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Tolerance analysis is seen as part of a more general problem, namely handling data with 

uncertainty. Uncertain geometric data arises when interpreting measured data, but also in 

solid modeling where floating point approximations are common, when representing design 

tolerances, or when dealing with limited manufacturing precision.

The c o m m o n  question is whether parts with uncertain shape fulfill certain functional speci

fication. The question is expressed as geometrical relationship between toleranced objects. 

Unfortunately, tolerance based relations are often inconsistent, unlike relations between ex

actly represented objects.

In this paper w e  survey current tolerance representation and analysis methods. W e  then de

rive our method of intuitionistic tolerance handling from a method developed for robust 

solid modeling. A  new representational framework is proposed, which serves as the ba

sis for robust geometric modeling and tolerance analysis. W e  illustrate the framework with 

examples of assembly design.
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Abstract

Tolerance analysis is seen as part of a more general problem, namely handling data with 

uncertainty. Uncertain geometric data arises when interpreting measured data, but also in solid 

modeling where floating point approximations are common, when representing design toler

ances, or when dealing with limited manufacturing precision.

The common question is whether parts with uncertain shape fulfill certain functional specifi

cation. The question is expressed as geometrical relationship between toleranced objects. Un

fortunately, tolerance based relations are often inconsistent, unlike relations between exactly 

represented objects.

In this paper we survey current tolerance representation and analysis methods. We then de

rive our method of intuitionistic tolerance handling from a method developed for robust solid 

modeling. A new representational framework is proposed, which serves as the basis for robust 

geometric modeling and tolerance analysis. We illustrate the framework with examples of as

sembly design.

1 In tro d u c tio n : Robust Tolerance-based G eom etric C om pu ta 
tio n  in  C om pu te r In teg ra ted  Design and M anu fa c tu r in g

The concurrent design and manufacturing of industrial parts requires a multi-layered set of software 

support systems. The components of such a system exchange data concerning shape and other in

formation about parts. The geometric shape is an important part of the data and is used, in part, 

to convey aesthetic, functional and manufacturing aspects of the design. Shape consists of sym

bolic and numeric information. The symbolic information is for instance the type of shape, the 

degree of a polynomial, or relations between components (adjacency, inside, etc.). The numeric 

part determines the values for the parameters specified in the symbolic part. The numeric values 

are often computed by some geometric algorithm, come from measured data, or are determined by 

design parameters, etc. Theoretically, geometric shapes are defined in Euclidean space, meaning 

that the numeric values in the representation are defined as real numbers; however, in practice such
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ideal objects rarely exist. O n  a computer objects usually need to be approximated, e.g., by floating 

point numbers. A ny geometric operation implemented with floating point representation and float

ing point arithmetic is therefore accurate only to a limited degree. W h e n  manufacturing a designed 

part this can be done with a precision that is limited by the machine tools. Likewise, when measur

ing data (e.g., with a coordinate measuring machine) the accuracy is limited by the precision of the 

sensors.

W h e n  representing data with uncertainty, we usually distinguish between nominal geometry and 

the deviation from the nominal shape (the tolerance). It is clear that w e  cannot determine certain ge

ometric relations for uncertain objects in a straightforward way (e.g., that two planes are coincident, 

parallel or that a line is incident with a surface, etc.). The tolerance effects every such computation. 

The amount of tolerance is determined by the accuracy of the data. In mechanical engineering de

sign tolerances are specified as part of the functionality of the product. Unfortunately, no matter 

how small the error is, tolerance based decisions are a matter of arbitrary interpretation, and there

fore ambiguous. Tolerance-based relations do not obey the same rules as the exact relations would. 

For instance, the coincidence relation for objects in Euclidean space is transitive, but not for ap

proximated objects. This leads to many problems, such as contradictory decisions and inconsistent 

object representations. Typical consequences of this problem in solid modeling systems are, for 

instance, dangling edges, missing surfaces, or even crashing algorithms.

To make these systems more reliable they need to be based on a strong theory. W e  are therefore 

studiing the application of intuitionistic geometry to a tolerance based robustness method which can 

provide consistent underpinnings for a variety of design and manufacturing processes, including:

• geometric tolerances in mechanical design,

• robust solid modeling algorithms,

• manufacturing process planning,

• assembly planning.

