.

The second difficulty is that the spurious counterexamples become extremely convoluted and prove
to be difficult to eliminate. Figure 3 shows such an example. The left half of this figure shows the
situation of an L2 cache receiving a writeback message from an L I cache in an inclusive protocol.
After receiving this message, the L2 line will change from the state of “(Excl, datal)” to “(Excl,
data2)”. If this cluster is abstracted in an M;, the state modification of the L2 line will become a
transition which, if described in the rule-based language of Murphi [10], reads as “(12.,;.state = Excl)
—► 12;.data := new-data;”. This transition is a normal protocol behavior, as in any MSI protocol a
cache line with an exclusive copy can update its data to a new value. On the other hand, the right
half of Figure 3 shows the writeback in a non-inclusive protocol where the L2 cache initially does
not have the cache line. After receiving the writeback, the L2 cache line will change from “(Invld,
-)” to “(Excl, data2)”. When this cluster is abstracted in an M;, the transition modeling the resulting
state update reads T = “(12.;. state = Invld) —► begin 12;.state := Excl; 12;.data := new-data; end;”.
Obviously, this transition is overly approximated, as the latter transition can easily lead to coherence
violation.

In the next section, we will present two approaches to solving these problems. One requires much
more manual effort, but allows our technique in \ 1] to be applied unchanged. The other requires
less manual effort, is modular, and can scale to deeper hierarchies of protocol implementations, as
are being proposed for many cluster architectures. It involves the use of history variables, but in the
context of meta-circular reasoning.

4 Two Approaches to Verify Non-inclusive Protocols

Given a cluster in which the L2 cache does not have a valid line, we can infer if there is any
exclusive copy inside the cluster in two ways. One approach is to infer with respect to the state

elements situated outside the cluster, i.e. the global directory and the network channels in the level-
2 protocol, and the L2 cache line state. The other approach is to infer with respect to the state
elements inside the cluster, including the LI cache states, and the network channels in the level-1
protocol.

4.1 Inferring exclusive from outside the cluster

Take the protocol in Figure 1 as an example. If M\ is the abstracted protocol where the two re­
mote clusters are abstracted from M, the transition “p.l2.state = Invld —► begin p.l2.state := Excl;
p.l2.data := new_data; end;” will be a transition on one remote cluster p. We need to ensure that
this transition can only happen when there is indeed an exclusive copy inside p. The following
expression IsExcl describes how this inference can be done:

IsExcl(p) = Dir.State = Excl A
GUniMsg[p1.Cmd / (ACK V IACK V ImACK) A
GUniMsg[h].Cmd / (ACK V IACK V ImACK) A
GWbMsg.Cmd = GWB None A , ,
((GShWbMsg.Cmd = GSHWB_None A ̂ J
Dir.HeadPtr = p) V
(GShWbMsg.Cmd = DXFER A
GShWbMsg.Cluster = p))

IsExcl states that for a given cluster p, if the global directory (Dir.State) shows there is an ex­
clusive line in the system, and there is no granted message to p (GUniMsg[p]) and to the home
cluster h (GUniMsg[h]), and there is no writeback (GWbMsg) messages, then if there is no shared
writeback (GShWbMsg) messages or the shared writeback channel is containing a message which
indicates that the exclusive copy is to be transferred to p, p must already contain an exclusive copy.

As I s E x c l only uses the variables in the level-2 protocol, which are retained in each Mj, we can
simply use I s E x c l to strengthen the guard of the transaction T as described in Section 3. That is,
“(12j.state = Invld A IsExcl(i)) —► begin 12j .state := Excl; 12,;.data := new_data; end;” At the same
time an additional verification obligation V O needs to be added in Mj, with an instance of i — 1
shown in the following. This expression is added to ensure that the guard strengthening is sound.
That is, we know that the transition T was abstracted from the situation when an L2 cache line in
invalid state receives a writeback. If VO is valid, it means that I s E x c l always holds under such
situations. So we can safely use it to strengthen the guard of T.