It is crucial that the tolerances used during geometric computations are compatible with the tol

erances established during the design and the manufacturing phase, as well as when the part is in

spected and serviced. Just as the same physical units, and the same floating point arithmetic, should 

be used throughout the system, so must consistent geometric analysis and relations be determined.

In the following sections, we describe the proposed tolerance based robustness method, as well 

as how w e  intend to apply it to robust solid modeling, computer aided design, manufacturing, and 

process planning. W e  believe that such a capability is obligatory for any consistent C I M  system.

2 Related W o rk  in  M echan ica l To leranc ing and G eom etric  M od 
e ling

2.1 Robust Geom etric M odeling

Geometric algorithms, in particular, solid modeling algorithms regularly yield inconsistent repre

sentations in their output, due to numerical inacurracy and the arbitrary but ambiguous decisions
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based on approximated, tolerance based relations. These inconsistencies manifest themselves, for 

instance, in dangling edges, missing faces, etc., and sometimes cause the system to crash entirely. 

The problems occur mostly in situations where surfaces or edges are coincident which is quite c o m 

m o n  in mechanical engineering design, for instance, when using Boolean set operations. A  number 

of publications have addressed the robustness problem in geometric modeling[4, 8, 15, 26, 27, 35, 

45, 49]. A  survey can be found in[26]. Approaches to solve the robustness problem in geometric 

algorithms and solid modeling are using perturbation of the numerical data, to avoid the difficul

ties with coincidences, also exact rational numbers are used, or geometric reasoning[8, 27, 49,35], 

rather than treating numbers as elements of a continuum. Approaches that deal with uncertainty in 

geometric algorithms are described, for instance in[15,45], However, there was no provably robust 

solution to geometric modeling with curved surfaces using floating point computation.

W e  have been working on a solution to the geometric robustness problem for over three years 

and we  developed and implemented two tolerance-based robustness methods for geometric c o m 

putation, in general, and geometric modeling algorithms, see[4, 5, 9, 10, 62]. W e  believe that a 

tolerance based method is necessary to support the various data representations and applications in 

C A D / C A M  in a uniform way.

2 .2  Tolerances in C A D / C A M

The concept of tolerance is used in mechanical engineering to represent permissible errors in manu

facturing parts. Traditionally, these tolerances have been represented as annotations to mechanical 

drawings. Geometric dimensioning and tolerancing is used to define the range of acceptable geom

etry, including the description of essential functional relationships[43]. In the A N S I  Y 14.5 standard 

on dimensioning and tolerancing[l], a dimension is defined as numerical value defining the size or 

the characteristics of parts or part features, while a tolerance is defined as the total amount by which 

a specific dimension is permitted to vary. There are many problems with the traditional definition 

of tolerances, as they lead to ambiguities, and don’t lend themselves to the use in computer aided 

geometric design systems.

Currently, several types of representations for tolerancing are proposed for C A D / C A M  systems. 

In [38], tolerance is represented as form, size and position deviations. In [38, 12], tolerance is de

fined by tolerance zones and datum. A  tolerance zone is a region of space in which a portion of 

a surface of a real part must lie. A  datum is a point, an infinite line or a plane. In[39] an experi

mental tolerance-based implementation of the solid modeling system PADL-2 is described. W o o  

has summarized the research that has been done in the dimensioning and tolerancing representation 

and processing in his survey article[43]. The latter two papers provide the theory and experiments 

that have been done in the tolerancing area. In [59], tolerance classification is addressed with re

spect to functionality. In [43], tolerances are classified as conventional or geometrical tolerances. 

Conventional tolerances specify upper and lower limits for dimensions, while geometric tolerances 

are used to control the form, profile, attitude, orientation, location and runout of the product.

In recent years [40,41, 42], work has been done towards refining their approach so as to corre

spond more closely to current practices, and also on algorithms for tolerance analysis to automati

cally analyze issues of fit and clearance, however the results are not available yet. Turner and Wozny 

[58, 57] have formulated an approach based on a notion of feasibility spaces. This approach is de
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rived from variational modeling and geometric tolerances, and is the basis of the Geos tolerancing 

system at RPI, [53, 55, 56] which was integrated with a boundary-based modeler, I B M ’s CATIA. 