V O =
h.WbMsg.Cmd = WB -»■ IsExcl(h)

As for the example S ta te C o h P r o p in Section 3, we can use two obligations to indirectly verify it.
The first obligation can be described as: Vp € P . Vi € [1 ..re] : 11 pi.s ta t e = E x c l =4> I s E x d (p) .
Based on this, we can then verify Vp. q € P : (p ^ q) =4> - i (I s E x d (p) A l s E x d (q)) as the second
obligation.

This approach of inferring whether a cluster has an exclusive copy, when viewed from outside the
cluster, is already quite complex, and hence barely feasible in verifying 2-level protocols. The dif­
ficulty of constructing an expression such as I s E x d would be much higher for realistic 2-level
protocols. It would become extremely complex with higher numbers of levels. To illustrate this
point, consider Figure 4 which shows a 3-level hierarchical protocol. In this example, each L2
cache is non-inclusive of the LI caches, and the L3 cache is also non-inclusive of the L2 caches.
The level-1 protocol involves two LI caches, the L2 cache, the local directory-1, and a communi­
cation controller (RAC1). In this example, the four instances of the level-1 protocol are symmetry.
Similarly, the level-2 protocol involves two L2 caches, the L3 cache, the local directory-2, and so
on. In level-3, the global directory tracks which specific cluster has a valid copy and its cache line
state. Similar with the protocol in Figure 1, when accessing the main memory, the home cluster has
a set of different behaviors than that of the remote cluster.

R em ote C luste r Hom e Cluster

Figure 4: A 3-level non-inclusive protocol I I .

Based on the approach in [1], verification of this hierarchical protocol I I can be decomposed into
verifying two abstracted protocols H-\ and I I -2 shown in Figure 5. The underlying idea of this
decomposition is that these two protocols are able to cover all the details of the level-1, level-2 and
level-3 protocols, albeit with a suitably defined (and far more complex) definition for I s E x d .

More specifically, according to the abstraction, we know that in H-\ and I I 2 there is an overly
approximated transition U which is similar to T in Section 3, namely

U = “(p.l2.state = Invld) —» begin p.12.state := Excl; p.l2.data := new_data; end;”.

R em ote Cluster

Home Cluster

Figure 5: The two abstracted protocols Hi (left) and H2 (right) for the 3-level protocol H.

To strengthen this transition, inferring if there is an exclusive copy inside a cluster from outside this
L2 cache may be very complex. The complexity of this expression can be estimated by looking at
the expression T s E x d (p) in [4 — 1]. The corresponding I s E x c l in the case of H will involve the
information from the global directory, the network channels in level-3, the L3 cache, and the local
directory and the network channels in level-2. Such a complex expression may be very error-prone
and difficult to correctly formulate.

4.2 Inferring exclusive from inside the cluster

We now try to constrain the overly approximated transitions in the abstraction using information
inferred from inside a cluster. Consider our 2-IeveI non-inclusive protocol in Figure 1. For the
abstracted transition T , we want to use the LI caches and the level-1 network channels to infer if
there is an exclusive copy available in the cluster. This seems a contradiction, as during the over­
approximation of T , information pertaining to the LI caches and the level-1 network channels seems
to be lost. How can we restore this information?

Recall, however, that in our approach, for a coherence protocol at each level, there is always an
abstracted protocol Mj which includes all the details for that level. So we can use the detailed
instance, e.g. M^.j ^ k, to provide and verify the value of the bit..

In more detail, we implemented this approach by adding an additional bit to the L2 cache line in the
abstracted protocols. This bit is a function over the LI caches and messages in the level-1 network
channels. Figure 6 shows the data structures of a detailed cluster in M and an abstracted cluster in
Mi and M 2.

In Figure 6, we can see that an abstracted cluster projects away many details of the original cluster.
The extra bit is represented as IE, as implicit exclusive. It has a corresponding function, shown as

ABSProcState: record
L2: record

-- extra bit
IE: boolean;

— B3.2 local dir
State: L2State;
Data: DataSet;
OnlyCopy: boolean;

end;

-- B4 comm. controller
RAC: record

State: RACState;
InvCnt: ProcsCnt;

end;
end;

Figure 6 : Data structures of a detailed cluster in M, and an abstracted cluster in M\ and
All.

“ImpIicitExd” in the following.

Vp € P. I m p l ic i t E x c l (p) = 3i € [1 ..m] : (p.II ,;.State=ExcI V
p.SnoopMsg[i].Cmd = (Put V PutX) V
p.ReqMsg[i].Cmd = PutX) V

p.WbMsg.Cmd = WB V
p.ShWbMsg.Cmd = ShWb V
p.ShWbMsg.Cmd = FAck

Here, I m p l ic i t E x c l says if a cluster has an LI cache line with an exclusive copy, or the broadcast
channel contains a grant reply, or a request channel contains a grant exclusive reply, or a valid
writeback or an exclusive ownership transfer message, the cluster must have an exclusive copy
available somewhere other than in the L2 cache. So this bit can be regarded as restoring some
information from the details projected away in the abstraction. More importantly, it changes an
abstracted protocol into a pseudo-inclusive protocols where, for example, the L2 cache can always
know if it can supply an exclusive copy from inside the cluster. Note that such transformation from
“non-inclusion” to “inclusion” only happens in building the abstracted protocols. We do not need
to modify the original hierarchical protocol.

ProcState: record
— B1 L1 caches
L1: array [NODE] of NODE_STATE;

— B2 network channels used inside a processor
ReqMsg:
InvMsg:
WbMsg:
ShWbMsg:
NakcMsg:

array [NODE_L2]
array [NODE_L2]
WB_MSG;
SHWB_MSG;
NAKC_MSG;

of UNI_MSG;
of INV_MSG;

SnoopMsg: array [NODE] of Broadcast_MSG;

local dir
record
— B3.1
pending:
ShrSet:
InvCnt:
HeadPtr:
ReqId:
ReqType:
ReqCluster
ifHoldMsg:

used only by level-1 protocol
boolean;
array [NODE] of boolean

CacheCnt;
NODE_L2;
NODE;
boolean;
Procss;
boolean;

ifBroadcast: boolean;
ifReplied: boolean;
-- B3.2 used by both levels
State: L2State;
Data: DataSet;
OnlyCopy: boolean;

— B4 comm. controller with other clusters and
-- global dir
RAC: record

State: RACState;
InvCnt: ProcsCnt;

end;

With these extra bits in the system, the challenges discussed in Section 3 can be solved fairly easily.
Firstly, for the coherence property StateCohProp, it could now be stated and checked in each M*.
The following shows this property in M\, where the home cluster h keeps all the details while the
remote clusters are abstracted.

StateCohProp' =
V rl.r2 € Remoteclusters :

-i(3fe. I € [l..n]; h.llk-state = Excl A h.lli.state = Excl)A
-<l(h.l2.IE V h.12.State = Excl) A (rl.l2.IE V rl.l2.State = Excl)) A
-i((rl 7̂ r2) A ((rl.l2.TE V r l .12.State = Excl) A (r2.l2.IE V r2.12.State = Excl)))

Secondly, for the overly approximated transitions like T in Section 3, T can be simply strengthened
as “(p.l2.state = InvldA p.l2.IE) —> begin p.l2.state := Excl; p.l2.data := new-data; end;”. The
additional verification obligation can now be stated as: VO = “(p.WbMsg.Cmd = WB A p.l2.State
= Invld) —> p.l2.IE”. For all the other spurious counterexamples, they can be eliminated similarly
using these extra bits. Note that the values of these bits only need local reasoning of one level in
a hierarchical protocol, as contrast with the approach of inferring “exclusive” from all the outside
information. Therefore, it is a more general method to verifying hierarchical protocols.

Now it comes to the question of how to update each extra bit in the abstracted protocols such that
its value always equal to the definition. This can be implemented fairly easily in three steps. (1) As
these bits do not exist in M, we construct another protocol M' which is the same with M except
for the updates of the the extra bits. These bits initially are all false. When an exclusive copy is
granted to an LI cache in a message, the bit for that cluster is set to true (“ReqMsgQ”). When
an exclusive or shared writeback from an LI cache is received by the L2 cache, the bit is set to
false (“SnoopMsgQ, WBMsg, ShWbMsg”). (2) The procedure in the Appendix of [1] is applied
to generate M\ and \~1>- (3) An additional verification obligation “ImplicitExcl” is added to both
the Mi, stating that “I2i-IE = TmplicitExcl(i)”. This property ensures that the value of each bit
is always consistent with the definition.