One potential caveat of their approach is that the dimension of the feasibility space will grow with 

the complexity of the user’s model. They intended to explore the use of pruning strategies to elimi

nate irrelevant model variables and tolerances from the problem definition. Some progress has been 

made by Martino [33,34] to carry out prior examination of the model to eliminate non-contributing 

parameters. They are about to address the tolerance synthesis problem, which seeks to find a set of 

tolerance limits given a desired variation in the design function. The objective is to minimize the 

manufacturing cost based on the Taguchi method.

M a n y  geometric modeling systems currently on the market provide some tolerancing facilities. 

Mostly these are two dimensional tolerance analysis and tolerance synthesis modules, that are sep

arate units, and therefore can neither fully support automatic manufacturing planning nor perform 

some of the spatial reasoning required for assembly planning. Requicha in his paper [38] proposed 

a theory for integrating tolerance into geometric modeling systems.

Research is currently also done in the following areas: Constructing geometric primitives or 

features from measured data[61, 46, 17], different ways of representing geometric tolerance [2, 3, 

38, 25], synthesis and analysis of tolerance[47, 59, 16, 12, 28, 14]. In [59] functional tolerance 

and assembly tolerance concepts have been proposed. In [39], a tolerance-based representation for 

surface features is studied to build the automation of assembly. Also constraint relations between 

toleranced geometric object have been studied, e.g. in [54], [19] proposes a new idea of soft con

straints solving strategy, that could lead the way in integrating constraints and tolerances.

Other than in geometric modeling, tolerances have also been widely addressed in vision, and 

robotics. In [32], model based vision programs have been developed, and uncertainty models are 

used. In [60], geometric tolerance for position and orientation computations are described.

3 Research in  Tolerance Representation and Ana lys is
W e  started to extend our previous research in intuitionistic geometry (briefly described below), to 

extend the foundations, and to build a tolerance based geometric library, and a solid modeling kernel 

and apply the algorithms and data structures to robust manufacturing planning, CAD-based inspec

tion, and reverse engineering

3.1 Intuitionistic G eom etry  for Robust Spatial D ata  Handling

Geometric algorithms are designed for objects defined in a real number space which, on a computer, 

can only be approximated using floating point numbers. Due to these arithmetic errors, but also be

cause of geometric approximation errors, or measuring errors (in the case of measured data input), 

geometric algorithms are rarely robust without special robustness handling. The usual naive use of 

tolerances on geometric objects does not guarantee robustness, especially for geometric problems 

with complicated and degenerate geometric relations, occurring in applications such as 3 D  Boolean 

operations[26], or when interpreting measured data, as in CAD-based inspection, and when simu

lating manufacturing operations.

4



Figure 1: Initial tolerance definition of a point

Since tolerance based decisions are always arbitrary, it is not generally possible to guarantee 

freedom of inconsistencies. The main idea behind intuitionistic geometry is to dynamically update 

the tolerance regions of geometric objects, as a consequence of the relations determined between 

them. This way w e  either detect possible ambiguities which gives us an opportunity to fix them, or 

w e  are guaranteed the correctness. It is not possible that an inconsitency goes undetected.

In this paragraph the intuitionistic robustness method is introduced for geometric relations be

tween points, and finite curves and surfaces. W e  first define tolerance regions of geometric shapes 

and operations on them, independent of representation of the shape:

A n  r-region of an object O is the set of points with a Euclidean distance of r or less from O. In 

the approach presented here the tolerance of an object consists of three such regions: the e-, the 5- 

and the A-region. W e  assume an initial tolerance r which represents the allowable deviation from 

the nominal value that is still accepted equivalent to the nominal value (the value of r is somewhat 

arbitrary and determined by the application), and the error bound u (representing the numerical error 

associated with the data or the computation of geometric relations such as coincidence, incidence, 

etc. with other data). The radii of the e, 5 and A  regions are initialized as e =  r — u ,5 =  t +  u 

and A  =  -f oo. Figure 1 shows the tolerance definition of a point object.