5 Verifying the 2-level non-inclusive protocol

For the 2-level non-inclusive protocol M described in Section 2, we use Murphi as an explicit model
checker to verify it. After enumerating 1.521.900.000 of states3, model checking failed due to the
state explosion problem. This is not surprising, considering the multiplicative effect of having three
instances of complex coherence protocols running concurrently.

3 We did all these experiments on an IA-64 machine, with a 1.4GHz Itanium-2 processor and 24GB of
memory, and 40-bit hash compaction was used for the state representation.

Using the abstraction and the two refinement approaches described in Section 4, we were able to
verify this complex protocol. In detail, three abstracted protocols M i, M j and M 3 are built from
M (M2 and M 3 are the same due to the symmetry between two remote clusters). 17 iterations of
refinement were applied in each Mj, and after that we were able to claim that the coherence prop­
erty holds in M. Model checking of M i resulted in 234.478.105 states, and M2 in 283.124.383
states. From these numbers, we can see that our abstraction and refinement approach is in fact very
effective. It’s also worthwhile to mention that, the second refinement approach of adding extra bits
in fact do not introduce more states of the protocol. This is reasonable, as the value of each bit can
be thought as a simple logical expression of other variables in the system.

In the following, we will formally prove that by introducing the extra bits in Mi and M2, our
approach is still sound. That is, once Mi and M2 can be verified with respect to the coherence
property 4>coh in M, M itself must also be coherent on We begin with a theorem and then
apply it in the context of a particular protocol abstraction.

5.1 A theorem justifying metacircular reasoning

Theorem 1 A state transition system (STS) M = (S. I. T. Z), where S is the set of states, I C S is
the set of initial states, T C § x § is the set of transition relations, and Z is a set of properties to be
checked in M, i.e. Vz e Z. z : S —> Boolean.

Suppose M , M 1, . . . , M k are (k + 1) STSs with M = (S , I , T , Z) , M i = (S i, h ,T i , Z i) , and
a \ , . . . , a k are k functions over S, on : S —* S i : i € [1 ..k], k € N, such that

Vs € S, V z e z, 3z 1 e Z 1, . . . , z k e z k ■.
zi(ai(s)) A .. . A zk(ak(s)) -> z(s)

Then if \ are valid with respect to Si's, i.e. Vzj € Zi, VSj € Si : Zi(si) — true, i € [1 ..k], Z
must be valid with respect to S. □

Theorem 1 can be proved using a simple contradiction.

5.2 Applying the theorem

Now we prove that for our non-inclusive coherence protocol M, the abstracted protocols M i. M2
Theorem 1

First of all, it is straightforward that M. Mi and M2 can be regarded as STSs, and cache coherence
properties >̂C£* are the Z of M. For each state s G S' of M, s can be represented as a state

vector containing components v l , v 2 , v7 , written as s = (v l , v 2 , t>3, v 4 , v 5 , v 6 , v 7) . Here, v l
represents the state components corresponding to B1, B2 and B3.1 in the home cluster of M (see
Figure 6). And v 2 represents the state components of B3.2 and B4 in the home cluster. Similarly
v 3 ,v 4 are used to represent remote cluster-1 and v 5 ,v 6 are for remote cluster-2. v 7 is used to
represent the rest of the components in the system. They include the global directory, the main
memory, and the set of network channels used in level-2.

Secondly, the functions on for Mj : i € [1..3] can be represented simply as follows:

Vs € S' of M, s = (v l , v 2 , v 3 , v 4 , v 5 , v 6 , v 7)

(1) a i(s) = (v l , v 2 , v 4 , v 6 , v 7 , f (s))

(2) a 2(s) = (v2 , v 3 , v 4 , v 6 , v 7 , /(s)>

(3) a 3(s) = (v2 , v 4 , v 5 , vQ, v 7 , f (s))

In aj, / is a function over S , f : S —> a r r a y [1..3] o f b o o lea n . In detail, for a given state
s of M, f returns one bit of “IE” (implicit exclusive) for each of the cluster. That is, f (s) =
(I m p l i c i t E x d (h) , I m p l i c i t E x d (r l) , I m p l i c i t E x d (r 2)) , where h represents the home cluster,
and r l and r 2 are for the remote clusters. We can see that Vs € S , i € [1..3] : a j(s) € S'j.

Thirdly, for each cache coherence property z e Z of M , according to the abstraction (the procedure
is detailed in [1]), z has a corresponding property Zj in Mj. Each Zj is an over-approximation of z,
i.e. z =>- Zj. It is obtained by replacing the least sub-expressions of z that contains a variable which
is abstracted away in Mj with t r u e . Because Vs € S' of M , the union of « i(s), a 2(s) and a 3(s)
are already able to cover every component of s, z can in most cases be directly represented using
z i,z 2 andz3. For example, if z = Vp € P , Vi € [1.. n], p i l j . S ta t e / E r r o r S ta te , where
P = { h , r l , r 2 } , then

z \ \ Vi € [1 ..n), h .H i. S ta t e / E r r o r S ta te

z 2 \ Vi € [1 ..n], r l . l l i . S t a t e / E r r o r S ta te

z3: Vi € [1 ..n), r 2 J l j . S ta t e ^ E r r o r S ta te

It is straightforward that z \ A z2 A z3 z.

For our non-inclusive hierarchical protocol, with the extra bits I E and the functions I m p l i c i t E x d
introduced, we were able to represent each z € Z of M fairly easily, using the corresponding z \ , z 2
and z3. The example of S ta te C o h P r o p illustrated in Section 3 showed how it can be represented
in each Mj.

In summary, our compositional approach ensures that for the 2-level non-inclusive protocol, once
Mi, M2 and M3 are verified with respect to the coherence properties (f>coh, M most also be coherent
with 4>coh-

6 Conclusion

Hierarchical cache coherence protocols are notoriously difficult to verify, as they usually have more
comer cases than non-hierarchical protocols. And the multiplicative effect of having more than one
instance of coherence protocols running concurrently can make the state space astronomial. Inclu­
sion, exclusion and non-inclusion are the three caching policies two neighboring level of caches
often use. In our previous work [1], we proposed a compositional approach to verify a 2-level
inclusive hierarchical cache coherence protocol used in MCMP systems. However, hierarchical co­
herence protocols using exclusion and non-inclusion pose extra difficulty in the verification. In this
paper, we propose a general approach which can be used to verify hierarchical protocols with any
caching policy. By introducing extra bits in a non-inclusive hierarchical protocol, the verification
becomes almost as easy as that of inclusive ones. And the soundness of this approach is ensured by
adding an additional verification obligation, to constrain the behavior of these bits to be consistent
with their definitions. We think this approach is lightweight, and it can be generally applied to the
verification of hierarchical coherence protocols with more than two levels. Our success of verifying
a complex 2-level non-inclusive coherence protocol shows that other hierarchical protocols could
be verified in a similar way.

References

fll X. Chen, Y. Yang, G. Gopalakrishnan, and C.-T. Chou. Reducing verification complexity of a
multicore coherence protocol using assume/guarantee. In Formal Methods in Computer Aided
Design, 2006.

Technical
Report of Cadence

[31 E.M.Clarke. Proving the correctness of coroutines without history variables. In ACM South­
east Regional Conference

Acta Informatica

[51 J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The Stan­
ford flash multiprocessor. In Proceedings of the 21st International Symposium on Computer
Architecture

[6] C.-T. Chou, P. K. Mannava, and S. Park. A simple method for parameterized verification of
cache coherence protocols. In Formal Methods in Computer Aided Design, 2004.

[7] K.L. McMillan. Verification of infinite state systems by compositional model checking. In
Correct Hardware Design and Verification Methods, pages 219-234, 1999.

[8] http://www.cs.utah.edu/formal_verification/noninclusive.tar.gz.

Parallel Computer Architecture: A Hardware/Software
Approach

[10] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hardware
IEEE International Conference on Computer Design: VLSI in Computers and

Processors

http://www.cs.utah.edu/formal_verification/noninclusive.tar.gz