Objects inside the e-region satisfying a certain set of constraints are called models for the repre

sentation. According to Hoffmann’s notion of representation and model[26], a model must satisfy 

all the constraints defined for the object, while the existence of a model of the resulting object en

sures the robust implementation of the algorithm. The 5 region is used to separate apart objects 

(minimal feature separation).

Requiring a model to strictly satisfy all the constraints defined for the object is somewhat too 

restrictive as discussed in [9]. It can make the algorithm extremely inefficient and the tolerances 

to be so big that the original problem’s meaning is changed (e.g., two obviously apart objects are 

considered coincident). Therefore, in the ‘approximated-model’ version of intuitionistic geometry 

models are not required to have the same mathematical form as the original object they represent. 

For instance, a model of a line can be any curve within the line’s e-region passing through all the 

points that were detected to be on the line (incidence constraints).

W e  define the relation between two objects to be either apart, coincident, incident, intersecting 

or ambiguous with the following tolerance based relation definitions and tolerance updating rules. 

With the approximated model definition, a model always exists if the e-region of the represented

5



object is not empty (objects are always finite). The tolerance update rules for the approximated 

model method (defined below) are less restrictive than for the analytic model method (there are 

fewer occurrences of ambiguous situations).

• If the ̂ -regions of two objects do not intersect, the objects are apart. The radii of their A- 

regions will be updated to be half of the smallest distance between these two objects, if A  is 

currently larger than this distance.

• If 0\ and 0 2 are of the same dimension and if there exists a c o m m o n  model for the two ob

jects, the two objects are said to be coincident and merged into one single object. The new e 

and A-regions are the maximal possible regions for the new object inside the intersections of 

the previous e and A-regions, respectively (Figure 2 shows the updated e, £ and A  regions 

of two coincident points). (Figure 3(a) shows the updated e region of two coincident lines.) 

The new  ̂ -region is the minimal region of the new object enclosing the union of the previous 

^-regions of the two objects.

• If object 0\ is a lower dimensional object than 0 2 and there exists a model of 0\ inside 0 2’s

Figure 2: Tolerance updating for two coincident points



e-region, then 0\ is incident on 0 2. The new e and A-regions of 0\ are the maximal regions 

of 0\ inside the intersections of the e and A-regions of the old 0\ and 0 2 (see figure 3(b)).

• If two objects have neither coincidence nor incidence relations, and their e-regions intersect, 

then the two objects are intersecting. The tolerances of the intersecting objects are updated 

in such a way that there exists an intersection object that is incident on both of the original 

objects.

• W h e n  the tolerance of an object O is updated, all the tolerances of those objects that have 

been detected to be incident on O also need to be updated so that the incidence relations still 

hold, i. e. the e and A  regions of these objects must be shrunk (if necessary) so that they are 

inside the e and A  regions of O, respectively.

• If the e-region becomes empty or the ̂ -region is no longer contained in the A-region for some 

object, then w e  detect an ambiguity. Certain steps (usually increasing the tolerances) have to 

be taken to solve the ambiguity before the algorithm continues.

In [9] w e  showed how important properties are preserved automatically for tolerance-based ge

ometric relations just by observing the tolerance updating rules. These properties include most of 

the basic properties preserved by the corresponding relations in Euclidean space (e.g., the transi

tivity of the coincidence relation; two lines only intersect in one point, etc.). W h e n  implementing a 

geometric algorithm with above definitions, tolerance operations and properties, w e  either detect an 

ambiguity or guarantee the existence of a model that has the properties expected from the represen

tation. In a recent paper [10] w e  showed that this method is a vast improvement over the analytic 

model method [4], in that it reduces the likelihood of ambiguities by several orders of magnitude.

3 .2  A  Robust Solid M odeling Kernel

W e  have begun implementing a 3 D  Boolean operation algorithm based on our robustness method 

and a hybrid solid representation method in an experimental solid modeler. In this modeler, a solid

Figure 3: Tolerance updating with coincidence and incidence relations



is bounded by planes and natural quadric surfaces. These surfaces are the most commonly used in 

engineering because of their useful geometric properties (symmetry, etc.) and simplicity in terms 

of geometric computations such as surface intersections.

For Boolean operations on solids, w e  must determine the relation between two surfaces using 

our robustness method, and find intersections of the two surfaces if they are detected intersecting. 

Algebraic solutions are available for relation detections of planes and natural quadric surfaces[13].

In the future w e  need to extend the implementation by general intersections between quadrics 

(not yielding conic sections). Levin’s parametric approach[31], which uses piecewise linear seg

ments to approximate the intersection curves, may be used to find other general intersections of two 

quadric surfaces. However, a piecewise linear approximation requires much larger tolerances to be 

used in the algorithm which in turn may yield more ambiguous relations between objects. Using 

algebraic methods, as we  do for the special cases, is more efficient and more robust for the reasons 

mentioned.

In most modern sculptured surface modelers surfaces are represented by trimmed parametric 

surfaces (B-splines, NURBS). Intersections between surfaces will be computed as piecewise linear 

polylines by recursive subdivision techniques. W e  plan to implement the necessary operations for 

these surfaces, using our robustness method. W e  argue that for general intersections degenerate 

(coincidences) relations are less likely, therefore these will not be a big problem (it is very unlikely 

that two general 3 D  curves are coincident, unless they have a c o m m o n  history: for instance, one 

curve is a duplicate of the other, or some of the intersecting surfaces are identical, or a curve is 

incident with a surface, if it is an intersection of this surface with another surface, etc.). W e  will 

annotate all the geometric objects with this dependency information, and use this information to 

derive special relations between general curves and surfaces, rather than relying on the numerical 

representation.

Nevertheless, many applications (e.g., CAD-based inspection) still require a way of represent

ing tolerances even for sculptured (parametric) surfaces, and to do tolerance based computation 

(e.g., finding the intersection curve of two surfaces and its tolerance, as a function of the tolerance 

of the surfaces. A  survey on surface-to-surface intersection algorithms can be found in[37]. W e  

plan to use an interval spline approach similar to the one described in [44]. W e  plan to implement 

it as an extension to the public domain spline package which is part of the IRIT solid modeling sys

tem, developed at the Technion, Israel. To this end w e  started a collaboration with the Technion 

and the H P  Research Laboratory in Haifa.

Recently w e  showed that shapes computed by set operations that result in a 2 D  manifold topol

ogy can be computed without redundancies, reducing the necessity for tolerance updates to a minimum[62]. 

W e  will take advantage of these results to increases the reliability of the algorithm also for non

manifold objects.

3 .3  Robust Design, M anufacturing and  Process Planning

With the data structures and operations proposed in the previous two sections we  will be able to 

also simulate manufacturing tolerances, and thus simulate the validity of the design under these 

tolerances. For instance, w e  want to find out whether a functional feature can be manufactured, 

and whether it has certain relationships with other features (within tolerance), and whether the re-
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lationships are logically consistent. The geometric operations that need to be carried out can be 

very similar to the solid modeling operations done in the design stage. W e  geometrically construct 

the object by machinable features (e.g., drilling a hole corresponds to a Boolean subtraction of a 

cylinder, etc.), however, this time w e  associate tolerances that correspond to the tool precision to 

the geometric elements, rather than the floating point, or design tolerances, used previously. This is 

done by simply setting the parameters r and v used in the definition of the tolerance regions to the 

appropriate value. The tolerance u, instead of the numeric precision, now represents the precision 

of the physically manufactured object (the actual tolerance in a mechnical engineering sense). The 

parameter r m a y  represent the compliance, clearance, or ‘play’. Generally, it indicates how much 

a the position or orientation of a part can be varied, such that it still fulfills its function.

After the geometric construction w e  will query relationships between geometric elements and 

features to test the validity of the functional features (e.g., w e  want to find out whether the two 

holes manufactured by two independent drilling operations line up within the tolerance of the design 

specifications. The adaptive tolerance method of the intuitionistic geometry approach (see above) 

will facilitate tolerance analysis and synthesis in that it can be used to determine whether certain 

relationships can be achieved unambiguously under the current tolerances, and it provides us with 

the necessary feedback (in form of a smaller resulting £-region), indicating that the precision v of 

the individual objects in the relation need to be tightened in some cases, indicating that the features 

need to be manufactured with a more precise tool, or an additional finishing stage m a y  become 

necessary. In other cases the analysis may tell us that the tolerances can be relaxed, or that the 

clearance r needs to be increased. Examples are given below.

M a n y  geometric operations used in the different processes are similar in principle, but different 

values for the tolerances need to be assigned for different tasks (e.g., a larger tolerance to simulate 

the rough cut and a smaller tolerance for the finishing stage). W e  therefore need a software library 

that is very flexible, and allows us to parameterize the tolerances, and also use different tolerance 

updating rules as they are appropriate for the various applications. The geometric queries that are 

necessary, in addition to incidence and apartness are, for instance, distance, parallelism, right an

gles, etc. The tolerance-based implementation of these queries can be derived from the definitions 

of incidence and apartness. In some sense the tolerance regions in this approach are similar to the 

tolerance zones, proposed iri[39] with the additional advantage of providing a built-in mechanism 

for consistency.

3 .4  Relation Between Shape  and  Transformation Uncertainties

In assembly design, the shape uncertainty of an object’s surface directly affects the uncertainty of 

the relative rigid body transformation between two objects attached to each other. Figure 4 illus

trates the effect of an object mounted on an uncertain surface. The object can be rotated and trans

lated within the range determined by the tolerance zone.

Figure 5 illustrates (in one dimension) how the rotation uncertainty <Sa follows from the shape 

tolerance 6x, for a contact surface of diameter r. This rotation uncertainty causes a position uncer

tainty A x  in parts of the assembly that are translated by a distance R.
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Figure 4: Shape uncertainty results in transformation uncertainties.

Figure 5: The transformation uncertainty caused by shape uncertainty.



peg hole

diameter 9.5 10.0

r 0.5 -0.5

V 0.1 0.1

e 0.4 -0.4

8 0.6 -0.6

Table 1: Tolerance environments for the peg and the hole.

Assume that Sx is small, w e  can approximate the angle 5 a with the following formula:

2 5x
da = --

r

Therefore, A x  can be calculated as:

r 2 R
Ax =  (R — —) x Sa — Sx(-----1)

2 r

If several objects are assembled in a chain, the tolerance stackup for the wole assembly can be 

calculated by repeated application of this principle.

The geometric principle applies equally to the tolerance zone u (the precision) as well as to the 

feasibility region represented by r. W e  can calculate these zones independently and then check 

whether the resulting e and 5 regions are unambiguous.

з .5  Exam ples: Assem bly of Mechanical Parts

In this section, we will show several examples of how the previous approach is applied to tolerance 

analysis.

Consider the assembly of a peg and a hole as shown in figure 6 with a clearance r and a tolerance

и. The tolerance environments are summarized in table 1. To verify whether the peg can fit inside 

the hole, w e  merge their tolerance environments using the tolerance updating rule for the coincident 

objects. The new tolerance environment has an e equal to 0.3 and a 5 equal to 0.7. The e region is not 

empty, therefore, the above tolerance specification describes a valid assembly condition. Figure 7 

shows a picture of the final tolerance environment for the example just described.

In the example of figure 8 the peg has a larger diameter which yields an ambiguous assembly 

condition in form of and empty (negative) e region (because the tolerance is larger than the clear

ance).

Also, w e  can calculate the transformation uncertainty of the peg resulting from the shape un

certainty of both the hole and the peg (shown in figure 9). If w e  want to fit the same peg through 

another hole on the other end, the feasible region of the peg will be reduced. This can be derived 

by doing the same analysis of the assembly of the peg and the second hole independently, as shown 

in figure 10. The resulting transformation uncertainty of the assembly is then obtained by merg

ing (”intersecting”)the two individual e regions (as shown on the right hand side). If the resulting

11









sembling the fixture it is therefore better to first tighten the bolts with the smaller clearance.

4 Conclusion
With the approach proposed here we found a unified approach for handling data with uncertainty. 
The same geometric relations and operations can be applied to the tolerance regions, whether they 
represent numerical inaccuracy, measuring uncertainty stemming from sensing data, or manufac
turing tolerances. Naturally, different numerical values have to be used, depending on the origin 
and meaning of the uncertainty information. We therfore propose to make the tolerance regions 
part of every geometric model.
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